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Abstract

The segmentation of medical and dental images is a fundamental step in automated clinical

decision support systems. It supports the entire clinical workflow from diagnosis, therapy

planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately

process a full-face segmentation in about 5 minutes that would otherwise require an aver-

age of 7h of manual work by experienced clinicians. This work focuses on the integration of

the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial

Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified

Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with

several parameters from different centers for a generalized clinical application. Our results

on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to

0.962±0.02. Our code is available on our public GitHub repository.

1 Introduction

Segmentation of medical and dental images is a visual task that aims to identify the voxels of

organs or lesions from background grey-level scans. It represents a prerequisite for medical

image analysis and supports entire clinical workflows from computer-aided diagnosis [1] to

therapy planning [2], intervention [3], and follow-up [4]. Particularly for challenging dental

and craniofacial conditions, such as dentofacial deformities, craniofacial anomalies, and tooth

impaction, quantitative image analysis requires efficient solutions to solve the time-consuming
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and user-dependent task of image segmentation. With medical and dental images being

acquired at multiple scales and/or with multiple imaging modalities, automated image analysis

techniques are needed to integrate patient data across scales of observation.

Due to the low signal/noise ratio of Cone-Beam CT (CBCT) images used in Dentistry, the

current open-source tools for anatomic segmentation, such as ITK-SNAP [5] and 3D-Slicer

[6] are challenging for clinicians and researchers. The large field of view CBCT images com-

monly used for Orthodontics and Oral Maxillofacial Surgery clinical applications require on

average to perform detailed segmentation by experienced clinicians: (Fig 1) 7 hours of work

for full face, 1.5h for the mandible, 2h for the maxilla, 2h for the cranial base (CB), 1h for the

cervical vertebra (CV), and 30min for the skin. Additional challenges for accurate and robust

automatic anatomical segmentation are the rich variety of anatomical structures morphology

and the differences in imaging acquisition protocols and scanners from one center to another.

Furthermore, patients that present with facial bone defects pose additional challenges for auto-

matic segmentation because of unexpected anatomical abnormalities and variability. For this

reason, the training of the machine learning models in the present study also included gold

standard (ground-truth) clinicians’ expert segmentations of CBCT images from patients with

craniofacial large bone defects such as cleft lip and palate (CLP). Being able to accurately seg-

ment those maxillary deformities (Fig 1) is for the diagnosis and treatment planning of correc-

tion of the bone defects and craniomaxillofacial anomalies.

Although in the last decades, automatic approaches such as region seed growing [7], clus-

tering methods, random forests [8], atlas-based system [9], and deep convolutional neural net-

work (CNN) [10] have been proposed to segment the mandible, the maxilla, and the teeth,

CBCT image segmentation remains challenging. Those previous studies focused on small sam-

ples from a single acquisition protocol; however, scans acquired at different clinical centers

with different acquisition protocols, scales, and orientations require laborious manual

Fig 1. Multi-anatomical skull structure manual segmentation of the full-face by combining the mandible, the maxilla, the cranial base, the

cervical vertebra, and the skin segmentation. Patient has written consent on file for the use of the images.

https://doi.org/10.1371/journal.pone.0275033.g001
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correction in clinical settings to achieve accurate segmentation. Hence, methods for generaliz-

able automatic image segmentation are sought.

The present study objective is to offer a free open-source tool to facilitate medical and den-

tal image segmentation for clinics and research. We focused on the best practices for Artificial

Intelligence in healthcare imaging across academia and enterprise researchers. Hence, the use

of the new Medical Open Network for Artificial Intelligence (MONAI) framework that imple-

ments state-of-the-art machine learning algorithms such as the UNEt TRansformers

(UNETR) [11]. In the following sections, we describe the data used to train our machine learn-

ing models, followed by related work on approaches to segment medical images, testing the

performance of the proposed methods compared to the clinician’s expert segmentation, and

discussion of the novel results.

2 Materials

A total of 618 DICOM-formatted CBCT images of the head were used in this work. The

images were acquired from 7 clinical centers with various scanners, image acquisition proto-

cols, and field of views. All patient HIPAA identifiable personal information was removed

from the DICOM files metadata through an anonymization process in the 3D Slicer platform

[6]. The anonymization was performed before the clinical centers shared the data for this ret-

rospective study. The University of Michigan Institutional Review Board HUM00217585

waived the requirement for informed consent and granted IRB exemption. Patients’ skin was

not removed from the large field of scans; however, those files are used only for the training of

the proposed machine learning model.

