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Abstract

Assessment of ecological risks of chemicals in the field usually involves complex mixtures of 

known and unknown compounds. Herein we describe the use of pathway-based chemical and 

biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), 

which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) 

were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries 

in 2012 and during two periods (April, June) in 2016, in conjunction with an automated system 

to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals and 

pesticides were detected in water at some of the study sites, with the greatest number typically 

found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations 

of several herbicides from April to June at upstream agricultural sites. Comparison of chemical 

concentrations in site water to single chemical data from vitro high-throughput screening (HTS) 

assays suggested potential for perturbation of multiple biological pathways, including several 

associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was 

consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in 

caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects 

on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis 
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suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the 

occurrence of pesticides and pesticide degradates. These studies demonstrate application of an 

integrated suite of measurements to help understand the effects of complex chemical mixtures in 

the field.
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INTRODUCTION

Assessing the potential for adverse biological effects caused by contaminant mixtures in 

aquatic environments is an ongoing challenge. The most common approach to mixture 

assessment uses instrumental analyses to measure chemicals in matrices of concern 

(e.g., water, sediment, tissue), followed by translation of the resultant data into possible 

biological effects. As analytical instrumentation has evolved, it has become possible to 

routinely detect hundreds of different analytes in surface water samples using high-quality 

targeted techniques (e.g., Bradley et al. 2017), and many hundreds more using nontargeted 

exploratory approaches based on high-resolution mass spectroscopy (Hollender et al. 2017). 

Unfortunately, even the most extensive analytical characterizations are of little utility for 

predicting potential biological impacts without hazard data for individual chemicals and 

chemical mixtures. In the past, effects data for chemicals detected in environmental samples 

have been largely derived from published whole-animal toxicology studies obtained through 

standard literature reviews or from curated databases such as the ECOTOX Knowledgebase 

(US Environmental Protection Agency 2020a). While this remains the most robust approach 

available to predict the potential effects of measured chemicals on aquatic organisms 

of concern, the ability to detect chemicals has far exceeded generation of the in vivo 
toxicological data traditionally used to assess their possible hazards. Consequently, there is 

a need to employ “alternative” data sources to assess the potential for chemical mixtures to 

elicit biological effects.
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There is an ever-increasing amount of alternative data that could contribute to complex 

mixture assessment. For example, we recently described a chemical-gene association 

network modeling approach that employs linked chemical and gene/protein expression 

information from extensive, open-source databases, to develop hypotheses as to possible 

perturbation of biological pathways by complex mixtures of chemicals detected in surface 

waters or effluent (Martinovic-Weigelt et al. 2014; Cavallin et al. 2016; Li et al. 2017; 

Perkins et al. 2017; Schroeder et al. 2017; Berninger et al. 2019). One challenge associated 

with this chemical-gene network modeling approach is that it is based on the presence or 

absence of chemicals rather than concentrations in samples, so the ability to quantitively 

consider exposure as part of the complex mixture analysis is limited (Schroeder et al. 

2016; 2017; Blackwell et al. 2017). To help address this shortcoming, we recently utilized 

single chemical dose-response data generated from a large-scale high-throughput screening 

(HTS) program supported through the USEPA and other Federal partners (ToxCast; US 

Environmental Protection Agency 2020b), to generate exposure-activity ratios (EARs) based 

on concentrations of chemicals measured in an environmental sample (Blackwell et al. 

2017; Blackwell et al. 2019; Corsi et al. 2019). The ToxCast program has generated in 
vitro dose-response data capturing hundreds of biological pathways and processes for more 

than 9000 chemicals, many of which have limited or no in vivo toxicity information. 

As such, the ToxCast database provides a readily accessible, methodologically consistent 

resource enabling evaluation of potential biological effects based on chemical measurements 

in complex mixtures. Further, identification of specific HTS targets through the EAR 

calculations can provide insights as to the potential perturbation of specific biological 

pathways controlling higher-level apical responses (Ankley et al. 2010; Schroeder et al. 

2016; Blackwell et al. 2017; Corsi et al. 2019).

Basing mixture assessments on analytical chemistry is a well-defined, widely accepted 

paradigm that can yield very useful information when there are data linking chemical 

concentrations to a relevant biological response(s). However, reliance solely on analytical 

chemistry for mixture assessment is problematic when contaminants of potential concern 

are unknown (unable to be targeted), are not identifiable from full-scan (nontargeted) 

analyses, cannot be detected at biologically-relevant concentrations, and/or when there may 

be interactions among chemicals in producing adverse impacts. To address these challenges, 

some regulatory/monitoring programs have complemented analytical measurements with 

the determination of responses in biological assays conducted with relevant environmental 

samples. For example, more than 30 years ago a provision for standardized biological testing 

was incorporated into regulatory programs focused on effluent quality in the US (Federal 

Register 1984). Similarly, programs focused on sediment and water quality assessment 

have used toxicity tests for many years to evaluate the biological effects of complex 

mixtures (US Environmental Protection Agency 1994; Ingersoll et al. 1995). While direct 

measurement of toxicity certainly can enhance mixture assessment, like targeted chemical 

analyses, standardized toxicity tests are limited in their coverage of the “biological universe” 

of possible concern, particularly in terms of reflecting perturbation of the wide range of 

species, pathways and associated endpoints that might be affected by components of a 

mixture. For example, an assay commonly used in the US effluent testing program focuses 

on early life-stage survival and growth in fish over 7 d (US Environmental Protection 
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Agency 1989), which is an extremely sensitive test for some classes of toxicants but may 

not detect chemicals such as estrogen or androgen receptor agonists that can have profound 

effects on vertebrate development and reproduction.

Consequently, for complex, poorly defined mixtures, biological assessment methodologies 

ideally would employ not only targeted (sometimes termed supervised) tests/endpoints of 

concern, but also nontargeted (unsupervised) assays to detect unanticipated biological effects 

(Ekman et al. 2013). Nontargeted biological measurements could include characterization 

of global gene, protein and/or metabolite profiles in exposed organisms (commonly referred 

to as ‘omics; Garcia-Reyero and Perkins 2011; Martinovic-Weigelt et al. 2014; Perkins 

et al 2017), or evaluation of environmental samples with batteries of multi-endpoint in 
vitro assays, including those amenable to HTS (Escher et al. 2013; Schroeder et al. 2016; 

Blackwell et al. 2018). Identification of molecular or biochemical changes in vivo or in vitro 
using nontargeted bioassay approaches then can be used as a basis for inferring potential 

impacts at higher levels of biological organization through pathway-based predictions of 

potential adverse outcomes (Ankley et al. 2010; Schroeder et al. 2016; Blackwell et al. 2018; 

van der Oost et al. 2020).

Over the past several years, we have been involved in a large collaborative effort, supported 

through the Great Lakes Restoration Initiative (GLRI), to develop and demonstrate the use 

of pathway-based tools for assessing complex mixtures of aquatic contaminants (Ekman et 

al. 2013). As part of this, we have worked at several Great Lakes sites in the context of 

case studies/demonstration projects (e.g., Davis et al. 2013; 2016; Kahl et al. 2014; Cavallin 

et al. 2016; Li et al. 2017; Blackwell et al. 2017; 2019; Perkins et al. 2017; Mosley et al. 

2018; Corsi et al. 2019). In this paper, we present data and results from studies conducted 

in the Maumee River (OH), which demonstrate the practical application of several different 

pathway-based approaches to collect and interpret analytical and biological data in the 

context of an integrated site assessment. In addition to conceptually demonstrating the use 

of pathway-based tools for complex mixture assessment, an aim of the work was to provide 

information that could aid local stakeholders (e.g., State of Ohio, Lake Erie Action and 

Management Plan managers, etc.) in designing subsequent research and monitoring efforts 

focused on potential impacts of contaminants in the Maumee watershed and nearshore 

regions of Lake Erie (US Environmental Protection Agency 2014). These studies were 

conducted over the course of two years (2012, 2016) using a variety of bioinformatic, in 
vitro and in vivo tools developed over the last decade to support GLRI activities.

MATERIALS AND METHODS

Site Selection and General Experimental Design

The Maumee River discharges into Lake Erie and is a Great Lakes Area of Concern 

(AOC), listed for restrictions on fish consumption, eutrophication, and fish and wildlife 

population degradation (US Environmental Protection Agency 2015). Due to the diversity of 

chemicals of potential concern, the Maumee AOC is a highly relevant setting for evaluation 

of pathway-based techniques for assessing potential effects of complex chemical mixtures. 

The Maumee River receives input from the Lucas County wastewater treatment plant 

(WWTP), which discharges 23 million gallons per day (MGD), as well as the Perrysburg (6 
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MGD) and the 60 MGD Toledo-Bay View WWTPs (Ohio Environmental Protection Agency 

2013). Beyond WWTP inputs, the AOC is affected by a variety of nonpoint sources of 

contaminants, including input from a major tributary, Swan Creek, which is an urban stream 

receiving input from several combined sewer overflows (Ohio Environmental Protection 

Agency 2009). The Maumee River has the largest drainage area of any Great Lakes river 

(21,500 km2) and much of the surrounding watershed is active farmland (US Environmental 

Protection Agency 2015). Therefore, the region is potentially subject to seasonal fluxes of 

runoff containing pesticides associated with agriculture. Finally, the lower section of the 

river, near the mouth in Toledo, has been a major industrial port since around 1850, so there 

is also legacy sediment contamination (US Environmental Protection Agency 2015).

Most sites for the present work were selected to be representative of large portions of the 

watershed to characterize the diversity of contaminants contributing to the Maumee River 

while a few sites of interest focused on specific inputs potentially relevant to the AOC 

(e.g., WWTPs; in and near Swan Creek). A total of eight sites (Figure 1, Supplemental 

Information Table S1) were sampled September 18–21, 2012. In 2016, eight sites (five of 

which corresponded to the 2012 sites) were evaluated during two time periods spanning 

between April 27-May 4 and June 8–15 (Figure 1; Supplemental Information Table S1). 

Sampling dates in 2016 aimed to capture possible chemical mixture changes in the AOC 

associated with agricultural runoff relative to the planting season.

To facilitate presentation of data among the different sampling events and sites, we 

established a site-naming system to distinguish both unique and reoccuring sites assessed 

during 2012 and 2016. In subsequent descriptions herein, upper-case letters reflect site 

location abbreviations, while numeric descriptors denote the year sites were sampled (see 

Figure 1). Eight sites were sampled in 2012: three sites were associated with the Toledo-

Bay View WWTP (upstream, UTP12; within the WWTP mixing zone, TWP12; and 

downstream, DTP12), two sites were associated with the Swan Creek tributary (Maumee 

confluence, MSCR12; 2 km upstream Swan Creek, SCR12), one site was located in the 

middle of the area designated as the Maumee AOC (USC12), and two upstream sites were 

located near the outflow of the Perrysburg WWTP (South channel of Perrysburg, PBG12; 

North channel of Ewing Island at Perrysburg, NCPBG12).

Five of these eight sites were sampled again during the two sampling periods in 2016 

(PBG16, USC16, UTP16, TWP16, and SCR16), with sites at the same location typically 

within <100 m of one another between years. Three new sites were established upstream, 

including: a site adjacent to the Farnsworth Metro Park (FMP16), a site in the lower section 

of Beaver Creek, a tributary surrounded primarily by cropland draining into the Maumee 

River (BCR16), and a Maumee River site near Grand Rapids Marina (GRM16). These 

upstream sites were sampled in 2016 to optimize detection of possible seasonal fluctuations 

in contaminants associated with agricultural runoff.

The same basic experimental design was used at each of the study sites during all 

three sampling periods. This involved 4-d deployments of caged-fish (fathead minnows; 

Pimephales promelas) from which tissue samples were collected for both targeted and 

nontargeted (‘omics) analyses. Kahl et al. (2014) describe in detail aspects of the caged-fish 
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deployment systems, including the materials and dimensions. Time-integrated composite 

water samples were obtained in conjunction with the caged fish studies using a novel 

collection system also described by Kahl et al. (2014). The water samples were used for 

instrumental analysis of chemicals in the water, as well as targeted and nontargeted measures 

of in vitro bioactivity.

