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Abstract

Background

Ebola Virus Disease (EVD) causes high case fatality rates (CFRs) in young children, yet

there are limited data focusing on predicting mortality in pediatric patients. Here we present

machine learning-derived prognostic models to predict clinical outcomes in children infected

with Ebola virus.

Methods

Using retrospective data from the Ebola Data Platform, we investigated children with EVD

from the West African EVD outbreak in 2014–2016. Elastic net regularization was used to

create a prognostic model for EVD mortality. In addition to external validation with data from

the 2018–2020 EVD epidemic in the Democratic Republic of the Congo (DRC), we updated

the model using selected serum biomarkers.

Findings

Pediatric EVD mortality was significantly associated with younger age, lower PCR cycle

threshold (Ct) values, unexplained bleeding, respiratory distress, bone/muscle pain,

anorexia, dysphagia, and diarrhea. These variables were combined to develop the newly

described EVD Prognosis in Children (EPiC) predictive model. The area under the receiver

operating characteristic curve (AUC) for EPiC was 0.77 (95% CI: 0.74–0.81) in the West
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Africa derivation dataset and 0.76 (95% CI: 0.64–0.88) in the DRC validation dataset.

Updating the model with peak aspartate aminotransferase (AST) or creatinine kinase (CK)

measured within the first 48 hours after admission increased the AUC to 0.90 (0.77–1.00)

and 0.87 (0.74–1.00), respectively.

Conclusion

The novel EPiC prognostic model that incorporates clinical information and commonly used

biochemical tests, such as AST and CK, can be used to predict mortality in children with

EVD.

Author summary

Although case fatality rates remain high, there are limited data on predicting mortality in

children with Ebola Virus Disease (EVD). Furthermore, challenges in predicting EVD

outcomes using clinical and laboratory data highlight the need for the development and

validation of pediatric predictive models. The novel EVD Prognosis in Children (EPiC)

model uses clinical and biochemical information, such as AST and CK, to predict mortal-

ity in infected children. While few prognostic models or scoring systems have been devel-

oped to predict clinical outcomes of EVD, the majority of them were limited in

geographical and temporal scope having been derived using data from one location. As

such, the EPiC model is the first externally validated model for the prognosis of pediatric

EVD using diverse datasets from geographically and temporally separate outbreaks. This

model can be easily applied by bedside clinicians to assess pediatric patients at risk for

death and help to allocate resources accordingly.

Introduction

With more than 28,000 cases and 11,000 deaths throughout Guinea, Liberia, and Sierra Leone,

the 2014–2016 Ebola Virus Disease (EVD) outbreak in West Africa was the largest in history

[1]. Within the first nine months of this epidemic, an estimated 13.8% of all EVD infections

occurred in children under the age of 15 with an estimated case fatality rate (CFR) of 73.4%

[2]. More recent observational data show that CFRs from the West Africa outbreak were high-

est among children under 5 years of age with the highest CFR of 89% reported in Guinea [1,3–

6]. Similar trends were witnessed in the second largest EVD outbreak in the Democratic

Republic of the Congo (DRC) from 2018–2020. Officially declared an outbreak on August 1,

2018, the tenth EVD outbreak in the DRC had a reported 3,470 EVD cases with children

accounting for more than one third of cases and one in ten cases were children under five

years of age [7,8]. The index case of the 13th EVD outbreak in the DRC starting in October of

2021 was a child under 5 and more than half of the confirmed cases to date are children [9].

Such findings suggest that young children are especially vulnerable and remain at higher risk

of poor outcomes than older children and adults [4–6,10–12].

Several investigators have attempted to identify clinical features associated with mortality

among children with EVD [6]. While common themes emerge, there is no consensus on

whether certain clinical information may accurately predict outcomes of EVD because signs

and symptoms tend to be non-specific [13–15]. Clinical manifestations of EVD, such as
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vomiting, diarrhea, and fatigue, are similar among both children and adults; however, there are

differences in their frequency and severity [15–18]. One retrospective cohort study of children

under 5 years of age reported that 25% of the EVD-confirmed patients were afebrile, while in

another study children were less likely than adults to report abdominal, chest, muscle, or joint

pain [1,6]. The latter finding may reflect the difficulty young children have in reporting subjec-

tive symptoms. Furthermore, common laboratory tests are frequently abnormal in children

with EVD [19–21]. Such challenges in predicting EVD outcomes using clinical and laboratory

data highlight the need for the development and validation of pediatric predictive models.

