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Abstract
ANKRD26 is a highly conserved gene located on chromosome 10p12.1 which has shown to play 
a role in normal megakaryocyte differentiation. ANKRD26-related thrombocytopenia, or throm
bocytopenia 2, is an inherited thrombocytopenia with mild bleeding diathesis resulting from 
point mutations the 5ʹUTR of the ANKRD26 gene. Point mutations in the 5ʹUTR region have 
been shown to prevent transcription factor-mediated downregulation of ANKRD26 in normal 
megakaryocyte differentiation. Patients with ANKRD26-related thrombocytopenia have 
a predisposition to developing hematological malignancies, with acute myeloid leukemia 
and myelodysplastic syndrome most commonly described in the literature. We review the 
clinical features and biological mechanisms of ANKRD26-related thrombocytopenia and sum
marize known cases in the literature.
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Introduction

Inherited thrombocytopenias (IT) are a group of disorders which 
present with a reduced platelet count but varied functional and 
morphological platelet characteristics. Some ITs are associated 
with extra-hematological manifestations such as sensorineural 
deafness (MYH9-related disease, DIAPH1-related disease) or 
myopathy (Storkmorken syndrome) whilst others have 
a predisposition to hematological malignancies such as acute 
myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), 
chronic myeloid leukemia (CML), and myelodysplastic syndrome 
(MDS) [1–4]. At least 40 genes and their mutations have been 
implicated in the development of inherited thrombocytopenia 
[3,5,6]. Definitive identification of the genetic nature of throm
bocytopenia can be important as some forms differ in disease 
history and prognosis. Molecular diagnosis may impact clinical 
management, including monitoring for associated hematological 
malignancies.

ANKRD26-related thrombocytopenia (ANKRD26-RT), also 
known as thrombocytopenia 2 (THC2) (OMIM #188000), is 
a non-syndromic autosomal dominant thrombocytopenic disorder 
[7]. Though first described in a large Italian family, in which 17 
individuals were affected and the gene locus on chromosome 10 

identified using linkage analysis and candidate mutation screen
ing, localization of pathological variants to the 5’ untranslated 
region (5ʹUTR) of ANKRD26 was not made until 2011 [8,9]. 
Since then, multiple causative variants have been shown to be 
the result of single nucleotide changes in the highly conserved 5’ 
UTR region of the gene [10,11]. Case reports of variants in the 
coding region segregating with thrombocytopenia have also been 
reported [12–14].

Clinical features

Patients with ANKRD26-RT typically have lifelong mild (100– 
150 x109 cells/L) to moderate (50–99 x109 cells/L) thrombocyto
penia, although counts may temporarily normalize in response to 
infection or inflammation [5,15]. The bleeding phenotype is vari
able. Most have a normal or mild bleeding phenotype without 
a history of spontaneous or prolonged surgical bleeding [7,16]. 
However, some individuals experiencing spontaneous epistaxis, 
bruising, or menorrhagia have also been reported. 
Morphologically, platelets appear normal in size and mean plate
let volume is usually within normal range. Under light micro
scopy, platelets appear predominantly normogranular, with 
occasional hypogranular forms noted in some individuals. By 
electron microscopy, a reduction in alpha-granules has been 
described, as well as, increased particulate proteasome-rich cyto
plasmic structures, the cause of which is yet to be clarified 
[16,17]. Platelet aggregation studies are often normal, however, 
reduced platelet responses to arachidonic acid and epinephrine 
have been reported. GPIa is commonly reduced when evaluated 
by flow cytometry and up to a sevenfold increase in serum 
thrombopoietin levels is seen in some cases [10,11,16]. 
Dysmegakaryopoiesis with an increase in small and hypolobu
lated megakaryocytes with reduced cytoplasmic volume is com
monly cited in those who have undergone bone marrow biopsies 
[11,18]. Hemoglobin and white cell counts are generally within
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the normal range, with inconsistent reports of leukocytosis and 
erythrocytosis described [10,19].

Predisposition to malignancy

A clinically important feature of ANKRD26-RT reported in the 
literature is the increased risk of developing hematological malig
nancy. AML and MDS are the most commonly described, though 
there are some reports of lymphoid malignancies and a single 
case report of a patient with a 5ʹUTR mutation developing multi
ple myeloma [6,10–12,16,20]. An extended case series of 118 
subjects with confirmed or highly probable ANKRD26-RT 
revealed an 8% incidence of myeloid malignancy (AML, MDS, 
and chronic myeloid leukemia (CML)) [10]. An estimated 24-fold 
increase in acute leukemia incidence alone is reported compared 
to the general population in this study, and there have been 
multiple other case reports describing affected patients or their 
relatives developing hematological malignancy (Table I).