Caged Fish Studies and Water Sample Collection

For the caged fish studies, we used adult male and female fathead minnows, aged 6–7 

months, from the on-site culture facility at the US Environmental Protection Agency, Great 

Lakes Toxicology and Ecology Division (GLTED) in Duluth, MN. Field and laboratory 

procedures involving the fish were reviewed, and approved by an Animal Care and Use 

Committee, in accordance with the Animal Welfare Act and Interagency Research Animal 

Committee guidelines.

At GLTED, the fish were placed, in groups of six males and six females, in plastic bags 

filled with oxygen-fortified Lake Superior water and shipped in a cooler on ice using an 

over-night delivery service. Prior to field deployment fish were gradually acclimated to the 

temperature of site water (while in the shipping bags). When the temperature was within 

2°C of site water (typically within 15 min), fish were transferred from the bags into cages 

held in site water. Cages were closed and encased in a fine mesh bag to capture any fish 

that might escape from the primary cage. This technique has been shown to result in >95% 

recovery of fish over the course of 4-d deployments (Kahl et al. 2014). Two cages, each 

containing 12 fathead minnows (six males and six females), were attached to a buoy-cable 

system at mid-water depth at each site. Concurrently, an automated composite water sampler 

(Kahl et al. 2014) was attached to the buoy cable, with a water intake hose at the level of the 

caged fish. The autosamplers were programmed to collect water aliquots at 10 min intervals 

for the entirety of the 4-d fish deployments. In 2016, a composite field blank (HPLC grade 

water) was collected as above for both the April and June sampling periods to account for 

any potential contamination from the auto-sampler collection process. A corresponding field 

blank was not collected in 2012.

Water depths at the deployment sites ranged from 0.7 to 4.9 m (Supplemental Information 

Table S1). Flow rates were not measured, but visible current was present at each site such 

that there was constant water exchange through the fish cages, but not so great that fish 

were unable to swim freely. Flow did not move the buoys at any of the sites during the 

deployment.

To accommodate the logistics for fish processing, sample preservation and shipment, cage 

deployments were staggered, so that two sites were evaluated each day. In 2012, extra 

fish from the daily shipping coolers were transported to a staging lab at the University of 

Toledo for sample collection. These fish were considered day 0 shipping controls for a given 

deployment. Due to a lack of observed variability in several of the endpoints (e.g., steroids, 

gene expression) in shipping versus the GLTED lab controls described below (data not 

shown), day 0 shipping controls were not employed in 2016. After a 4-d field exposure, fish 

were removed from cages, placed into buckets of site water with secure lids, and transported 

to the University of Toledo for processing. In both 2012 and 2016, fish from the same cohort 
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as shipped to Toledo were held in a lab at the GLTED facility in a continuous flow of 

UV-treated, filtered Lake Superior water for 4 d and fed brine shrimp daily to satiation. For 

these lab controls, general water quality characteristics (mean ± standard deviation [SD]) 

measured over the course of the deployments were temperature, 20±1ºC in 2012, and in 

April and June, 2016, respectively, 15.3 ± 0.17 and 20.2 ± 0.41ºC; dissolved oxygen, 8.79 ± 

0.98 and 7.37 ± 0.68 mg/L; and pH, 7.03 ± 0.58 and 7.27 ± 0.09. The lab fish were sampled 

in the same manner as those from the field. The GLTED lab controls were used as the 

basis for statistical comparisons for measurements made in the caged fish. One exception to 

this was the spectral data processing for the hepatic metabolomics work with samples from 

the four upstream sites in 2016 (BCR16, GRM16, FMP16, PBG16) where liver samples 

from a field reference treatment were used to help discern exogenous from endogenous 

chemicals (see Caged Fish Metabolomics section below for analysis details). These field 

reference samples were collected from fish that had been held in outdoor tanks at the Toledo 

Yacht Club Marina in a water bath with the temperature controlled by incoming Maumee 

River water. The field reference exposures corresponded with the cage deployments and 

had the same number of fish (six males and six females). The tanks received a 50% daily 

renewal of Lake Superior water (shipped from GLTED) and were fed brine shrimp once 

daily. Otherwise the field reference fish were treated and sampled in the same manner as the 

caged fish.

Corresponding with both deployment and retrieval of the caged fish, pH, dissolved oxygen, 

conductivity, temperature, alkalinity and hardness were measured at each site (Supplemental 

Information Table 1).

Fish Tissue Collection and Processing

Fish were processed, one cage at a time, within 3 h of retrieval from the field. They were 

anesthetized with buffered tricaine methanesulfonate (MS-222; Finquel; Argent, Redmond, 

WA), and wet weights were recorded. Blood was collected from the caudal peduncle 

with heparinized micro-hematocrit tubes and centrifuged to obtain plasma. Plasma samples 

were snap frozen on dry ice and stored at −80°C until used to measure vitellogenin (egg 

yolk precursor protein; VTG) and sex steroids. Liver samples were collected, placed in 

liquid nitrogen and stored at −80°C for subsequent transcriptomic or metabolomic analyses 

or RNA extraction and evaluation of target gene expression using quantitative real-time 

polymerase chain reaction (qPCR). Total gonad weights were recorded prior to subdivision 

to determine the gonadosomatic index. In 2012, an approximately10 mg subsample of fresh 

gonad was used immediately for an ex vivo steroidogenesis assay (described below), and 

the remainder was snap frozen for gene expression assays using qPCR or microarrays. 

The steroidogenesis assays were not conducted in 2016, so entire gonads were frozen for 

gene expression analyses. During sample processing, RNA degradation and sample cross-

contamination on dissection tools was minimized by cleaning equipment with RNaseZap 

(Ambion, Austin, TX, USA) between samples. With the staggered field deployments, fish 

were processed over the course of multiple days, and collected tissues were stored in a 

freezer at −80°C until being shipped overnight or transported by car to the GLTED on dry 

ice, where they were held at −80°C until further processing.
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Water Collection and Handling

The final volume of the 4-d composite water samples corresponding with the caged fish 

exposure typically was about 10 L. Upon retrieval, samples (in the polyethylene [2012] 

or Teflon [2016] collection chambers) were placed in a cooler on ice for transport to the 

University of Toledo for processing. One liter of the composite sample was partitioned into 

eight 12 mL aliquots and stored in 15 mL polypropylene centrifuge tubes at −20°C for 

in vitro bioassays. Four additional 1 L samples were transferred into pre-cleaned amber 

glass bottles (Lee et al. 2012; 2015) and shipped overnight on ice to the USGS National 

Water Quality Laboratory (NWQL, Denver, CO) for analyses of organic contaminants. The 

remainder of the composite sample was frozen at −20°C and stored at the GLTED for 

possible additional analyses.

Analytical Chemistry and Spatial Occurrence Analysis

Analytical measurements were usually conducted using composite water samples for all 

sampling events. When a composite sample was not successfully collected, grab samples 

were used. In 2016 additional analytical replicates were collected from the composite 

sampler bags at USC16 in April and FMP16 in June. Resultant chemical concentrations 

were averaged to create an individual value for these two instances. Samples were assessed 

by the NWQL using different analytical schedules employing mass spectrometry (MS). 

In both 2012 and 2016, schedules were used that focused specifically on pharmaceuticals 

(Schedule 8244 in 2012 and Schedule 2440 in 2016) and wastewater indicators (Schedule 

4433, which includes several pesticides and polycyclic aromatic hydrocarbons [PAHs]). In 

2012, an analytical schedule that focused specifically on steroid hormones/sterols (Schedule 

4434) was used. In 2016, a pesticide schedule (Schedule 2437) was employed, which 

included more than 200 target analytes, many of which could be associated with agricultural 

activities in the AOC watershed (Shoda et al. 2018). In addition to the broad pesticide 

schedule, a more specialized analysis for neonicotinoid pesticides was performed with the 

2016 water samples (Hladik et al. 2018). The complete list of target analytes, corresponding 

protocols, and quality assurance/quality control procedures are described elsewhere (Zaugg 

et al. 2006; Lee et al. 2015; Foreman et al. 2012; Furlong et al. 2014; Shoda et al. 2018; 

Hladik et al. 2018). Concentrations reported as an estimated value were categorized as 

detected for the different analyses described in this paper.

As described below, analytical chemistry results were used for pathway-based inferences as 

to possible biological effects in the Maumee system, but the analytical data also provided 

a basis to examine spatial and temporal contaminant occurrence trends. To this end, cluster 

analysis was employed to distinguish site similarities and differences based on chemical 

occurrence data. Due to variation associated with chemical sampling schedules, seasons, and 

the inclusion of several new sites in 2016, three separate cluster analyses were performed 

grouping sites individually by year (2012) and season (April and June) in 2016. Data 

for cluster analysis were prepared by normalizing chemical concentrations through mean 

centering and scaling to unit variance. Afterward, hierarchical clustering was performed 

using the correlation between sites as the distance metric and Wards criteria for the linkage 

to derive site clustering (Murtagh et. al. 2014). The number of site clusters was determined 

using the R (R Core Team 2019) function pvclust (Suzuki and Shimodaira 2006), with an 
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alpha level set to 0.1. An exception to this approach was made for the April 2016 data 

where one of the clusters determined using pvclust (UTP16, TWP16, SCR16, GRM16, and 

USC16) was further subdivided into three smaller clusters (UTP16 and TWP16; SCR16; 

GRM16 and USC16). This was done to highlight the spatial patterns observed in April 

2016, with chemical cluster C3 containing chemicals that had their highest concentrations in 

SCR16 and chemical cluster C4 containing chemicals that had their highest concentrations 

at the GRM16 and USC16 sites. These chemicals were also clustered using correlation 

as the distance metric and Wards criteria for the linkage. The elbow method was used to 

determine and reduce the number of clusters (Ketchen and Shook 1996). Site clusters were 

visualized using the percent of the maximum concentrations detected for chemistry data 

projected as heatmaps using the superheat R package (Barter and Yu 2018). Since cluster 

analyses included relative values, the data plotted in each heatmap represent the ratio of the 

log concentration between the highest concentration of each chemical at a given site and that 

chemical’s lowest concentration within the dataset.

Inferring Biological Hazards from Chemical Occurrence Data: EARs and AOPs

Chemical occurrence data were used to calculate EARs based on publicly-available HTS 

results from the USEPA ToxCast and Tox21 programs (US Environmental Protection 

Agency 2020b). Due to the nature of the analysis (i.e., screening), the EARs were based on 

the maximum values of individual chemical concentrations detected during either sampling 

period in 2016. Calculations and associated visualizations for the analyses were carried out 

using the functionality of the R package ToxEval (DeCicco et al. 2018).

By themselves EAR values can be indicative of chemicals with the potential to perturb 

one or more biological targets (Blackwell et al. 2019), taking into consideration both 

concentrations and chemical potency. However, the generation of EAR values is only a 

first step in identifying possible specific effects of a given chemical/suite of chemicals 

on organsims in the field. That is, the HTS data used for the EAR calculations are from 

in vitro systems that measure the bioactivity of a chemical in terms of molecular or 

biochemical alterations. To translate these types of in vitro measurements into possible 

apical responses in whole organisms requires knowledge concerning the consequences of 

changes in molecular or biochemical endpoints with regard to what might occur at higher 

biological levels of organization. The adverse outcome pathway (AOP) framework provides 

a conceptual basis for meeting this challenge (Ankley et al. 2010). Specifically, an AOP 

depicts causal linkages between the initial interaction of a chemical with a biological system 

(termed the molecular initiating event, MIE) and subsequent changes at progressively higher 

biological levels of organization (intermediate key events) that culminate in an adverse 

outcome meaningful to risk assessment (i.e., survival, growth reproduction). The HTS data 

used for EAR calculations typically reflect MIEs or early key events in an AOP.