Ebola virus tends to have a shorter incubation period and cause more rapid disease progres-

sion in children. Therefore, developing a pediatric EVD prognostic model is critical to allow

clinicians to promptly identify which children may need more intensive monitoring and inter-

ventions [6,15]. Such a model could potentially inform clinical practice by allowing clinicians

to optimally allocate scarce resources. Although there are a few prognostic models or scoring

systems have been developed to predict clinical outcomes of EVD, they are limited in geo-

graphical and temporal scope having been derived using data from one location [22–25]. More

importantly, none of them has been rigorously externally validated, limiting their generaliz-

ability and utility, and are not pediatric specific [22–25]. Colubri et al developed and validated

prognostic models using data from patients of all ages at multiple treatment sites in Sierra

Leone and Liberia [25]. However, data were aggregated in 10-year age bands and similar to

other studies, the model was not independently validated in a distinct region of Africa during

a different outbreak [22–25]. In order to fill this gap, the aim of this study was to develop and

externally validate the first pediatric-specific EVD prognostic model using diverse datasets

from geographically and temporally separate outbreaks.

Methods

Ethics statement

The Rhode Island Hospital Institutional Review Board provided an exemption from ethical

review and informed consent for this secondary analysis of de-identified data as it was not con-

sidered human subjects research.

Study design and setting

This study used retrospective data from children presenting to Ebola treatment units (ETUs)

in West Africa and the DRC. The West Africa derivation dataset was built from the Infectious

Diseases Data Observatory’s (IDDO) Ebola Data Platform (EDP). IDDO’s EDP is the first

global data repository for clinical, epidemiological, and laboratory data from patients with

EVD during the 2014–2015 West Africa outbreak (specifically Liberia, Guinea and Sierra

Leone) provided by the following organizations: Alliance for International Medical Action

(ALIMA), International Medical Corps (IMC), Institute of Tropical Medicine Antwerp (ITM),

Médecins Sans Frontières (MSF), University of Oxford, Save the Children International (SCI),

who had no role in the conduction of this study [26–38].

The validation DRC dataset was derived from patients who presented at IMC’s Mangina

ETU during the 2018–2020 EVD outbreak in the DRC. The DRC’s eastern provinces of North

Kivu and Ituri served as the main catchment area for the Mangina ETU, located in North Kivu.

Participant selection

All patients less than 18 years of age who presented to West African ETUs from June 2014 to

October 2015 and to the Mangina ETU from December 2018 to January 2020 with laboratory
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confirmed EVD were eligible for inclusion in the derivation and validation datasets, respec-

tively. Patients were excluded if they had missing outcome data or if they died on the day of

admission to the ETU.

EVD triage and diagnosis

West Africa

Since the data from Liberia, Guinea, and Sierra Leone were provided by several humanitarian

aid organizations, triage procedures varied slightly from site to site. All organizations adhered

to World Health Organization (WHO) diagnostic criteria and relevant national guidelines

[39–42].

DRC

All patients presenting at the IMC’s Mangina ETU were screened by trained clinical staff to

ensure they met the clinical case definition for suspected EVD based on WHO and MSF guide-

lines and in consultation with local health authorities [39–42]. If patients presented with a doc-

umented diagnosis of EVD, they were directly admitted to the ward for patients with

confirmed disease. Otherwise, patients who met the case definition but had no prior testing

were admitted to the ETU’s ward for suspected cases, where they underwent EVD testing. If

the patient’s initial test was negative, they remained in the ETU until 72 hours had passed, and

a second EVD test was negative, in which case they were discharged. Patients with a positive

test result were moved to the “confirmed” ward for further management [43,44].