Two open-source software packages, ITK-SNAP 3.8 [5] and 3D Slicer 4.11 were used by

clinical experts to perform user interactive manual segmentation of the volumetric images and

common spatial orientation of the head as the ground-truth to train our deep learning models.

All the 618 scans don’t come with a full-face segmentation, the dataset was composed of

446 patients with mandible segmentation, 132 with the maxilla, 116 of the cranial base, 80 with

the skin, and 14 patients with the cervical vertebra. The image spatial resolution varied from

0.16 to 0.5 mm3 voxels. To test the robustness of the proposed method, patients with CLP were

included in the dataset. Those patients have large bone defects in the jaw that varies a lot from

one patient to another.

3 Related work

3.1 Region seed growing [7]

This method needs to place the seed inside the region of interest. The grayscale intensity grid

and spatial distances from the seed to all the other voxels are computed to estimate a segmenta-

tion of similar features. This method showed less accuracy than the following methods and

can require the clinicians to place the seeds.

3.2 Atlas-based system [9]

An atlas is defined as the combination of an intensity image and its segmentation to generate a

template. From this point, 2 steps occur: label transfer which transfers segmentation labels

from pre-labeled atlases to a novel image and label fusion which combines the label transfer

results. The main con of this method is the lack of flexibility when exposed to high changes in

the data such as in patients with CLP.
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3.3 Random forests [8]

A probability grid is made to estimate the initial segmentation based on multiple expert-seg-

mented CBCT images. The appearance features from CBCTs and the context features from the

initial probability maps are both extracted to train a first-layer of random forest classifiers. A

sequence of classifiers can segment CBCT images by iteratively training the subsequent ran-

dom forest classifier using both the original CBCT features and the updated segmentation

probability maps. Those methods are slow to train, computing-intensive and the prediction

time can be high.

3.4 CNN

Previous methods where mostly using 2D [12] or 2.5D UNet [13], limited by computer power.

Recent progress in GPU power and network architecture allowed the appearance of 3D CNN

architectures showing better results than their 2/2.5D analogs. 3D UNet [10], TransUNet [14],

and nnU-Net [15] showed high performance for medical imaging tasks including segmenta-

tion. However, the new UNETR architecture showed better results than all the previously cited

CNN for CT segmentation.

4 Proposed method

Thanks to recent advances in deep learning, this study proposes a convolutional neural net-

work (CNN) to extract a hierarchical feature representation for segmentation, which is robust

to image degradation such as noise, blur, and contrast. Our algorithm requires Python 3.9 and

uses various libraries to perform image processing. For the post-processing and the pre-pro-

cessing, we are using ITK, SimpleITK, VTK, and connected-components-3d libraries. For the

data augmentation and the segmentation, we used the MONAI library which simplifies the

UNETR implementation and is optimized to process medical images in Python.

4.1 Pre-processing

Depending on the scanner and the image acquisition protocol, the CBCT scans are gray-scaled

images with high contrast variation from one patient to another and the image spacing can be

different. Among all the different spacing, 0.4 mm3 is the most frequent. It’s also a resolution

that keeps enough details of the skull structure to segment while limiting memory usage with

reasonable image size. From one center to another, the manual segmentation method can

change. Different labels are used and the skull structure can be filled or not. From this point,

to have more consistency in the dataset, all the data go through the following pre-processing

steps:

• All the CBCTs and segmentations are re-sampled with a 0.4-mm3 isometric voxel size using

respectively a linear and a nearest-neighbor interpolation function.

• The scans go through a contrast adjustment function Fig 2. A cumulative graph is made

from the image histogram ignoring the background color. The new minimum and maxi-

mum intensity are selected when reaching an Xmin and Xmax percentage on the cumulative

graph. The intensity is then re-scaled in the [0, 1] interval.