Consequently it is possible to use the EAR data in conjunction with established AOPs to 

provide insights as to possible apical impacts caused by a given exposure associated with 

a complex environmental mixture (Corsi et al. 2019). In the current study, we queried an 

open-access AOP Wiki (Society for the Advancement of Adverse Outcome Pathways 2016), 

with respect to assays or gene targets associated with elevated EARs to identify AOPs and 
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apical responses of potential concern relative to possible effects on fish in the Maumee 

AOC.

Pathway-Based Measurements of Potential Toxicity: Targeted Techniques

Due to well-established connections between WWTP effluents and impacts on components 

of the hypothalamus-pituitary-gonadal (HPG) axis in fish (Purdom et al. 1994; Hotchkiss 

et al. 2008), several measurements were made to assess different aspects of reproductive 

endocrine function. Targeted in vitro bioassays were conducted to determine total estrogenic 

and androgenic activity of water samples. In addition, measures of HPG axis status were 

determined in the caged fish, including VTG and sex steroid concentrations in plasma, ex 
vivo steroid synthesis by gonad tissue, and qPCR determinations in gonads and liver of 

transcripts of genes known to be important in endocrine function (Ankley et al. 2009). 

Collectively many of these in vivo and in vitro measurements can be associated with 

chemical impacts on fish reproduction through consideration of established AOPs (Society 

for Advancement of Adverse Outcome Pathways 2016). Transcripts of several genes related 

to HPG axis function were measured in fish from all sites in 2012. However, given the 

generally low responses observed in 2012, endocrine-associated measurements in 2016 were 

more focused. Specifically, in 2016 only hepatic vtg expression in males was measured at all 

sites (as a measure of estrogenicity), and ovarian expression of a suite of HPG-related genes 

was determined at a subset of sites with elevated herbicide concentrations (see Results).

In vitro bioassays—The T47D-KBluc and MDA-kb2 cell lines were used to estimate, 

respectively, total estrogenic and androgenic activity in water samples. These cell lines 

are stably transfected with human estrogen receptor alpha- or androgen receptor-regulated 

luciferase reporter gene constructs (Wilson et al. 2002; 2004). For the assays, site water 

samples were prepared with powdered media, which was used to directly dose the cells, as 

previously described (Wehmas et al. 2011; Cavallin et al. 2014). Estrogenic and androgenic 

activities, respectively, were quantified based on simultaneously generated duplicate 17α-

ethinylestradiol (EE2) or 17β-trenbolone (TRB) standard curves. All samples were analyzed 

in triplicate within each plate. The background-adjusted percent maximum response of each 

sample replicate was interpolated against the standard curve concentrations using nonlinear 

regression (log agonist concentration versus response-variable intensity). The resulting EE2-

equivalents (EQs) and TRB-EQs were adjusted for sample dilution in the assay. A sample 

was considered significantly estrogenic/androgenic if its activity exceeded three standard 

deviations above the mean assay media control.

In vivo measurements—Gonadal production of 17β-estradiol (E2) and testosterone 

(T) was determined in the 2012 caged fish using basic procedures described elsewhere 

(McMaster et al. 1995; Ankley et al. 2007). To help minimize variability, the assay 

solutions were prepared at the GLTED as a single batch, and frozen in aliquots of an 

appropriate volume for each sampling event. After 12-h of incubation at 25°C, gonad tissues 

were removed from the assay system and the remaining solution stored at −80°C until 

measurement of T and E2 were made using radioimmunoassay (Jensen et al. 2001).
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Plasma concentrations of T and E2 in caged fish (both years) were also determined 

using radioimmunoassay procedures optimized for small volumes (Jensen et al. 2001). 

Concentrations of plasma VTG protein were measured in males from 2012 using enzyme-

linked immunosorbent assays with purified fathead minnow VTG standard and a polyclonal 

antibody (Parks et al. 1999; Korte et al. 2000).

Due to its specificity and sensitivity for indicating exposure to exogenous estrogens (Ankley 

et al. 2009), vtg expression in the livers of males from all sampling sites/times was 

measured by qPCR. A set of ovarian gene transcripts for qPCR analysis was identified 

based on known roles in HPG function and previously documented chemical effects on their 

expression (Ankley et al. 2009; Villeneuve et al. 2007; Richter et al. 2016). Transcripts 

measured in ovary RNA samples from 2012 included cytochrome P450 cholesterol side-

chain cleavage (cyp11a), cytochrome P450 17α hydroxylase, 17, 20 lyase (cyp17) and 

cytochrome P450 aromatase A (cyp19a1a). In 2016 ovarian transcripts measured in females 

from an upstream subset of the sampling sites included follicle stimulating hormone receptor 

(fshr), cyp19a1a, zona pellucida phosphoprotein (zp3), 3β-hydroxysteroid dehydrogenase 

(3βhsd) and steroidogenic acute regulatory protein (star).

Additional transcripts we measured in livers of the caged fish code for enzymes involved 

in xenobiotic metabolism, some of which can be induced by exposure to a variety of 

chemicals found in WWTP discharges such as pharmaceuticals and PAHs (Whyte et al. 

2000; You 2004; Cavallin et al. 2016). These included two cytochrome P450s, cy1a1, cyp3a, 

a glutathione S transferase (gst), and a sulfotransferase (sult2).

Specific procedures for the hepatic and ovarian qPCR measurements, including kits, 

primers, and probe sequences used for each gene are described in detail elsewhere 

(Villeneuve et al. 2007; Cavallin et al. 2014; Supplemental Information Methods and 

Supplemental Information Table S2). The large number of qPCR measurements for this 

work necessitated conducting the analyses across several different assays. To help reduce 

variability introduced by combining data from mutiple assay plates, gene expression data 

were normalized to measurements made using a common set of GLTED control samples 

from each plate. This normalization helped to correct for normal plate-to-plate variations in 

qPCR efficiency.

Statistical analysis of targeted in vivo data—Data were analyzed using GraphPad 

Prism version 7.04 for Windows (GraphPad Software, La Jolla, CA). When plasma VTG 

and steroid concentrations and gene expression (qPCR) data were normally distributed and 

variance was homogenous, one-way analysis of variance (ANOVA) followed by Dunnett’s 

Test was used to test for differences between field sites and the GLTED control. When data 

were not normally distributed, they were either transformed (e.g., log10) and then analyzed 

by one-way ANOVA, or if still not normally distributed after transformation, analyzed using 

a nonparametric Kruskall–Wallis test followed by Dunn’s post-hoc analysis. When plasma 

VTG protein concentrations were below the detection limit, values of one-half the detection 

limit were used. Differences were considered significant at p < 0.05).
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Pathway-Based Measurements of Potential Toxicity: Nontargeted Techniques

Liver and gonad samples from caged fish were used for gene expression (microarray) and 

metabolomics measurements. Given the size and complexity of the transcriptomics dataset 

and associated analyses, those results will be described elsewhere. In the current paper we 

describe hepatic metabolomic analyses for the caged fish, as well as results from an in vitro 
nontargeted approach with a commercially-available HTS platform used to measure different 

bioactivities in water samples (generally composites) collected in conjunction with the fish 

deployments.

Caged Fish Metabolomics—Metabolomics is the study of the complete set of small-

molecule endogenous metabolites, or the metabolome, in an organism’s cells, organs, 

biofluids or tissues. The metabolome consists of semi-polar and polar compounds, such 

as amino acids and sugars, as well as non-polar compounds such as phospholipids. The 

relative proportions of these many endogenous metabolites can serve as a fingerprint of 

an organism’s physiological state. Exposures to potentially toxic chemicals and chemical 

mixtures result in changes in these fingerprints, which can often be interpreted in terms of 

adverse impacts in the context of different AOPs (Collette et al. 2010; Davis et al. 2017).

We focused the metabolomic analysis on the polar and semi-polar metabolites from male 

fathead minnow liver samples from the 2016 field season. We divided the samples into two 

batches that were subjected separately to the processing and analysis steps described below. 

One batch, hereafter referred to as the “upstream batch”, included samples (April, June) 

from PBG16 along with three other sites potentially influenced by agricultural activities 

(GRM16, BCR16, and FMP16). Corresponding samples from the field reference fish were 

also included in the upstream batch. The other batch (i.e., the “downstream batch”) included 

April and June samples from USC16, SCR16, UTP16, and TWP16, which are potentially 

more heavily influenced by urban activity such as combined sewer overflow and WWTP 

effluent. The GLTED lab control fish were also included in the downstream batch.

Male fathead minnow liver samples were processed randomly in a 96-well plate format 

using previously published protocols for a dual phase extraction (Davis et al. 2013). Aliquots 

of ultrapure water were extracted alongside study samples to serve as process blanks within 

each batch. The polar extracts were vacuum dried overnight and stored at −80°C. Prior to 

analysis, the dried extracts were reconstituted in 200 μL of water:acetonitrile (19:1,v/v), 

after which the samples were allowed to sit for 10 min and then vortexed at 500 rpm 

for 10 min. Samples were allowed to sit again for 10 min and then vortexed a final time 

for 10 min (500 rpm). Equal 25 μL aliquots were then collected from the reconstituted 

extract for each sample, pooled, and split into multiple quality control (QC) samples for 

high-resolution MS/MS analysis. To remove particulates, the samples were transferred to a 

prewetted 96-well filter plate (0.2 μm pore size) and centrifuged at 1000×g for 5 min (20°C). 

The filtrate was then transferred to a 96-well plate with 300 μL glass inserts and briefly 

centrifuged to remove air bubbles (1 min at 1000×g). Samples were stored in a refrigerated 

tray (4°C) during the liquid chromatography (LC)-MS/MS analysis. Corresponding QC 

samples were analyzed at the beginning, end, and after every tenth sample. Process blanks 

and liver extract samples were analyzed in a randomized fashion.
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A full description of the LC and MS parameters is included in the Supplemental 

Information. Briefly, polar liver extracts were profiled using an LC coupled to a Q-Exactive 

orbitrap mass spectrometer (Thermo Fisher Scientific). Spectral peaks from the collected 

data were de-convoluted and aligned separately for the two batches with the XCMS 

package in R, an open source framework for processing and visualizing chromatographically 

separated mass spectral data (Smith et al. 2006; Tautenhahn et al. 2008). Isotopic 

features and ion adducts were annotated with the CAMERA package in R (Kuhl et al. 

2012). Parameters used to extract and annotate mass spectral features are provided in 

Supplemental Information Table S3. Following visual inspection, features belonging to the 

same metabolite were combined into a single integrated intensity value per metabolite 

per sample using custom R scripts. Prior to statistical analyses, background components 

were removed, and the processed dataset was reduced to only those metabolites that were 

detected in the batch-relevant control/reference samples—these were retained for analysis 

and are hereafter referred to as “endogenous metabolites”. Other detected metabolites (not 

likewise found in control/reference samples) were denoted as exogenous and were not used 

in any of the analyses. This process was conducted to prevent site-specific detections in 

the dataset (for example, from xenobiotics) from heavily influencing subsequent analyses. 

A full description of the methods used to screen for endogenous metabolites is presented 

in Supplemental Information. We identified and removed duplicate records in datasets 

collected using the +ESI and −ESI modes. The data from these two ion modes were then 

combined and normalized to unit total integrated intensity and used for all subsequent 

analyses.

Principal component analysis (PCA) was performed on the normalized spectral data using 

SIMCA-P+ (Version 13.0, Umetrics) after mean-centering and scaling to unit variance. 

Batch-specific two component PCA score plots were used separately to assess the overall 

data structure and to identify potential outliers based on location outside the Hotelling’s T2 

line. Using this method, three fish (out of 259 across the two batches) were identified as 

outliers and removed from the datasets prior to further analyses.