Laboratory methods

All PCR cycle threshold (Ct) values presented in this study are based on RT-PCR of the same

Zaire ebolavirus nucleoprotein locus using standardized RNA extraction procedures [43,44]. A

Ct greater than 40 was considered negative in all cases.

West Africa

Data were provided by several humanitarian aid organizations and consequently laboratory

methods differed slightly among treatment sites.

DRC

DRC’s ETUs received all patients from the surrounding catchment areas some of whom may

or may not have had laboratory confirmed EVD in the community or other test facility prior

to arrival. Patients were diagnosed with EVD with a RT-PCR (GeneXpert) blood assay using

plasma. Blood chemistry tests were completed at point of care using Piccolo Amlyte 13, which

determined levels of glucose, creatinine (CRE), albumin (ALB), aspartate aminotransferase

(AST), alanine aminotransferase (ALT), amylase (AMY), potassium, C-reactive protein (CRP),

total urea nitrogen (BUN), total bilirubin (TBL), creatine kinase (CK), sodium, and calcium.

Descriptive data analysis

If the Shapiro-Wilk test for normality indicated that data were not normally distributed, results

are presented with median and interquartile range [IQR] values [45]. Binary symptom vari-

ables are presented as incidence in patients who survived or died. Odds ratios and p-values for

binary variables were calculated from univariate regression coefficients. For continuous
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outcome variables, odds ratios are reported for a five-year increase in age and for an increase

in Ct by IQR.

Multiple imputation

In the West Africa data, 10.7% of values were missing for 16 of 18 predictor variables, and mul-

tiple imputation was used to address missing data. Details of the imputation protocol are pro-

vided in S1 Text, S1 Fig, and S1 Table.

Variable selection

Eighteen candidate predictors including age, sex, Ct value, and 15 other epidemiological and

clinical variables based on the current WHO criteria for identifying suspected Ebola cases

were selected for inclusion in the model [19, 42]. These variables included fever, headache,

respiratory distress (defined as fast respiratory rate; nasal flaring, grunting, intercostal reces-

sion and tracheal tug; in-drawing of lower chest wall; central cyanosis of lips and tongue;

inability to breastfeed or drink; lethargy), bone or muscle pain, joint pain, conjunctivitis, asthe-

nia, abdominal pain, hiccups, unexplained bleeding, vomiting, diarrhea, nausea, anorexia, or

dysphagia [19,42]. The limit for number of candidate predictors for variable selection was set

to p< m/15, with m being the limiting sample size equal to the minimum number of observed

cases or non-cases [46].

For variable selection, we opted to use Elastic Net regularization, which combines the Lasso

and Ridge regression methods, and is effective in handling multicollinearity [47]. The variable

selection protocol worked as follows: Elastic Net was applied to each imputed dataset, the sign

of the coefficients of the binary symptom variables in the resulting models were tallied, and

those variables with the percentage of positive model coefficients above a given threshold were

selected. This selection criterion facilitated the inclusion of groups of correlated predictors and

predictors with small but significant effects [48]. The threshold for variable inclusion was set at

100% to exclude variables with weak and/or inconsistent effects (S2 Table).

Model development and performance

A saturated model was constructed to serve as a baseline against which to compare the perfor-

mance of other predictive models. The model included age and Ct value as continuous predic-

tors along with four binary symptom variables selected with the Elastic Net as described above.

Bootstrap resampling was used for internal validation. Discrimination was evaluated by opti-

mism-corrected area under the receiver operating characteristic (ROC) curve (AUC) and cali-

bration by a calibration plot comparing predicted with observed probabilities of a binary

outcome, in this case survival and death [49]. The ROC curves were generated using the pROC

package [50].

External validation

We applied the West Africa derived model to the DRC data comprising 74 cases and evaluated

discrimination and calibration with the optimism-corrected AUC and calibration plot. We

only used cases with complete data for model validation.