• A “fill hole” morphological operation is applied to the segmentation and the label is set at 1.
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4.2 UNETR

For this machine learning tool, we decided to use the new state-of-the-art model in 3D scan

segmentation, the UNETR. Its architecture utilizes a transformer as the encoder to learn

sequence representations of the input volume and effectively capture the global multi-scale

information. The network design follows the successful “U-shape” for the encoder and

decoder. The transformer encoder is directly connected to a decoder via skip connections at

different resolutions to compute the final semantic segmentation output. The size of the scans

to segment is not consistent and tends to be large (up to 600x600x600 voxels). No GPU is pow-

erful enough to take this voxel grid size as input. We decided to shape our UNETR classifier

with a 128x128x128 voxels input (Fig 3). To segment the entire image, the classifier moves

across the scan to perform predictions in different locations. Once the entire image has been

processed, segmented crops are merged to match the original input image size. Individual

UNETR models were trained for different segmentation needs. All the models share common

Fig 2. Visualization of the contrast adjustment steps on two different scans. This result is obtained by keeping the data between Xmin = 1% and

Xmax = 99% on the cumulative graph.

https://doi.org/10.1371/journal.pone.0275033.g002

Fig 3. Overview of the UNETR used. A 128x128x128x1 cropped volume of the input CBCT is divided into a sequence

of 16 patches and projected into an embedding space using a linear layer. A transformer model is fed with the sequence

added with 768 position embedding. Via skip connections, the decoder will extract and merge the final 128x128x128x2

crop segmentation from the encoded representations of different layers in the transformer.

https://doi.org/10.1371/journal.pone.0275033.g003
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parameters: feature size = 16, hidden layer = 768, feedforward layer = 3072, number of atten-

tion heads = 12, and a dropout rate of 5%.

4.3 Training

For each skull structure to segment, the patients were sorted by separated folders based on the

clinical center they were coming from. The dataset was then split into 3: 70% for the training,

10% for the validation, and 20% for testing. The data was split evenly from each folder to avoid

overfitting to any specific center.

We used the MONAI “CacheDataset” tool to load the pre-processed data. Those datasets

allow the use of transformers for data augmentations. Every time an image and its segmenta-

tion are loaded for the training, a number of Ns cube samples are randomly cropped in the

voxel grid. Those cubes all have the same Lx × Ly × Lz shape to match the UNETR input size.

For data augmentation (Table 1), random flip and 90˚ rotation are applied in each direction

along with a random shift in intensity and contrast for the scans.

This step is applied to Ni images to generate a batch of size Ni × Ns. This batch is then fed

into the UNETR the training. For the validation, data augmentation is also applied by only

ignoring the cropping step, a prediction occurs on the full image using MONAI sliding win-

dow inference to move the UNETR classifier across the image. This network is optimized

using the PyTorch library by a combination of a back-propagation algorithm to compute the

network gradients and the Adam optimizer with weight decay. In this work, we used the

weighted average of both the Dice loss (Table 1) and Cross Entropy Loss (Table 2) function.

DL ¼ 1 �
2
PN

i¼1
pigi

PN
i¼1

p2
i þ

PN
i¼1

g2
i

; ð1Þ

where pi 2 P is the predicted probability of the i-th voxel and gi 2 G is the ground truth of the

i-th voxel.

‘ðx; yÞ ¼ L ¼ fl1; . . . ; lNg
>
; ln ¼ � wyn

log
expðxn;ynÞ

PC
c¼1

expðxn;cÞ
; ð2Þ

Where x is the input, y is the target, w is the weight, C is the number of classes, and N spans the

minibatch dimension as well as d1, . . ., dk for the K-dimensional case.

Table 1. Data augmentation transformations for the training.

Data Random crop Random flip and rotation Random shift in intensity Random contrast adjustment

Images Anywhere in the scan

Ns times

Along X, Y and Z-axis with a 25% probability for

each axis for each axis

50% chances of a 0.1

intensity shift

80% chances to change image gamma in a

[0.5,2] interval

Segmentation N/A N/A

https://doi.org/10.1371/journal.pone.0275033.t001

Table 2. Comparison of manual and automatic segmentation using AUPRC, AUPRC-Baseline, Dice, F2 Score, Accuracy, Recall, and Precision of the 5-fold cross-

validation for the 5 skull structures segmentation.