We used partial least-squares (PLS) regression (SIMCA-13.0, Umetrics Inc.) to compare 

changes in endogenous metabolite profiles with concentrations of detected organic 

contaminants, and to screen out those contaminants whose concentrations did not 

significantly covary with metabolite changes. We have previously used this modeling 

approach to identify environmental stressors that have (or do not have) a significant 

biological impact on endogenous metabolites, and full modeling details can be found in 

these earlier papers (Davis et al. 2016; Collette et al. 2019). Briefly, for the upstream 

batch, we first constructed a “global” PLS model that included all 87 organic contaminants 

detected in at least one of the samples from the upper-river sites. The optimal number of 

model components was determined by cross-validation, and model fit was assessed using 

the fraction of variation that could be predicted by the model components (Q2; Eriksson et 

al. 2006). We then used contaminant-specific analysis of variance testing of cross-validated 

predictive residuals (CV-ANOVA; Eriksson et al. 2008) to identify individual contaminants 

whose measured values were not significantly predicted by the global model. Using an 

iterative backward-elimination process, we excluded those organic contaminants that had 

the highest CV-ANOVA values, then rebuilt and revalidated a series of subsequent PLS 
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regression models. We repeated this process until all contaminants remaining in the “final” 

model exhibited a CV-ANOVA value <0.10. Then, we used these CV-ANOVA values to 

assess the relative strength of the relationship with endogenous metabolite profiles for each 

organic contaminant that remained in the final PLS model. Subsequently, we repeated this 

entire process for the downstream batch, beginning with a global PLS regression model that 

included all 119 organic contaminants detected in at least one of the samples from the four 

downstream sites.

High-Throughput Assays—Nontargeted HTS of the Maumee samples was conducted 

with the Attagene platform (Attagene, Inc. Morrisville, NC), which was one of several 

employed for data generation in the USEPA ToxCast program. Two individual assays 

were used for bioactivity screening of surface water extracts, the cis-FACTORIAL and 

trans-FACTORIAL assays (Romanov et al. 2008). Both are HepG2 cell-based assays 

multiplexed for the simultaneous assessment of transcription factors (cis-FACTORIAL) 

or transfected human nuclear receptors (trans-FACTORIAL), together covering nearly 70 

individual endpoints across several biological pathways. such as metabolism, endocrine 

signaling, and cell stress (Romanov et al. 2008).

Surface waters screened using the HTS assays were processed and screened in one (2012) 

or both (2016) HTS assays as previously described in detail by Blackwell et al. (2019). In 

2012, composite water samples from four sites (DTP12, TWP12, UTP12, NCPBG12) were 

evaluated, while in 2016, samples from all sites and both sampling periods, including the 

June GLTED control (17 samples total), were used for the HTS bioactivity determinations. 

Briefly, whole water was filtered prior to solid phase extraction using Oasis HLB cartridges 

(Waters, Inc. Milford, MA). Final extracts were evaporated to dryness and reconstituted 

in dimethyl sulfoxide (DMSO) at a relative enrichment factor of 1000-fold. Extracts were 

screened in duplicate at a relative enrichment of 10-fold in both assays. Bioassay responses 

were expressed as fold-change relative to DMSO control by dividing sample response by 

that of corresponding DMSO treated controls. Assay response was batch-normalized by 

dividing sample response by the extraction blanks run with each assay set. A cutoff of 

1.5-fold above blank response was used to identify active endpoints (Blackwell et al. 2019).

RESULTS

Sample Collection Overview

Fish for the cages were shipped, received and deployed without incident during all field 

seasons. After the 4-d exposure period, >99% of the fish were successfully retrieved 

from the cages, alive and with no noticeable physical injury (e.g., cuts, abrasions, 

lesions). Composite water samples were successfully collected at all sites/sampling times, 

except for SCR12 and GRM16 (June), for which grab samples were obtained upon 

retrieval of the cages (see Supplemental Information Tables S4 and S6 for a summary 

of the water sample types employed for the chemical and in vitro analyses). Across 21 

composite samples successfully collected over all deployments in 2012 and 2016, the mean 

(±standard deviation) volume was 10.5 (±3.04) L over the 4-d deployment period. Basic 
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water chemistry data (e.g., pH, conductivity, hardness, alkalinity, dissolved oxygen, total 

suspended solids, etc.) can be found in Supplemental Information Table S1.

Analytical Chemistry Data and Spatial Analysis-2012

A total of 63 chemicals were detected across all sites in 2012, with members of the 

wastewater indicators schedule the most frequently observed, particularly at WWTP 

effluent-influenced sites (NCPG12, PBG12, TWP12, DTP12; Supplemental Information 

Table S4). Chemical detections included two of the 19 targeted steroid hormones/sterols, 18 

of the 48 targeted pharmaceuticals, and 43 of the 67 chemicals in the wastewater indicator 

schedule. At individual sites total detections ranged from 26 to 49 chemicals. The site 

closest to the Toledo-Bay Field WWTP mixing zone (TWP12) had the most detectable 

chemicals, with average concentrations that were frequently higher than at other locations. 

Overall, the highest absolute concentrations observed were for phytosterols, plasticizers, 

analgesics, and pesticides. Of all the chemicals detected, cholesterol concentrations were by 

far the greatest at the various sites, for example ranging from 5.7–7.14 μg/L at UTP12, 

PBG12, and NCPBG12. Figure 2A depicts mean cross-site concentrations of the 15 

chemicals present at the highest concentrations in 2012 (for scaling purposes cholesterol 

was excluded from the figure).

Specific chemicals detected varied greatly across the sites in the Maumee AOC 

(Supplemental Information Table S4). Four chemicals (cholesterol, 5-methyl-1H-

benzotriazole (5-MeBt), atrazine, and DEET) were detected at all locations sampled. Beta-

sitosterol was found at most sites, with other phytosterols including 3-beta-coprostanol 

and beta-stigmastanol detected at sites near WWTPs. Diethyl phthalate was detected 

at all locations except SCR12, while di(2-ethylhexyl) phthalate (DEHP) was detected 

predominantly in upstream locations (UTP12, PBG12, NCPBG12). The presence of 

pesticides throughout the entire AOC, particularly atrazine and metolachlor, likely reflects 

the general influence of agriculture within the watershed (USEPA 2015). This interpretation 

is consistent with the relatively low concentrations of pesticides at the SCR12 site, as 

Swan Creek drains primarily urban areas. Polycyclic aromatic hydrocarbons were also 

present throughout the AOC, with a different suite of PAHs observed at the upstream 

(PBG12, NCPG12, USC12) versus downstream (MSCR12, UTP12, TWP12, DTP12) 

sites, suggesting different source contributions.

We used cluster analysis to more formally evaluate differences and commonalities among 

the test sites relative to the chemical occurrence data. In 2012, three distinct site clusters 

were noted (Figure 3A). The two sites near the Toledo-Bay Field WWTP were in 

cluster S12-C1 (DTP12 and TWP12), with both having a wide range of pharmaceuticals 

and wastewater indicators including plasticizers, PAHs, sterols, pain relievers, and 

antidepressants (Figure 3A; Supplemental Information Table S5). Cluster S12-C2 had 

four sites comprised of two sub-clusters (PBG12 and NCPBG12; USC12 and UTP12). 

Chemicals dominating these sites included herbicides (atrazine, metolachlor), plasticizers 

(diethyl-phthalate, DEHP) and cholesterol (Figure 3A; Supplemental Information Table S5). 

All four locations were located upstream of the Toledo-Bay View WWTP, with PBG12 and 

NCPBG12 located furthest upstream, USC12 mid-reach, and UTP12 just above the WWTP. 
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Lastly, cluster S12-C3 contained the two Swan Creek sites (SCR12, MSCR12), which 

were predominantly characterized by wastewater indicators including PAHs, pesticides, and 

industrial intermediates (Figure 3A; Supplemental Information Table S5). Five chemicals 

were largely unique to the Swan Creek sites, and included two organophosphate pesticides 

(carbaryl, dichlorovos) and a non-crop herbicide (bromacil). Again, the distinct composition 

of the Swan Creek contaminant profile likely is due to it receiving urban runoff with little in 

the way of WWTP input (Ohio Environmental Protection Agency 2009).

Analytical Chemistry Data and Spatial Analysis-2016

The USGS NWQL pesticide and pharmaceutical schedules (2437, 2440, respectively) used 

in 2016 had a greater number of target analytes than the schedules used in 2012, so the 

overall chemical detection incidence was higher. The total number of chemicals detected 

across all sites in 2016 was similar between the two sampling periods with 111 in April and 

110 in June (Supplemental Information Table S6). A slightly lower incidence of pesticide 

detections (58 vs 63) was observed in April compared to June, with somewhat fewer 

pharmaceutical (28 vs 25) and wastewater indicator (25 vs 22) detections in June vs April. 

Across the individual sites in April, the number of chemical detections varied from 36–

47 for pesticides, 4–23 for pharmaceuticals, and 3–14 for wastewater indicators. Similar 

ranges were seen in June with detections ranging from 39–51 for pesticides, 0–21 for 

pharmaceuticals, and 2–18 for wastewater indicators. The most prominent changes across 

individual sites were observed during June, when pesticide detections and concentrations 

increased compared to April at all locations except BCR16 (Figure 2B,C; Supplemental 

Information Table S6). The largest increases in the number of pesticides detected occurred 

at the most upstream sites (GRM16, FMP16). In April 2016 many of the chemicals present 

at elevated concentrations were the same as those observed in 2012 (e.g., cholesterol, 

beta-sitosterol, MeBT). In contrast with 2012, the pre-emergent herbicide 2,4-D was one 

of the 15 chemicals detected at the highest concentrations in April, particularly at BCR16 
and PBG16 (Figure 2B). Many of the analytes detected in April were also observed in 

June including cholesterol, beta-sitosterol, metolachlor, metribuzin, MeBT and metolachlor 

sulfonic acid. In contrast, maximum concentrations for the three herbicides, atrazine, 

metolachlor and acetochlor, were higher on average during June (Figure 2C). For example, 

average (SD) concentrations of atrazine across all sites increased from 0.43 (0.2) μg/L in 

April to 8.2 (9.2) μg/L in June. Notably, three upstream Maumee River sites (GRM16, 

FMP16 and PBG16) had increases in atrazine concentrations of >90% compared to April, 

with values in June ranging from 14.8 to 21.2 μg/L at these sites (Supplemental Information 

Table S6).

Cluster analysis of chemical occurrence data for April 2016 yielded four distinct site 

clusters. Despite differences associated with varying chemical schedules, the April 2016 

clusters (Figure 3B; Supplemental Information Table S5) were often comparable to profiles 

of corresponding sites observed in 2012. For example, Cluster A16-C1 grouped sites 

USC16 and GRM16 based on occurrence of pesticides, sterols, pharmaceuticals, and 

PAHs, a composition similar to USC12 (cluster S12-C2). The second cluster (A16-C2) 

was characterized largely by agricultural land use resulting in pesticides and associated 

degradates comprising 89% of the chemicals at BCR16, FMP16, and PBG16. Notably, the 

Ankley et al. Page 16

Environ Toxicol Chem. Author manuscript; available in PMC 2022 October 12.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



highest absolute concentrations of herbicides (e.g., 2,4-D, metribuzin, metolachlor, atrazine) 

in the AOC typically were observed at these same sites. Cluster A16-C3 indicated that the 

Swan Creek tributary (SCR16) was largely characterized by PAHs (fluoranthene, pyrene) 

and pesticides (carbaryl, bromacil, diuron), similar to the pattern seen in 2012 at the two 

Swan Creek sites (SCR12, MSCR12). The remaining April cluster (A16-C4) consisted 

of pharmaceuticals and wastewater indicators detected near the WWTP sites (TWP16, 

UTP16), the two sites with the highest total number of chemicals detected during April 

2016.