Exploratory data analysis

To further improve model performance, we followed the model recalibration with a previously

outlined extension protocol [51]. We sought to add an additional biomarker as a potentially

strong predictor that was available in the external validation data but not in the development
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data. We focused on commonly used biochemistry laboratory values recorded within 48 hours

of admission and selected covariates that were found to be significantly correlated with adverse

outcome by Spearman’s rank correlation coefficient. We then recalibrated the model and

added an additional predictor simultaneously by fitting a new model with the linear predictors

of the original model and the additional biomarkers. We did not impute missing data at this

step; updated models were fit only on complete cases. Models were evaluated by comparing

their AUCs and 95% confidence intervals.

Results

Baseline characteristics of the West Africa dataset

The West Africa dataset included 579 Ebola-positive patients less than 18 years of age with an

overall CFR of 40%. Age was among the strongest predictors of mortality with each five-year

decrease in age associated with an increase in the odds of death by more than half (Table 1 and

S2 Fig). A Ct value below 21 was associated with higher mortality at all ages. Variables that

were associated with significantly increased odds of survival included asthenia/weakness,

headache, and abdominal pain (p< 0.02 each). In contrast, the presence of bleeding within

the first 48 hours of admission increased the odds of death by almost 70% (p< 0.03). While

the geographical distribution of cases within West Africa did not reveal a trend in CFR by loca-

tion (Fig 1), there was a modest inverse correlation (r = -0.51) between CFR and number of

cases at each ETU, suggesting that patients at treatment centers that had larger numbers of

cases may have had less lethal outcomes for reasons that have not been determined.

Table 1. Demographic and clinical characteristics of patients in the West Africa derivation cohort.

Characteristic Survived, n = 345 Died, n = 234 OR (95% CI)a p-valueb

Demographics

Age (years), median (IQR) 11 (7, 14) 6 (3, 13) 0.55 (0.46–0.65) <0.001

Male sex, n (%) 159 (46) 112 (48) 1.07 (0.77–1.5) 0.67

Symptomsc

Asthenia 297 (88) 171 (74) 0.39 (0.25–0.6) <0.001

Headache 203 (60) 93 (42) 0.48 (0.34–0.68) <0.001

Abdominal pain 165 (50) 78 (36) 0.57 (0.4–0.81) 0.002

Bleeding 43 (14) 45 (22) 1.68 (1.06–2.67) 0.027

Joint pain 113 (38) 48 (29) 0.68 (0.45–1.01) 0.060

Bone or muscle pain 121 (37) 61 (29) 0.71 (0.48–1.02) 0.067

Respiratory distress 26 (7.9) 27 (13) 1.69 (0.95–2.99) 0.071

Vomiting 206 (61) 121 (54) 0.76 (0.54–1.07) 0.12

Nausea 172 (60) 104 (54) 0.78 (0.54–1.13) 0.19

Conjunctivitis 47 (18) 20 (15) 0.8 (0.45–1.4) 0.45

Diarrhea 187 (56) 125 (59) 1.13 (0.8–1.61) 0.48

Hiccups 24 (7.3) 12 (5.7) 0.77 (0.37–1.55) 0.48

Fever 298 (88) 199 (87) 0.88 (0.54–1.46) 0.63

Anorexia 225 (74) 128 (75) 1.10 (0.72–1.70) 0.67

Swallowing problems 60 (18) 40 (19) 1.01 (0.64–1.57) 0.97

Ct value, median (IQR) 26.8 (23.6, 30.8) 21.7 (18.9, 26.5) 0.35 (0.23–0.51) <0.001

aOR is for each 5-year increase in age
bBold values denote statistical significance
cn (%)

Abbreviations: IQR: interquartile range; Ct: cycle threshold; OR: odds ratio; CI: confidence intervals

https://doi.org/10.1371/journal.pntd.0010789.t001
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Derivation of clinical prognostic model

The clinical prognostic model, which we refer to as the EVD Prognosis in Children (EPiC)

model, included two continuous predictors (age and Ct value) and four binary covariates

(bleeding, diarrhea, respiratory distress, dysphagia). The EPiC model showed strong perfor-

mance upon internal validation with AUC = 0.77 (95% CI: 0.74–0.81).