Differential diagnosis

Diagnosis of ANKRD26-RT may be difficult due to the lack of 
distinct clinical and laboratory characteristics [16]. In many cases, 
patients may be misdiagnosed with immune thrombocytopenia 
(ITP), which should be a diagnosis of exclusion. This is especially 
the case if there is no obvious family history of thrombocytopenia 
or if the patient has had fluctuating platelet counts in the past 
[28,29]. There are also documented cases of patients being incor
rectly diagnosed with MDS on the basis of persistently low 
platelet counts and bone marrow biopsy demonstrating 

dysmegakaryopoiesis, both of which may be features of 
ANKRD26-RT [30].

Other ITs to consider which may also present with thrombo
cytopenia with normal platelet size include RUNX1-related 
thrombocytopenia (RUNX1-RT), ETV6-related thrombocytopenia 
(ETV6-RT) and CYCS-related thrombocytopenia (CYCS-RT) [3]. 
Of these, RUNX1-RT demonstrates a 30–40% lifetime risk of 
developing MDS/AML and ETV6-RT conferring a 20% lifetime 
risk of B-ALL with a 30% overall lifetime risk of hematological 
malignancy [1,5,31–33].

Pathophysiology

Regulation of ANKRD26 expression

ANKRD26 is located on chromosome 10p12.1 and contains 34 
exons that result in a number of protein isoforms expressed at low 
levels in multiple human tissues, including platelets, leukocytes, 
adrenal glands, prostate, ovary, liver, spleen, and central nervous 
system [34,35]. ANKRD26 shares regions of homology with the 
POTE family of genes that are characterized by ankyrin repeats 
(involved in protein–protein interactions) close to the N-terminal 
region and a helical region that forms coiled-coil domains similar 
to that of spectrins, suggesting involvement in signal transmission 
across the plasma membrane (Figure 1b) [36–38]. ANKRD26 is 
highly conserved between the different species, suggesting an 
important function [38,39]. Mouse Ankrd26 protein localizes to 
the cell membrane in cell lines and human ANKRD26 protein is 
identified in centriolar distal appendages and cilial basal bodies in 
human cell lines [39–41].

Table I. Malignancies associated with variants in the 5ʹUTR sequence of ANKRD26.

Reference
Individual families by 

mutation

Number of affected patients in described 
families with a confirmed diagnosis of 
ANKRD26-RT with personal or family 

history of malignancy

Described malignancy 
developing in 

a participant with 
confirmed ANKRD26- 

RT

Malignancy described in a 1st degree 
relative of the screened participant with 

ANKRD26-RT where the affected relative 
was unavailable to provide samples to 
confirm a diagnosis of ANKRD26-RT

[11], [21] c.-118 C > A N/A - Leukemia (undefined)
c.-125 T > G 7 Acute Leukemia (5 

x myeloid, 2x 
undefined)

-
c.-125 T > G -
c.-127 A > T Leukemia (undefined)
c.-127 A > T -
c.-134 G > A -
c.-128 G > A 2 CML, MDS and CLL 

(MDS and CLL 
diagnosed in same 

patient)

-

c.-127 A > T 1 CLL -
[12] c.-125 T > G 1 AML -
[19] c.-128 G > A 6 2 x AML -

c.-127 A > T 5 1x AML -
c.-127 A > T 4 MDS -
c.134 G > C 4 CML -

[20] c.-128 G > A 1 Multiple myeloma -
[22] c.-127 A > T 1 CML N/A
[23] c.-116 C > T 1 CMML -
[24] c.-140 C > G 1 - Prostate Ca

c.-140 C > G 1 Renal Ca -
c.-128 G > A 1 - AML
c.-140 C > G 1 Breast Ca -
c.-140 C > G 1 AML -

[25] c.-118 C > T 2 MDS/AML (2 
individuals with MDS/ 

AML)

1 additional relatives with MDS/AML

[26] c.-118 C > T 1 - Leukemia (undefined)
[27] c.-118 C > T 1 - Leukemia (undefined)
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In healthy subjects, ANKRD26 mRNA expression is high in 
CD34+ progenitor cells and immature megakaryocytes, and 
decreases over time, becoming almost undetectable in mature 
platelets [42]. Predictive software identified two transcription 
factors that bind the ANKRD26 5’ UTR: runt-related transcription 
factor 1 (RUNX1) and friend leukemia integration 1 (FLI1). 
Knockdown of either gene in human megakaryocytes led to 
increased ANKRD26 mRNA expression, while overexpression of 
these genes in K562 cell lines led to decreased ANKRD26 mRNA. 
The effect was synergistic when both genes were overexpressed. 
Other studies suggest metabolic and/or inflammatory factors may 
also influence mRNA expression in mouse adipose tissue and 
human leukocytes through epigenetic alterations [43,44]. Taken 
together, these lines of evidence suggest expression of ANKRD26 
is regulated by interaction of transcription factors with the 5ʹUTR 
and epigenetic alterations.