Site clusters were less defined in June 2016, with only two identified across the AOC 

(Figure 3C; Supplemental Information Table S5). The first cluster (J16-C1) contained 

two sub-clusters comprised of (a) PBG16, FMP16, and GRM16, and (b) BCR16. These 

sites are all upstream of the Toledo-Bay View WWTP and were mainly influenced by 

pesticides (79% of the cluster contribution), reminiscent of trends seen in April. The second 

cluster (J16-C2) included USC16, SCR16, UTP16, and TWP16, all of which are in the 

downstream region of the AOC. Chemical contributions to this cluster were spread across 

the pharmaceutical (41%), pesticide (33%), and wastewater indicator (26%) schedules. It 

was possible to discern several sub-clusters of J16-C2: (a) USC16, (b) SCR16, and (c) 

UTP16 and TWP16. As in April, UTP16 and TWP16 sites were largely dominated by 

pharmaceuticals and wastewater indicators.

Inferring Biological Hazards from Chemical Occurrence Data: EARs and AOPs

Analysis of the 2016 data using ToxEval revealed that pesticides were the predominant 

chemical class contributing to elevated EAR values (Figure 4A). Based on summed EAR 

values derived from maximum chemical concentrations measured during either sampling 

event in 2016, three sites were identified as having the greatest potential impact (FMP16, 

PBG16, GRM16), with FMP16 having the highest total EAR among all sites. The three 

locations are in the main channel of the Maumee River upstream of Toledo-Bay View 

WWTP, where the primary land use is agricultural. Overall, five pesticides (atrazine, 

metolachlor, acetochlor, dicamba, 2,4-D) were the main contributors to the cumulative EAR 

values (Figure 4B). Figure 5 depicts the specific assays/targets from the ToxCast suite 

that resulted in EAR values greater than a cutoff of 0.1 (see Blackwell et al. 2019 for 

rationale for this cutoff). It is noteworthy that several of the molecular targets/activities in 

the assays resulting in elevated EAR values are related to xenobiotic metabolism pathways 

(e.g., CYP2C9, CYP2B6, PXR, UGT1A1).

While the derived EAR values are useful for highlighting those chemicals present in 

complex mixtures at concentrations high enough to produce a biological response in vitro, 

this alone provides limited information as to potential biological consequences in organisms 

exposed in the field. Adverse outcome pathways provide one avenue through which to 

forecast possible apical effects associated with molecular or biochemical perturbations. In 

the present study ToxCast assays corresponding to maximum summed EARs greater than 

0.1 (Figure 5) represented 19 unique gene targets, half of which were various cytochrome 

P450 isoforms. Considering the type of responses of each target (e.g., agonism versus 

antagonism; activation versus inhibition), effects on those 19 gene targets mapped to 
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eight key events described in the AOP-Wiki (aopwiki.org; accessed March 31, 2020; 

Supplemental Information Table S7). Because key events can be shared by more than one 

AOP, these key events were associated with a total of 14 AOPs (Supplemental Information 

Table S7). Six of these were a network of AOPs linking cyclooxygenase-2 inhibition to 

reproductive dysfunction. Another five linked aryl hydrocarbon receptor (AhR) activation 

to early life stage mortality, porphyria, and hepatic steatosis. The remainder of the AOPs 

identified various liver pathologies as potential apical hazards. It should be noted that 

exceedance of an EAR threshold of 0.1 does not necessarily indicate that concentrations 

of the active chemicals in the environment are high enough or present for durations long 

enough, to produce the hazards outlined in the AOPs. Rather, these are outcomes that could 

be expected if exposures (in terms of dose and duration) were sufficient to perturb a given 

pathway.

Pathway-Based Measurements of Potential Toxicity: Targeted Techniques

In vitro assays—There was no significant androgenic activity detected in the MDA-kb2 

assay at any site during 2012 (data not shown), so this assay was not employed in 2016. 

No significant estrogenic activity occurred in the T47D-KBluc assay with composite water 

samples from sites across the AOC in 2012 (Supplemental Information Figure 1A). In 2012, 

estrogenic activity was also measured in a series of grab samples collected at the beginning 

of the caged-fish deployments. In these samples there was slight estrogenic activity at 

TWP12 (Supplemental Information Figure 1B). Estrogenic activity in composite water 

samples from 2016, during both the April and June sampling periods, also was uniformly 

low across the different sampling sites (Supplemental Information Figure 2).

Gonadal steroid production and plasma VTG and steroid concentrations—
Changes in gonadal steroid (E2, T) production or plasma concentrations of T, E2 and VTG 

also can indicate the presence of endocrine-active chemicals, including estrogens. There 

was little effect on most of these endpoints in caged fish from the 2012 study. Plasma 

concentrations of VTG in males were not significantly affected in fish from any of the 

sites (Supplemental Information Figure 3). Ex vivo ovarian production of E2 and T, and 

plasma E2 concentrations in caged females from the eight field sites did not differ from lab 

controls (Supplemental Information Figure 4A-C)). Similarly, neither testicular T production 

nor plasma E2 concentrations were affected in males from the field in 2012 (Supplemental 

Information Figure 5B,C). Production of E2 by testis of males from all the field sites was 

significantly lower than that of control fish (Supplemental Information Figure 5A), but this 

measurement is near the limits of detection of the assay so is of questionable biological 

significance. One endocrine-associated endpoint that showed relatively consistent changes 

in the caged fish was plasma T concentrations. In males, plasma T was elevated at PBG12, 

USC12, SCR12 and UTP12, while T was significantly higher than control values in females 

from USC12 and SCR12 (Figure 6A,B).

Given the overall lack of significant changes in 2012, we did not measure plasma VTG 

nor gonadal synthesis of T or E2 in 2016. Neither plasma T nor E2 concentrations were 

consistently affected in caged females in April or June, 2016 (Supplemental Information 

Figure 6A,B). Plasma E2 in males was not affected during either sampling period in 2016 
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(data not shown); however, plasma T was different in caged fish than in controls. In April, 

T was significantly increased in males from five of the eight study sites, with four of these 

corresponding to locations where T was elevated in males in 2012 (PBG, USC, SCR, UTP; 

Figure 7). However, T was not elevated in caged males from June 2016 and, in fact, was 

slightly decreased at two of the study sites (GRM16, UTP16; Figure 7).

Gene expression—In 2012, hepatic vtg seemed to be slightly elevated in male fish from 

three sites, most notably DTP12, but the expression data were variable and not statistically 

different (Figure 8A). Transcripts of hepatic gst were lower in males from seven of the eight 

sites than in controls, significantly so for PBG12 and TWP12 (Figure 8B). Sulfotransferase 

2 transcripts were elevated in the livers of males from DTP12 (Figure 8C). Expression of 

cyp3a was significantly decreased in caged males from three sites, PBG12, USC12 and 

TWP12 (Figure 8D). Arguably the most inducible of the hepatic CYPs, cyp1a1, was higher 

in the field males than in the controls, significantly so at MSCR12, SCR12 and TWP12 
(Figure 8E).

Ovarian expression of three genes coding for steroidogenic enzymes, cyp19a1a, cyp17 and 

cyp11a, did not differ greatly between fish from the lab versus the field in 2012, except 

for a slight decrease in cyp17 at NCPBG12 and PBG12 (Supplemental Information Figure 

7A-C).

In 2016, hepatic cyp1a1 was elevated in males from half of the sites (PBG16, SCR16, 

UTP16 and TWP16) in April, and at all four of these sites plus GRM16 and BCR16 in 

June (Figure 9A). Hepatic vtg in caged male fish was increased at SCR16, UTP16 and 

TWP16 in April, but not at any of the deployment sites in June (Figure 9B).

In 2012 we measured expression of several CYP-based steroidogenic genes at all sites. In 

contrast in 2016 we focused on a functionally broader set of HPG-related ovarian genes at 

four upstream sites (BCR16, GRM16, PBG16, FMP16) where there were marked seasonal 

changes in measured concentrations of several herbicides. In evaluating the 2016 expression 

data we compared females from the field to lab controls from a given sampling period 

and evaluated responses of the fish between April and June at the four sites using t-tests. 

Expression of fshr, star and zp3 did not differ between females from the field versus 

the lab, nor was expression different between the two sampling periods at the field sites 

(Supplemental Information Figure 8A-C). Transcripts for 3βhsd were higher in females from 

PBG16 and FMP16 than controls in April but did not differ between April and June at any 

site (Figure 10A). Compared to lab controls, ovarian cyp19a1a was significantly elevated 

at BCR16, PBG16 and FMP16 in April and decreased at BCR16 and FMP16 in June, 

and there were significant differences between the sampling times at BCR16, PBG16 and 

FMP16 (Figure 10B).

Pathway-Based Measurements of Potential Toxicity: Nontargeted Techniques

Hepatic Metabolomics—For the April and June 2016 upstream samples (sites BCR16, 

GRM16, PBG16 and FMP16), the global PLS regression model resulted in a Q2 value of 

0.54 when comparing the concentrations of the 87 detected organic contaminants with the 
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LC-MS/MS metabolomic data in the polar extracts of male fathead minnow liver samples. 

After three iterations of backward elimination, nine contaminants were omitted due to 

lack of covariance with the metabolite profiles, which resulted in a final model with 78 

organic contaminants, with a Q2 value of 0.59 (Supplemental Information Tables S8, S9). 

Thus, elimination of these relatively few contaminants resulted in a final model with only 

marginally greater predictive power (i.e., slightly higher Q2 value) than the initial global 

model.

For the downstream batch (USC16, SCR16, UTP16, and TWP16), the global PLS 

regression model exhibited a Q2 value of 0.26 when comparing the concentrations of the 119 

detected organics with the metabolomic data. After five iterations of backward elimination, 

26 contaminants were omitted, leaving a final model with 93 organic contaminants with a Q2 

value of 0.34 (Supplemental Information Tables S10, S11).

Note that it is possible to assess the strength of the covariance between the polar hepatic 

metabolite profiles and individual organic contaminants in the final models by their 

associated CV-ANOVA values. However, small changes in these values are usually not 

very meaningful. For this reason, we chose to focus on a coarse categorization of these 

contaminants by dividing them into groups of 25 members. The groups we hereafter refer 

to as the “top-25” contain those contaminants that most strongly covaried with endogenous 

metabolite profile changes (i.e., exhibiting the lowest CV-ANOVA values) for each of the 

two batches. The top 25 chemicals at the upstream sites all were pesticide or pesticide 

degradates, while the top 25 chemicals at the downstream sites included pesticides/pesticide 

degradates, pharmaceuticals, industrial chemicals and wastewater indicators (Table 1).

High-Throughput Assays—Of 69 endpoints analyzed using both Attagene assays, 15 

responded (activity ≥1.5 fold) to one or more site-derived mixtures during either 2012 or 

2016 (Supplemental Information Table S12). In general, bioactivity patterns were similar 

across 2012 and 2016 (Supplemental Information Figures 9, 10), so below we focus 

specifically on the more extensive 2016 dataset. Overall, nine bioactivities were affected 

during either the April or June sampling (Figure 11). Specific molecular targets activated 

included the AhR, estrogen receptor, pregnane X receptor (PXR), retinoic acid receptor, 

and NRF2, an indicator of oxidative stress. The most frequently elevated bioactivity was 

AhR (AHR_CIS), which was observed at all sites, including the laboratory control; however, 

AhR activity in the field samples was much higher than in the lab controls (Figure 11). 