Fig 1. Map of children with Ebola Virus Disease (EVD). The map shows the geographical distribution of children with EVD included in triage

data from the Ebola Data Platform, collected during the West African EVD outbreak from 2014–2016. Bubble size corresponds to the number of

cases reported, and color corresponds to observed case fatality rate. Plotted with the R package tmap [52], using base layer maps in the public

domain from the Natural Earth project (https://www.naturalearthdata.com/about/terms-of-use/).

https://doi.org/10.1371/journal.pntd.0010789.g001
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External validation of clinical prognostic model

The DRC Mangina dataset consisted of 74 children with EVD (S2 Fig and S3 Table). A com-

parison of the derivation and validation cohorts is given in Table 2. The AUC on the external

validation cohort was 0.76 (95% CI: 0.64–0.88) (Fig 2A). To quantitatively assess the predictive

value of the EPiC model, we considered the slope and intercept of the linear fit of the calibra-

tion data and compared it against the ideal: a slope of 1 and an intercept of 0 (Fig 2B). The

slope was 0.89 and the intercept -0.09, indicating that the EPiC model provides a good risk

estimation overall, with only a small bias towards overestimating risk of death for all patients

(except for one outlier point corresponding to a single high-risk patient) by approximately 0.1

in average. The confusion matrix and additional performance measures (including false alarm

and miss rates) calculated at the optimal prediction cutoff for accuracy (pcutoff = 0.63) are pre-

sented in S4A and S4B Table. The pcutoff value of 0.63 is also consistent with the bias of around

0.1 towards risk overestimation observed in the calibration plot. Prior prognostic models [22–

25] are not pediatric specific and may use different features, which makes comparisons diffi-

cult. However, we were able to apply the minimal (age+CT) model from [25], which was

trained on all the patients (pediatric and adult) from the IMC ETUs in the West African EVD

outbreak (a subset of the EDP dataset), on the DRC dataset. The performance is shown in S4

Fig, which shows a similar AUC of 0.77 (95% CI: 0.65–0.88), but a worse calibrated model,

Table 2. Comparison of baseline characteristics in West Africa derivation and DRC validation cohorts.

Derivation Cohort Validation Cohort

Case-fatality rate (n, %) 234 (40.4) 22 (29.7)

Continuous predictors (median,

IQR)

Age 10 (5–14) 5 (1.5–14)

Ct value 25.1 (20.9–29.5) 19.3 (17.6–26.1)

Binary symptoms (n, %)a

Bleeding 88 (15.1) 17 (22.9)

Diarrhea 57 (9.8) 40 (54.1)

Respiratory distress 9.7 (1.7) 16 (21.6)

Dysphagia 19 (3.3) 16 (21.6)

aCovariates presented are those included in the EPiC model.

Abbreviations: IQR: interquartile range; Ct: cycle threshold

We sought to improve model performance by recalibrating the intercept and slope of the calibration plot and adding

a biomarker to the model that was only available in the DRC data. An analysis of peak laboratory test results

measured within the first 48 hours after admission identified three variables each significantly (p <0.01) correlated

with mortality: ALT (r = 0.57), AST (r = 0.56), and CK (r = 0.51). We omitted ALT because it is highly colinear with

AST (Pearson correlation = 0.83. Despite limited availability of test results in the validation data (AST: n = 29; CK:

n = 33), we used these new variables to build additional models. Models that incorporated an additional predictor

outperformed the original EPiC model on the validation data, in which adding CK as a predictor produced an AUC

of 0.87 (95% CI: 0.74–1) while adding AST gave an AUC of 0.90 (95% CI: 0.77–1). We also considered a third model

with both AST and CK added as predictors, since the association between these two biomarkers was moderate

(Pearson correlation = 0.52), suggesting that they contain some amount of mutually independent information that

could be combined to improve the predictions. Indeed, the model with AST and CK yields a higher AUC of 0.95

(95% CI: 0.86–1). The confusion matrix for this model exhibits an almost perfect discriminative capability with only