Mechanisms contributing to thrombocytopenia

The 5ʹUTR regulatory sequence of ANKRD26 is the most com
mon site of single nucleotide variants identified in ANKRD26-RT. 
A total of 318 patients reported in the literature have a single 
point variant in this region (Table II). The most common variants 
include c.-128 G > A, c.-134 G > A and c.-127A>T, and lie close 
to RUNX1 and FLI1 binding sites (Figure 1a). These single 
nucleotide variants in the 5’ UTR alter ANKRD26 transcription 
by preventing RUNX1/FLI1-mediated repression and result in 
persistently high levels of ANKRD26 mRNA at all stages of 
platelet development [42,52]. Electron microscopy of megakar
yocyte cell lines from these patients showed slightly lower ploidy, 
decreased granule concentration, and abnormal proplatelet forma
tion compared to controls.

Components of the mitogen-activated protein kinase (MAPK) 
pathways appear to play an important role in this process, because 
the megakaryocytic changes were associated with increased ERK 
phosphorylation, and were abrogated by ANKRD26 knockdown or 
ERK pathway inhibition using a MEK inhibitor [42]. MEK (also 

known as MKK or MAP2K) inhibition has previously been shown to 
increase ploidy and proplatelet formation in thrombopoietin- 
stimulated human megakaryocytes [53]. Therefore, the evidence 
suggests that persistence of ANKRD26 expression in ANKRD26- 
RT leads to persistent ERK activation, which may in turn be respon
sible for, or contribute to, reduced megakaryocyte ploidy, impaired 
proplatelet formation, and subsequent thrombocytopenia.

At least one other mechanism for increased ANKRD26 expres
sion has been described in a thrombocytopenic family using long- 
read genomic sequencing. In this pedigree, a complex structural 
variant resulting in a paired duplication-inversion of part of the 
ANKRD26 gene was identified that caused a juxtaposition of the 
promotor of WAC and exons 10–34 of ANKRD26. This gene 
duplication resulted in high WAC-ANKRD26 mRNA levels and 
increased ERK phosphorylation similar to the phenotype caused 
by 5ʹUTR variants [54].

To date, no animal model of ANKRD26-RT has been 
described. A mouse Ankrd26 knockdown model did not report 
blood abnormalities but showed mice with hyperphagia, organo
megaly, obesity, and reduced expression of ciliary proteins in the 
brain [40,43,55].

ANKRD26 function in other cellular processes - the 
centrosome

As suggested by its localization, ANKRD26 appears to play a role 
in centriole biology [41]. Centrioles are important in ciliogenesis 
and motility. They are components of centrosomes that have been 
implicated in cancer pathogenesis [56,57]. Centrosome amplifica
tion triggers p53-dependent apoptosis through activation of 
a multiprotein complex known as the PIDDosome [56]. In cen
trosome amplification (e.g. cytokinesis failure), ANKRD26 
recruits the p53-induced death domain protein 1 (PIDD1) to the 
centriole distal appendages to form part of the PIDDosome [57– 
59]. When ANKRD26 is inactivated, cells cannot sustain 
PIDDosome assembly and show enhanced growth following cen
trosome amplification [57,59]. Whether these actions of

Figure 1. (a) Schematic structure of 5ʹUTR of ANKRD26 mapping single point variants currently identified in the literature. (b) General structure of 
ANKRD26 protein [36].
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ANKRD26 protein play any role in the pathogenesis of 
ANKRD26-RT is unknown.

Concluding remarks

ANKRD26-RT is characterized by a relatively nonspecific phenotype 
of mild to moderate thrombocytopenia with normal platelet size and 
function. Most individuals lack significant mucocutaneous bleeding 
symptoms. A concerning association with hematological malignancy 
has been observed in cohorts with variants in the 5ʹUTR region. 
However, precise prevalence estimates and strategies to guide clin
ical monitoring, counseling, and treatment will only be possible 
through further analysis of large patient cohorts and exploration of 
the pathophysiological mechanisms underpinning this disorder.
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