Site SCR16, for both April and June samples, induced the greatest AhR activity of all 

the 2016 samples, indicating the occurrence of AhR agonists such as PAHs. Pregnane X 

receptor (PXR_CIS) was the second most frequent elevated bioactivity, present in all the 

2016 samples except UTP16 and TWP16 in April (Figure 11). In general, PXR activity 

was elevated to a greater extent during the June sampling. Estrogen receptor (ERE_CIS) 

activity was the other bioactivity commonly observed, at six of eight sites from April (all 

except UTP16 and TWP16), and at two sites (GRM16, SCR16) in June. Changes in other 

biological activities observed using the two HTS assays were minimal, with three or fewer 

samples inducing activity above baseline.
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DISCUSSION

The goal of the present study was to provide a practical demonstration of the application 

of pathway-based targeted and nontargeted techniques for the identification of occurrence 

and potential effects of complex chemical mixtures in a Great Lakes AOC. Throughout the 

Great Lakes, human activities past and present have contributed to the presence of complex 

mixtures of legacy contaminants, current use pesticides, pharmaceuticals, flame retardants, 

plasticizers, and many other contaminants of emerging concern (Baldwin et al. 2016; Davis 

et al. 2016; Elliot et al. 2017; Venier et al. 2014). The Maumee River is the largest tributary 

of the Great Lakes by watershed area, significantly contributing to chemical and sediment 

loading to Lake Erie (Baker et al. 2014). The system is impacted by multiple point and 

non-point source contaminant inputs, including WWTPs and urban and agricultural runoff 

(Arini et al. 2016; Baker et al. 2014; Corsi et al. 2019). As such, the Maumee AOC provided 

an appropriate setting in which to evaluate an integrated suite of tools and associated 

databases designed to enhance assessment of the ecological effects of mixtures.

Inferring Biological Hazards from Chemical Occurrence Data

Analytical characterization of water samples from multiple sites in the Maumee AOC in 

2012 and 2016 revealed detectable concentrations of more than 100 chemicals broadly 

characterized as pesticides, pharmaceuticals and wastewater indicators. Hierarchal cluster 

analysis of the chemical occurrence data suggested associations with different inputs/land 

use patterns across the AOC, an observation consistent with a more limited investigation 

on the Maumee River conducted by Baldwin et al. (2016). Specifically, we found distinct 

agricultural chemical profiles in addition to patterns indicative of urban and WWTP inputs. 

For example, upstream locations predominantly associated with agriculture had the greatest 

number of detections (and concentrations) of crop-use pesticides. In contrast, sites proximate 

to WWTPs (particularly the Toledo-Bay View facility) exhibited higher frequencies and 

concentrations of pharmaceuticals and chemicals typically associated with wastewater 

effluent. Other waterways entering the AOC including urban (Swan Creek) and agricultural 

(Beaver Creek) tributaries had unique chemical profiles that were particularly apparent 

during the April 2016 sampling. This suggests that potential biological impacts of chemical 

mixtures in the Maumee AOC are likely to vary spatially.

One of the more notable attributes of the analytical chemistry dataset was a marked increase 

in concentrations of several herbicides going from the April to June sampling period in 

2016. The magnitude of changes in metalochlor and atrazine levels were most pronounced, 

with concentrations of the latter approaching and occasionally exceeding 20 μg/L at some 

of the upstream, more agriculturally influenced sites (GRM16, FMP16, PBG16). Seasonal 

variations in surface water atrazine levels in Great Lakes tributaries have been reported 

before (Baldwin et al. 2016), although concentrations of the herbicide were typically lower 

than those in the present study. Specifically, in the Baldwin et al. (2016) dataset, of 709 

samples from 57 sites, there were only seven instances with atrazine concentrations greater 

than 5 μg/L, although five of those samples also were from the Maumee River where a 

maximum concentration of 9.4 μg/L was observed. Another assessment of concentrations of 

atrazine in several Midwestern US streams during 2013 reported an occasional occurrence 
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of atrazine concentrations greater than 20 μg/L, with one sample as high as 120 μg/L 

(Mahler et al. 2017). Atrazine has been extensively evaluated in toxicity tests with a variety 

of terrestrial and aquatic animals and plants (for a recent compilation of test data see US 

Environmental Protection Agency 2016). Given its herbicidal mode of action, derivation of 

environmental levels of concern (LOC) for atrazine in freshwater aquatic systems often has 

been based on potential impacts on plant communities (Moore et al. 2017). Recently a 60-d 

LOC for atrazine of 15 μg/L was proposed (US Environmental Protection Agency 2019). 

While atrazine concentrations from multiple sites in the present study exceed this value, they 

were based on 4-d composite samples so may not be directly germane to evaluating longer-

term plant community risks. There are considerably fewer toxicity data for metolachlor 

than for atrazine but, again, the greatest concern for its possible effects in aquatic systems 

involves changes in plant community structure, which perhaps would be exacerbated by 

the simultaneous occurrence of elevated concentrations of multiple herbicides (e.g., Powell 

et al. 2017; Nowell et al. 2018). While we cannot conclude that aquatic plants in upper 

reaches of the Maumee River are impacted by herbicides, data suggest that additional testing 

or monitoring in the system should perhaps be focused on this component of the aquatic 

community.

Comparing or benchmarking measured chemical concentrations with relevant in vivo 
toxicological information provides a relatively direct approach for predicting the possible 

effects of compounds detected in environmental samples. However, very few chemicals 

have been tested as extensively as, for example, atrazine. There may be no toxicity data 

available for some detected chemicals and, in the case of others, prior testing might 

have been limited to just a few biological responses (e.g., lethality). One method to help 

address limitations in toxicity data is to employ pathway-based in vitro information for 

benchmarking. Publicly accessible data from the USEPA ToxCast program are well-suited 

for this application, as the results are from a suite of assays covering a wide variety 

of biological targets/pathways. The assays have been conducted with several thousand 

chemicals in a standardized manner relative to generating dose-response relationships 

suitable for the calculation of risk quotients such as EAR values. In the present study 

we used an EAR cutoff of 0.1 or greater to “flag” detected chemical classes of potential 

biological concern in composite water samples from the Maumee AOC. Given in vitro to 

in vivo extrapolation assumptions underlying interpretation of derived EAR values, the 0.1 

threshold may be regarded as somewhat arbitrary in terms of effects prediction, but the 

value seems justifiable based on the screening-level nature of the analysis (Blackwell et al. 

2018). In the present study, individual chemicals with EARs exceeding the 0.1 threshold 

included dicamba, acetochlor, 2,4-D, metolachlor and atrazine (Figure 4B). Some of these 

same chemicals (metolachlor, atrazine, bisphenol-A) also had elevated ToxCast-based EARs 

in other Great Lakes tributaries (Corsi et al. 2019), but it should be noted that the earlier 

work used a lower cutoff value as a threshold trigger (0.001) than that of the current study. 

Corsi et al. (2019) also reported that EAR values for several PAHs (anthracene, benzo (a) 

pyrene, fluoranthene, phenanthrene, pyrene) were elevated in their analysis. Even at an EAR 

cutoff of 0.001 only the benzo (a) pyrene EAR would have been considered elevated in 

the current Maumee AOC dataset; however, several of the tributaries included in the more 

spatially extensive Corsi et al. (2019) analysis would be regarded as relatively industrialized 
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(e.g., Clinton River, Rouge River, Cuyahoga River) and hence potentially more prone to 

PAH contamination. Also, we cannot discount the possible effects of hydrologic influences 

on the occurrence of chemicals like PAHs that can have a strong association with particulate 

matter (Baldwin et al. 2020).

Generation of EAR values using the pathway based ToxCast assays provides the ability to 

link chemicals or groups of chemicals to potential apical effects using the AOP framework 

(Corsi et al. 2019). Most of the ToxCast assays associated with maximum sum EARs 

greater than 0.1 were related to pathways directly relevant to hepatic metabolism of 

xenobiotics. For example, activation of PXR and AhR is known to induce expression of 

hepatic biotransformation enzymes, most notably different CYPs. While there are several 

AOPs linking these responses to potential liver toxicity (e.g., fatty liver) or tumor formation 

through the formation of reactive oxygen species, it should be noted that AOPs are 

developed under the assumption that exposures are of adequate concentration and duration 

to drive the system to an adverse apical effect. It is also possible that the chemicals in the 

mixtures may simply activate the biotransformation system that an exposed animal could use 

to cope with the exposures. The quantitative boundaries that distinguish a beneficial adaptive 

response from one expected to result in chronic liver disease and associated reductions in 

fitness are unclear. Nonetheless, the current complement of AOPs linked to the activation of 

biotransformation pathways suggest that monitoring field collected organisms for signs of 

liver toxicity may be warranted.

Two additional clusters of AOPs suggest some potential for adverse outcomes related to 

early development or reproduction in vertebrates. Three AOPs provide evidence linking AhR 

activation to early life stage mortality in fish (Supplemental Information Table S7; AOPs 

21, 150, 310). The AOPs outline a number of events at the molecular, and biochemical 

level that could be used as potential biological indicators of progression toward an 

adverse early life stage effect, including increased cyclooxygenase-2 gene expression (AOP 

21), reduced VEGF expression (AOP 150), or potential methylation of the gonadotropin 

releasing hormone receptor promoter region (AOP 310). A final cluster of AOPs derived 

from the elevated EAR values link inhibition of cyclooxygenase 2 to potential reproductive 

impairment (Supplemental Information Table S7). Examination of those AOPs suggests 

measurement of plasma prostaglandin concentrations as one of the more “field deployable” 

measures associated with this network of AOPs. Unfortunately, other events associated with 

cyclooxygenase inhibition, like pheromone release and/or proper spindle formation and 

prophase to metaphase transitions in germ cell meiosis would be challenging to measure 

outside of a controlled laboratory setting.

Pathway-Based Measures of Potential Toxicity: Targeted Techniques

Prediction of CYP-related responses based on the EAR calculations were consistent with 

observations of increased expression of cyp1a1 in the livers of caged male fish. A variety 

of environmental contaminants can induce expression and activity of CYP1A1 in fish; this 

provides the basis for an assortment of mRNA and protein biomarkers of the enzyme that 

have been used in environmental toxicology for many years (see Whyte et al. 2000 for a 

review). In the present study, hepatic cyp1a1 in caged males was significantly induced at 
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three sites in 2012, four sites in April 2016, and six sites June 2016. There were two sites 

where cyp1a1 was elevated on all three occasions: SCR, which had elevated concentrations 

of PAHs, known inducers of hepatic CYPs, and TWP, a source of multiple contaminants, 

including pharmaceuticals, associated with CYP induction. Interestingly, in caged males 

from 2012, there were decreases in hepatic transcripts for two other xenobiotic-metabolizing 

enzymes, CYP3A and GST, that can be induced by many of the same chemicals that 

increase cyp1a1.

Given concern for the possible effects of contaminants on endocrine function, several of our 

targeted measurements focused on different components of the HPG axis, including those 

indicative of estrogens, which have been of interest for many years due to early observations 

of feminized fish from the vicinity of WWTPs (Purdom et al. 1994). Overall, there was 

no evidence of substantial estrogenic activity observed in the Maumee AOC based either 

on in vitro or in vivo endpoints. One water sample in 2012 would have been identified as 

marginally estrogenic using the T47D-KBluc assay, but the measured activity was much 

lower than observed at other surface water samples, including from other Great Lakes sites 

using the same assay (e.g., Wehmas et al. 2011; Cavallin et al. 2014; 2016). Similarly, 

induction of VTG (measured either as plasma protein or hepatic mRNA), a sensitive and 

unambiguous indicator of exposure of male fathead minnows to exogenous estrogens (Korte 

et al. 2000; Ankley and Jensen 2014), was not consistently seen in caged fish from the AOC. 

There was a slight elevation of hepatic vtg in fish from three sites during the April 2016 

sampling, but no evidence of induction from these same sites in June. Overall, our findings 

of little estrogenicity in fish exposed to surface waters of the Maumee River are consistent 

with the results of Cipoletti et al. (2019), who exposed fathead minnows to water from the 

system under controlled conditions for 21 d and found no obvious estrogenic effects.