1 misclassification in each outcome category (S5A and S5B Table). However, the sample size for this model was

reduced further to n = 23, since it requires patients to have data for both biomarkers. The ROCs and calibration plots

for these three models are shown in Fig 3.

https://doi.org/10.1371/journal.pntd.0010789.t002

PLOS NEGLECTED TROPICAL DISEASES Machine learning prediction of EVD survival in pediatric patients

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010789 October 12, 2022 8 / 16

https://doi.org/10.1371/journal.pntd.0010789.t002
https://doi.org/10.1371/journal.pntd.0010789


with a slope of 1.22 and an intercept of -0.27 in the linear fit to the calibration data. This is con-

sistent with previous observations [25] that clinical features make a small contribution to the

prediction relative to age and viral load, as it can be seen for our model in the ANOVA and

odd ratios (OR) charts in S5 Fig. But inclusion of selected clinical features does consistently (as

in our and prior studies) result in better calibrated models.

Discussion

In this study, we derived and externally validated a prognostic model for pediatric EVD. Our

model showed that younger age, lower Ct values and bleeding are poor prognostic factors

while asthenia, headache and abdominal pain predict better outcomes. A few studies have

described key predictors of EVD mortality among children under 18 years of age during the

2014–2015 Sierra Leone outbreak [6,18]. Shah et al reported fever, vomiting, and diarrhea as

significant symptoms associated with death in children under 6 years, and Kangbai et al found

that males younger than 16 years of age, who had abdominal pain, vomiting, conjunctivitis,

and difficulty breathing at admission, had increased odds of dying [6,18]. A similar study in

the 2014–2015 Guinea outbreak determined that older children with diarrhea, fever, and hem-

orrhage were at greater risk of death, while another study during the same outbreak did not

report any significant risk factors for mortality among patients under 20 years [4,11]. Such

findings illustrate that predicting outcomes for children with EVD presents unique challenges

because the epidemiology and complications of EVD in one outbreak may vary from those in

another outbreak due to differing health seeking behaviors, viral dynamics, medical interven-

tions, and socioeconomic, cultural, and political contexts.

Fig 2. Performance characteristics of the prediction model. Discrimination (A) and calibration (B) plots of the Ebola Virus Disease Prognosis in Children

(EPiC) model are shown for the Democratic Republic of the Congo validation dataset. In the discrimination plot, the receiver operating characteristic (ROC)

curve is plotted (central black line) together with the 95% confidence interval band (blue shaded area). In the calibration plot, the dots represent the mean

estimate of the observed probability for each 10% bin of predicted probability (with probability being risk of death), the vertical lines passing through each dot

are the corresponding confidence intervals for the observed probability, the dashed line is the best linear fit passing through the mean values, and the red line is

the LOESS curve fitting all the individual observed/predicted pairs in the data.

https://doi.org/10.1371/journal.pntd.0010789.g002
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Fig 3. Discrimination and calibration curves. Area under the receiver operating characteristic curves (AUC) (A, C, E) and

calibration curves (B, D, F) of the Ebola Virus Disease Prognosis in Children (EPiC) model are shown with aspartate

aminotransferase (AST) (A, B), creatine kinase (CK) (C, D), or both (E, F) as additional predictors for the Democratic

Republic of the Congo validation dataset. The interpretation of the plots is the same as in Fig 2.

https://doi.org/10.1371/journal.pntd.0010789.g003
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Updating the EPiC model with certain biochemical tests (AST, or CK) improved its perfor-

mance characteristics by a substantial margin, even though the sample size was small. AST pre-

viously has been shown to be significantly elevated in patients with EVD and associated with

more severe and fatal disease [23,53,54]. Elevated AST likely reflects not only viral-induced

hepatitis but also damage to other cells and end-organs such as red blood cells, pancreas, mus-

cle, or kidneys. CK to our knowledge has not been previously described as a predictive bio-

marker for EVD outcomes. These biomarker data can be useful in helping to predict mortality

for pediatric patients with EVD. For instance, shock may lead to an increase in AST/ALT and

CK. However, the results must be interpreted with caution due to the small sample size.