Changes in gonadal production and plasma concentrations of T and E2 can be indicative 

of chemical interactions with other components of the fish HPG axis, including androgen 

receptor agonists and various enzymes involved in steroid synthesis, several of which are 

cytochrome P450 isozymes (Ankley et al. 2009). With one exception (plasma T), there 

was little in terms of effects on sex steroid status in the caged fish. In 2012, there were 

no effects on gonadal production of T or E2 in females or T in males, and no effects on 

plasma concentrations of E2 in either sex. Concentrations of plasma T in females were 

elevated at two sites (USC12, SCR12), and plasma T concentrations in males were elevated 

at these same sites, as well as at PBG12 and UTP12. In 2016, ex vivo steroid production 

was not measured, but plasma T and E2 concentrations were not affected in females nor 

was plasma E2 changed in males, either in April or June. Plasma T concentrations in males 

were elevated during April at the same four sites where T was increased in males in 2012. 

However, T concentrations were not elevated in males during the June sampling and, in 

fact, were slightly decreased at two sites. Irrespective of the June data, the elevated plasma 

T in males from the same sites in 2012 and April 2016 suggests that the results were not 

spurious. However, possible causes of the elevated T are uncertain; the response would not 

appear to be a direct effect of chemicals on steroidogenesis, as there were no changes in 

ex vivo gonadal synthesis of steroids. Further, in past studies with a variety of chemicals 

affecting different targets in the fathead minnow HPG axis, elevated plasma T concentrations 
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in the absence of other changes have not been seen (Ankley et al. 2009; Ankley and 

Jensen 2014). It is possible, however, that there could have been chemical effects, not on 

synthesis, but degradation of T. Specifically, steroids are degraded by various hepatic CYPs 

whose activity both can be induced (e.g., cyp1a1) and inhibited by different environmental 

contaminants. Interestingly, in 2012, expression of transcripts for hepatic cyp3a, which 

metabolizes several substrates, including T in fish (Baldwin et al. 2005; Kashiwada et al. 

2005), was reduced in males at two of the same sites where elevated plasma T was observed 

(PBG12, USC12). Further investigation of this hypothesis, as well as the physiological 

significance of elevated T in males may be warranted.

A final set of targeted measurements related to endocrine function in caged fathead 

minnows were a suite of ovarian transcripts coding for proteins involved in steroid 

synthesis and homeostatic control of the HPG axis. Changes in expression of several of 

the genes studied in the caged females can be affected by chemicals both via direct and 

indirect (compensatory) mechanisms (Ankley and Villeneuve 2015). In 2012, there were no 

consistent differences in expression of three steroidogenic CYPs (cyp11a, cyp17, cyp19a1a) 

among female fathead minnows from the eight field sites and lab controls. In 2016, we took 

a slightly different approach, evaluating a broader functionality of proteins within the HPG 

axis at the four upstream sites where there were marked increases concentrations of several 

herbicides between the April and June sampling periods. One reason for this focus were 

reported changes in several HPG axis-related genes in small fish (fathead minnow, Japanese 

medaka) exposed to atrazine at concentrations in the range of those measured in the Maumee 

River, albeit for periods of time longer than 4 d (Richter et al. 2016). In the present study, 

there were no differences in ovarian expression of fshr, star, zp3 or 3βhsd between fish 

sampled in April versus June at the upstream sites. However, cyp19a1a did differ between 

the two sampling times in females from three of the four sites (BCR16, FMP16, PBG16), 

with measured transcripts higher in April than in June. Data are limited concerning the 

effects of different herbicides on HPG function in fish, so it is difficult to ascertain whether 

our observation could have been related to increased relative concentrations of herbicides 

at these sites (or, perhaps, seasonal differences in some other environmental variable such 

as temperature). Some studies indicate that atrazine can upregulate expression/activity of 

aromatase in vitro, potentially resulting in estrogenic effects (e.g., Sanderson et al. 2001; 

2002; Tinfo et al. 2011); however, this is opposite of the trend in cyp19a1a expression 

observed in the caged females. The longer-term studies of Richter et al. (2016) did not find 

that atrazine changed ovarian expression of cyp19a1a in the fathead minnow.

Pathway-Based Measures of Potential Toxicity: Nontargeted Techniques

The Attagene HTS platform covers about 70 endpoints associated with numerous biological 

pathways involved in metabolism, endocrine signaling and cell stress, including several 

controlled by nuclear receptors (Romanov et al. 2008). The assay is mammalian-based; 

however, there is good evidence for conservation of many of the molecular targets in the 

assay (particularly nuclear receptors) across other vertebrate species (Ankley et al. 2016; 

LaLone et al. 2013; 2018). Although originally developed and used for single chemical 

testing in the context of human health, in recent years we have used the Attagene system 

to screen a variety of surface water samples containing complex mixtures of chemicals that 
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could cause adverse ecological effects (Schroeder et al. 2016; Blackwell et al. 2019). In the 

present study, the most prevalent bioactivities elevated in water samples from the Maumee 

system were associated with the AhR and PXR, two targets associated with the induction of 

enzymes such as CYPs responsible for the metabolism of xenobiotics. We have commonly 

seen elevated AhR and PXR bioactivity in Attagene studies with other surface water samples 

containing complex mixtures of contaminants (Blackwell et al. 2019). In the present study, 

there did not seem to be well-defined temporal or spatial patterns in AhR or PXR activities, 

which perhaps is not surprising given both receptors are relatively “promiscuous”, being 

affected by different classes of structurally diverse xenobiotics, including PAHs and some 

pesticides and pharmaceuticals (see Blackwell et al. 2019 and references therein). Notably, 

observation of elevated AhR and PXR activities in this study is consistent both with the 

EAR-based predictions of the effects of detected contaminants on various CYPs, and the 

observed induction of hepatic cyp1a1 in caged fathead minnows.

A third Attagene target affected on multiple occasions was the estrogen receptor, which 

we also have observed in other studies with surface water samples (Blackwell et al. 

2019). In general, the magnitude of effects of samples from the Maumee system on 

estrogen-bioactivity in the HTS assay were comparatively low. However, as described 

above, there was little evidence of estrogenicity in the same composite water samples in 

the targeted T47D-KBluc assay. It is possible that the Attagene assay is more sensitive to 

estrogenic chemicals than the T47D-KBluc system. However, preparation of the water for 

testing in the two assay systems differs substantially, with the Attagene samples extracted, 

concentrated and transferred into DMSO before testing, while the T47D-KBluc assay 

employs unconcentrated whole water samples. Whatever the cause of the differing results in 

the two in vitro assays, it is noteworthy that there was little evidence of consistent estrogenic 

effects in caged fish (i.e., induction of vtg in males) from the different water collection sites.

Metabolomic profiles measured in livers of the caged fish provide a nontargeted assessment 

of in vivo responses, and thus offer a biological perspective more directly translatable 

to potential effects in resident fish than possible with in vitro data. Our research team 

has employed metabolomic measurements in two different manners in past studies with 

chemical stressors in fish. One approach involves studying changes in specific metabolites 

or suites of metabolites to identify biological pathways affected by a given individual test 

chemical (e.g., Collette et al. 2010; Ekman et al. 2012; Davis et al. 2017). The second 

approach employs changes in metabolite profiles to provide inferences about the nature of 

the complex chemical mixture associated with observed biological effects (e.g., Davis et 

al. 2013; 2016; Collette et al. 2019). As an illustration of this second type of application, 

Davis et al. (2013) described a caged-fish study in which comparative metabolite profiles 

enabled definition of the contribution of pulp and paper mill influent to the biological 

effects of a WWTP effluent by conducting measurements in fish exposed before, during 

and after a scheduled shutdown of the mill. To build upon this approach, we subsequently 

developed a more direct way to associate changes in endogenous metabolite profiles with 

individual contaminants in complex mixtures using partial least squares (PLS) regression 

(Davis et al. 2016; Collette et al. 2019). For the current study, we employed this PLS-based 

method to identify contaminants in the measured mixtures that covaried with hepatic 

metabolomic changes in order to highlight (or possibly eliminate) chemicals of potential 
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concern. Specifically, in the April and June 2016 Maumee River studies, metabolite profiles 

and measured contaminant concentrations at the downstream sites covaried moderately well 

(Q2 = 0.34) and indicated a potential relationship between hepatic metabolome responses 

and a variety of pesticides, pharmaceuticals, and wastewater indicators reflective of the 

more urban nature of the lower Maumee River (Table 1). This contrasted somewhat with 

the upstream sites, which displayed greater covariance (Q2 =0.59), indicating a stronger 

correlation between detected contaminant concentrations and biological effects. Notably, 

the top 25 chemicals covarying with metabolite profiles at the upstream sites were all 

pesticides and pesticide degradates, several of which also displayed elevated EAR values 

(e.g., metolachlor, dicamba, atrazine, acetochlor), providing a tentative link between the 

nontargeted in vivo and in vitro responses. Of particular note is the large number of pesticide 

degradates in this list (Table 1). This finding illustrates the importance of monitoring and 

hazard testing for a wide range of potential environmental transformation products and not 

limiting the focus solely to parent materials, be they pesticide, pharmaceutical, or industrial 

chemicals. It also underscores the challenge of basing either monitoring or hazard-testing 

programs entirely on listed (i.e., targeted) chemicals, because it is generally not feasible to 

anticipate all possible environmental transformation products under varied field conditions 

(Fenner et al. 2013).

Summary and Conclusions

The Maumee River and associated tributaries are a prototypical example of a system 

influenced by a mosaic of contaminant inputs from point and nonpoint sources along a 

gradient of land uses. Contaminants in the upper part of the Maumee River clearly reflect 

agricultural practices, while downstream, the suite of chemicals present includes those from 

agriculture in conjunction with contaminants more indicative of a general urban setting, 

influenced in some areas by WWTP inputs. To assess the potential effects of contaminants 

on aquatic biota in a system this complex requires a combination of analytical and biological 

monitoring techniques to provide data that can be assembled and interpreted in an integrated 

manner. The aim of the current paper was to provide a demonstration of this type of 

approach, as well as to supply actionable information of potential utility to risk assessors and 

managers working at the Maumee AOC.

We feel that there are three major “take home” messages from this set of studies. First, 

although there are a variety of contaminants present in surface waters from the Maumee 

AOC, crop-use pesticides as a broad class appear to be of most potential ecological concern. 

From an analytical perspective, one of the more notable observations from our study was 

the marked increase in concentrations of several herbicides at upstream sites between 

the April and June caged fish deployments in 2016. Further, the chemicals resulting in 

elevated EAR values based on data from in vitro assays were always pesticides. Finally, 

the metabolomics data from the caged fish, particularly at the upstream sites, showed that 

pesticides and pesticide degradates were strongly correlated with biological responses in 
vivo. These observations suggest that additional effects-based work in the Maumee AOC 

focused specifically on pesticides and their degradates may be warranted. The addition of 

nontargeted contaminant monitoring to expand the detection of pesticide degradates and 

other environmental transformation products should also be considered. And, given that 
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many of the pesticides elevated in the system were herbicides, future studies may need to 

include assays based not just on animals but plants as well.

A second important observation from the current study involves the potential for 

contaminant effects on endocrine function in fish. A variety of chemicals associated with 

WWTPs and agriculture have been linked to disruption of endocrine pathways involved 

with development and reproduction in vertebrates, and there are well-documented examples 

of effects of endocrine-active chemicals, especially estrogens, in fish from the field (e.g., 

Purdom et al. 1994). Consequently, many environmental monitoring programs specifically 

target contaminants and/or biological responses associated with endocrine disruption 

(Hotchkiss et al. 2008). However, data from contaminant analyses (and associated EAR 

calculations), and in vitro or in vivo tests provided no consistent indication of endocrine 

activity/effects at the variety of sites in the Maumee AOC influenced by agricultural or 

urban activities. Therefore, monitoring resources in this system may be best allocated to 

non-endocrine contaminant-related impacts.

Finally, our studies do indicate that contaminants almost certainly are causing effects 

on some biological pathways in aquatic organisms in the Maumee AOC. Specifically, 

EAR data (and associated AOPs), HTS measurements of bioactivity in surface water, and 

determination of hepatic cyp1a1 in caged fish all indicate the presence of chemicals that 

interact with different CYPs, either in terms of inhibition or induction. Notably, studies 

conducted with tree swallows in 2016 at terrestrial locations adjacent to some of sites 

where caged fish deployments occurred also indicated effects on CYPs (induction of activity 

associated with CYP1A) in livers of the birds (Custer et al. 2020). Some CYPs have critical 

roles in processes such as the synthesis or degradation of steroids, so inhibition of these 

CYPs could affect normal physiological functions. While induction of other CYPs (such as 

cyp1a1) can be viewed as a short-term adaptive response to exposure to different types of 

xenobiotics, in a longer-term setting induction could have undesirable consequences, such 

as increased oxidative stress (van der Oost et al. 2020). Overall, although multiple lines of 

evidence indicate that contaminants in the Maumee have the potential to—or are—affecting 

biological pathways through CYP interactions, the consequences of this in terms of adverse 

effects on assessment endpoints directly related to survival, growth and reproduction are 

uncertain. Additional monitoring work in the AOC focused on endpoints relevant to possible 

physiological effects related to changes in CYP expression/activity might be warranted. This 

work could be guided by the insights afforded through the AOP-based analyses described 

above.
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Figure 1. 
A map of the study area within the Maumee River Area of Concern showing fish 

deployment and water collection sites. Sites are designated by alphanumeric codes where 

letters represent site abbreviations and two-digit number indicate the sampling year. Three 

magnified boxes are presented to provide finer detail for sites near the (A) Toledo-Bay 

View wastewater treatment plant (WWTP), (B) Swan Creek and Maumee River confluence, 

and (C) Perrysburg WWTP. Eight sites were sampled in 2012: three sites associated with 

Toledo-Bay View WWTP (upstream, UTP12; within the WWTP mixing zone, TWP12; and 

downstream, DTP12), two sites associated with Swan Creek, an urban draining tributary 

of the Maumee River, (Maumee confluence, MSCR12; 2 km upstream, SCR12), one site 

located in the middle of the area designated as the Maumee AOC, (USC12), and two 

upstream sites located near the outflow of the Perrysburg, Ohio WWTP, (PBG12; North 

channel of Ewing Island, NCPBG12). Five of these sites were sampled in 2016 (PBG16, 

USC16, UTP16, TWP16, and SCR16). Three new sites were established upstream 

including: a site adjacent to the Farnsworth Metro Park (FMP16), Beaver Creek, a tributary 
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surrounded by cropland draining into the Maumee River, (BCR16), and a Maumee River 

site near Grand Rapids Marina, OH, (GRM16).
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Figure 2. 
Highest 15 average chemical concentrations (μg/L) detected across all sampling sites in 

the Maumee AOC during (A) September 2012, (B) April 2016, and (C) June 2016. 

Chemical concentrations were averaged across sites and presented as boxplots with 

whiskers displaying 10 th to 90 th percentiles. NOTE: Cholesterol was consistently 

present at relatively high concentrations at all sampling times, so was excluded from the 

figure to enhance resolution of concentrations of the other analytes. Abbreviations used 

for figure labelling clarity: 2-Chloro-6ethylamino-4-amino-s-triazine, (CEAT); 2-Chloro-4-
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isopropylamino-6-amino-s-triazine, (Deethylatrazine); Di(2-ethylhexyl) phthalate, (DEHP); 

Methyl-1H-benzotriazole, (MeBt); 5-Methyl-1H-benzotriazole, (5-MeBt); 4-Nonylphenol 

monoethoxylate sum of all isomers, (4-NP1EO); 4-Nonylphenol diethoxylate sum of 

all isomers, 4-NP2EO; 4-tert-octylphenol diethoxylate, (OP2EO); and Tris(2-butoxyethyl) 

phosphate, (TBOEP).
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Figure 3. 
Heatmaps of Maumee AOC chemical occurrence presented as site clusters during (A) 

September 2012, (B) April 2016, and (C) June 2016 sampling. Rows signify sampling 

locations, with each column distinguishing an individual chemical. Individual chemicals 

are expressed as proportions of the maximum detected concentration across all locations 

ranging from low (dark blue, 0) to high (yellow, 1) occurrence. Chemical groups are 

denoted by varying color within the top row of each panel. For 2012, colors represent the 

following: (A) sterols/hormones (USGS Schedule 4434; Yellow), pharmaceuticals (USGS 
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Schedule 8244; Red), and wastewater indicators (USGS Schedule 4433; Orange). For 2016 

(B and C), colors represent the following: pesticides (USGS Schedule: 2437, Light Blue), 

pharmaceuticals (USGS Schedule 2440, Red), and wastewater indicators (USGS Schedule 

4433, Orange).

Ankley et al. Page 40

Environ Toxicol Chem. Author manuscript; available in PMC 2022 October 12.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 4. 
Cumulative maximum exposure-activity ratio (EAR) values for 2016 water samples 

collected from the Maumee AOC sites expressed as a function of (A) chemical class and 

(B) individual chemical distributions of pesticides. The values within each bar represent the 

maximum EAR sum (∑max(EAR[i])[j], where i= chemicals within in a specific class, j= 

number of samples) within a chemical class for each site. The GLTED LSW (Great Lakes 

Toxicology and Ecology Division-Lake Superior Water) sample is a lab control outside of 

the Maumee system.
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Figure 5. 
ToxCast assays resulting in elevated exposure-activity ratios (EARs) across the 2016 

Maumee AOC sites for chemicals within the (A) pesticide, (B) wastewater indicator, and (C) 
pharmaceutical classes as defined by USGS Schedules 2437, 2440 and 4433, respectively. 

Figures show the maximum EAR sum (max[∑ (EAR[i])[j]] [k], where i= chemicals within in 

a specific class, j= number of samples, k= number of sites). Boxes represent 25th to 75th 

percentiles with the median presented as a dark line. Whiskers represent data occurring 

within 1.5x of the interquartile range (IQR) and distinct points represented as circles 

occurring beyond the IQR interval. Number of hits refers to the number of values exceeding 

the 0.1 threshold.
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Figure 6. 
Plasma concentration of testosterone (T) from adult (A) male, and (B) female fathead 

minnows caged for 4-d at sites within the Maumee AOC in 2012. The GLTED (Great Lakes 

Toxicology and Ecology Division) control fish were maintained in Lake Superior water at 

the GLTED facility. Bars represent mean (± standard error; n = 12–14 males per site except 

PGB12, n = 5; NCPBG12, n = 4 and UTP12, n = 8; n = 7–10 females per site). Asterisks 

indicate significant difference from the GLTED control (p≤0.05).
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Figure 7. 
Plasma concentration of testosterone (T) in adult male fathead minnows caged for 4-d 

at sites within the Maumee AOC in April (black bars) and June (white bars) 2016. The 

GLTED (Great Lakes Toxicology and Ecology Division) control fish were maintained in 

Lake Superior water at the GLTED facility. Bars represent mean (± standard error; n = 8–12 

per site). Asterisks indicate significant difference from the GLTED control (p≤0.05).
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Figure 8. 
Relative transcript abundance of (A) vitellogenin (vtg), (B) glutathione S-transferase (gst), 
(C) sulfotransferase (sult2), (D) cytochrome P4503A (cyp3a) and (E) cytochrome P450 1A1 

(cyp1a1) in hepatic tissue from adult male fathead minnows caged for 4-d at sites within 

the Maumee AOC in 2012. The GLTED (Great Lakes Toxicology and Ecology Division) 

control fish were maintained in Lake Superior water at the GLTED facility. Bars represent 

mean (± standard error; n = 10–13 per site except GLTED control, n = 8). Asterisks indicate 

significant difference from the GLTED control (p≤0.05).
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Figure 9. 
Relative transcript abundance of (A) cytochrome P450 1A1 (cyp1a1) and (B) vitellogenin 

(vtg) in hepatic tissue from adult male fathead minnows caged for 4-d at sites within the 

Maumee AOC in April (black bars) and June (white bars) 2016. The GLTED (Great Lakes 

Toxicology and Ecology Division) control fish were maintained in Lake Superior water at 

the GLTED facility. Bars represent the mean (± standard error; n = 10–12 per site). Asterisks 

indicate significant difference from the GLTED control (p≤0.05).
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Figure 10. 
Relative transcript abundance of (A) 3β-hydroxysteroid dehydrogenase (3βhsd), and (B) 

cytochrome P450 aromatase A (cyp19a1a) in ovarian tissue from adult female fathead 

minnows caged for 4-d at sites within the Maumee AOC during April (black bars) and June 

(white bars) 2016. The GLTED (Great Lakes Toxicology and Ecology Division) control fish 

were maintained in Lake Superior water at the GLTED facility. Bars represent the mean 

(± standard error n = 11–12 per site). Asterisks indicate a significant difference from the 
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GLTED control and # indicates significant differences between April and June within a site 

(p≤0.05).
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Figure 11. 
Heatmap of blank normalized responses of water from the sites in the Maumee AOC from 

April (site name-A) and June (site name-J) 2016 (x-axis), across select Attagene assay 

endpoints (y-axis). Plotted values represent the mean of duplicate assay measurements. Only 

endpoints with mean response ≥1.5-fold at one or more sites are included. See Supplemental 

Information Table 12 for details on each individual endpoint.
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Table 1.

Top 25 contaminants detected in composite water samples from the Maumee AOC in 2016 that were found 

to most strongly covary with endogenous metabolite profile changes found with polar extracts of liver tissue 

collected from associated caged male fathead minnows. The analysis was conducted in two different batches 

comprised of upstream (BCR16, GRM16, FMP16, PBG16) and downstream sites (USC16, SCR16, UTP16, 
TWP16). An X in the column headed Upstream or Downstream indicates the presence of the contaminant in 

the top 25 for the given batch. (See text for analysis details).

Chemical Class Upstream Downstream

Imidacloprid Insecticide X X

Metalaxyl Fungicide X

Tebuconazole Fungicide X

Acetochlor Herbicide X

Ametryn Herbicide X

Atrazine Herbicide X X

Dicamba Herbicide X

Flumetsulam Herbicide X

Imazethapyr Herbicide X

Metolachlor Herbicide X

Prometon Herbicide X

Propazine Herbicide X X

Triclopyr Herbicide X X

2-Chloro-4-isopropylamino-6-amino-s-triazine Herbicide (degradate) X

2-Chloro-6-ethylamino-4-amino-s-triazine Herbicide (degradate) X X

2-Chloro-N-(2-ethyl-6-methylphenyl) acetamide Herbicide (degradate) X

2-Hydroxy-4-isopropylamino-6-amino-s-triazine Herbicide (degradate) X

2-Hydroxy-4-isopropylamino-6-ethylamino-s-triazine Herbicide (degradate) X X

Acetochlor oxanilic acid Herbicide (degradate) X X

Acetochlor sulfinylacetic acid Herbicide (degradate) X

Acetochlor sulfonic acid Herbicide (degradate) X

Chlorodiamino-s-triazine Herbicide (degradate) X

Dechlorometolachlor Herbicide (degradate) X

Diketonitrile-isoxaflutole Herbicide (degradate) X X

Hydroxyacetochlor Herbicide (degradate) X X

Hydroxymetolachlor Herbicide (degradate) X

Hydroxysimazine Herbicide (degradate) X

Isoxaflutole acid metabolite RPA 203328 Herbicide (degradate) X

Metolachlor oxanilic acid Herbicide (degradate) X X

N-(3,4-Dichlorophenyl)-N’-methylurea Herbicide (degradate) X

3,4-Dichlorophenyl isocyanate Industrial X

Tris(dichloroisopropyl) phosphate Industrial X

Venlafaxine Pharmaceutical X

Carbamazepine Pharmaceutical X
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Chemical Class Upstream Downstream

Lidocaine Pharmaceutical X

Menthol Pharmaceutical X

Triamterene Pharmaceutical X

Methyl-1H-benzotriazole Pharmaceutical precursor X

Caffeine Wastewater indicator X

N,N-Diethyl-m-toluamide (DEET) Wastewater indicator X
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