The EPiC model building approach was based on Elastic Net, a form of regularized regres-

sion that has been benchmarked favorably against the more commonly-used stepwise regres-

sion [55,56]. Regularized regression is particularly good at retaining explanatory variables

while reducing model complexity by removing nuisance variables. Our final EPiC model that

emerged from the Elastic Net-based variable selection protocol is parsimonious in its complex-

ity and the included predictors of EVD severity match clinical intuition. Furthermore, we were

able to easily extend this protocol to update the model with additional biochemical predictors

available in the DRC data. These compelling results suggest that our variable selection and

model update protocol could be applied to other similar datasets.

A limitation of our study was the moderate amount of missing data (approximately 10%)

for some variables, which highlights the difficulty of collecting data during a humanitarian

emergency. Also, some patients may have been given experimental treatment under compas-

sionate use, but such detailed information is not available in the West Africa derivation data-

set. Furthermore, only aggregated data by day was available. As such, it was not possible to

determine whether a patient died immediately upon arrival or later that day, requiring us to

exclude all patients who died with one day of admission from our prediction model. The good

overall calibration of our model suggests that such exclusion did not significantly affect the

predictions. Additionally, our derivation dataset was collected from several different humani-

tarian agencies with differing data collection and laboratory procedures. Therefore, the scale of

Ct values may vary between various laboratories. All Ct values presented in this manuscript

were used to derive, validate, and update the models without any sort of normalization to

account for the potential differences across the laboratories in the EDP dataset. Rerunning the

calculations with normalized Ct values (obtained by subtracting the mean and dividing by the

standard deviation at each site) revealed that all AUC values remained the same except for the

AUC value on the validation dataset which was slightly lowered from 0.76 (CI 0.64–0.88) to

0.71 (CI 0.59–0.84). This indicates that the effect of Ct differences across sites is not large but

also that models could be improved if raw Ct data were more consistent, or a more rigorous

inter-site normalization protocol could be defined. In addition, our validation dataset is small

(74 cases total) due to inclusion of only those cases with complete data, so study results have to

be interpreted with caution, particularly those from model updating, which further reduced

the sample size. However, these favorable preliminary results provide compelling justification

for future prospective studies to investigate the prognostic utility of certain biomarkers for

children as well as adults. These biomarkers, which are often part of a standard blood chemis-

try panel, are more accessible in low resource settings than more expensive testing such as

proinflammatory cytokines [57]. Furthermore, collecting symptom information from children

is difficult, especially from those who have not developed verbal skills. In fact, upon further

testing, we found bone and muscle pain, asthenia, headache, and abdominal pain to be corre-

lated with age, illustrating that children in the pre-verbal age group (defined as<2 years of

age) cannot reliably report these symptoms (S3 Fig). Lastly, both settings adhered to WHO

treatment guidelines and each country’s respective national guidelines. As such, there may
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have been slight differences in the treatment protocol between the West Africa derivation

cohort and the DRC validation cohort.

In conclusion, the EPiC model is the first externally validated model for the prognosis of

pediatric EVD. Pediatric patients with asthenia/weakness, headache, and abdominal pain were

more likely to survive, while younger children, children with lower Ct values, bleeding, diar-

rhea, respiratory distress, dysphagia were more likely to die from EVD. As Ct value is a strong

clinical predictor, rapid molecular tests should be widely available. The addition of routine

blood test biochemical markers, such as AST and CK, strengthened the model and are usually

available. This model can be easily applied by bedside clinicians to assess pediatric patients at

risk for death and help to allocate resources accordingly. In fact, an online calculator has been

developed so that clinicians can conveniently use the EPiC model to calculate risk scores, avail-

able at: https://kelseymbutler.shinyapps.io/epic-calculator/. Future improvements of this

model would result from larger sample sizes with more consistent variable definitions and pro-

tocols across sites.
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31. Médecins Sans Frontières (2019): MSF Ebola Treatment Unit Database—Foya, Liberia. Exaptive.

(dataset). https://doi.org/10.48688/x7eh-wb83 [doi.org]
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