Structure AUPRC AUPRC Baseline Dice F2 Score Accuracy Recall Precision

Mandible 0.926 ± 0.037 0.011 ± 0.003 0.962 ± 0.020 0.961 ± 0.026 0.9992 ± 0.0005 0.960 ± 0.031 0.965 ± 0.026

Maxilla 0.738 ± 0.096 0.011 ± 0.003 0.853 ± 0.064 0.857 ± 0.061 0.996 ± 0.001 0.862 ± 0.073 0.855 ± 0.099

Cranial base 0.642 ± 0.127 0.018 ± 0.006 0.788 ± 0.103 0.804 ± 0.109 0.992 ± 0.004 0.824 ± 0.099 0.774 ± 0.135

Cervical vertebra 0.602 ± 0.145 0.008 ± 0.006 0.760 ± 0.113 0.723 ± 0.164 0.995 ± 0.004 0.704 ± 0.192 0.854 ± 0.033

Skin 0.947 ± 0.035 0.425 ± 0.72 0.971 ± 0.018 0.982 ± 0.009 0.974 ± 0.018 0.989 ± 0.009 0.954 ± 0.037

https://doi.org/10.1371/journal.pone.0275033.t002
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The training was done on an NVIDIA Quadro RTX 6000/8000 GPU. With Xmin = 1%,

Xmax = 99%, Lx = Ly = Lz = 128, Ni = Ns = 10 (batch size of 100), a dropout rate of 0.05, a learn-

ing rate of 10−4 and a weight decay of 10−5 it takes around 4h and 22GB of GPU memory for

one model to be trained.

4.4 Segmentation and post-processing

Once we have a trained model, the challenge is to segment new scans that possibly have a dif-

ferent contrast and spacing than the ones used for the training. For the prediction, we create a

new temporary file to work on and preserve the original. We apply the 2 first pre-processing

steps (re-sample in a 0.4mm3 spacing if needed and adjust the contrast). The sliding window

inference is then used to segment the whole image. We get as an output a voxel grid of proba-

bility on which we apply an argmax function. The segmentation can have some artifacts and

unwanted elements. Therefore, we used the connected-components-3d 3.9.1 library [16] to

keep the biggest segmented object only. A morphological operation is then applied to the seg-

mentation to fill the holes. The final result is re-sampled to match the original image, orienta-

tion, spacing, origin, and size. All the steps are summarized in Fig 4.

5 Results

We performed a 5-fold cross-validation, each fold with a different 20% portion of the available

data for the test. It allows testing the models on the entirety of the dataset.

The MONAI sliding window inference allows overlapping of the classifier for more preci-

sion but has a drastic impact on the computation time. During the validation step of the train-

ing, a prediction takes about 4s with 20% of overlap. To compute the metrics we used a 50%

overlap to segment the test scans and it takes around 24s on GPU for each CBCT to be seg-

mented. The prediction goes up to 1 min with an 80% overlap for even more precision.

To compare the clinician experts’ manual segmentation and the AMASSS automatic seg-

mentation, we used the Area Under the Precision-Recall Curve (AUPRC Eq 8) metric for class

imbalance. Most of the bone groups represent about 10% of the volume only. Other metrics

such as the recall (6), precision (7), Dice coefficient (DC Eq 3), and F2 (4) score were also com-

puted to know how efficient the model is.

DCðM;AÞ ¼
2jA \Mj
jAj þ jMj

; ð3Þ

Where M and A are respectively the binary image of the ground thruth segmentation and the

Fig 4. Visualization of the automatic maxilla segmentation steps. Re-sample and contrast adjustment of the input image, segmentation with the

sliding window using UNETR, and finally, re-sampling of the cleaned-up segmentation to the input size.

https://doi.org/10.1371/journal.pone.0275033.g004
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AMASSS output.

F2 ¼
TP

TPþ 0:2FPþ 0:8FN
; ð4Þ

A ¼
TP þ TN

TP þ TN þ FPþ FN
; ð5Þ

R ¼
TP

TP þ FN
; ð6Þ

P ¼
TP

TPþ FP
; ð7Þ

Where TP stand for the number of true positive in the AMASSS output voxel grid, TN true

negative, FP false positive and FN false negative.

AUPCR ¼
XN� 1

n¼1

ðR½n� � R½n � 1�Þ � ðP½n� � P½n � 1�Þ

2
; ð8Þ

Where R and P are the recall and the precision values from N confusion matrices for different

thresholds. All these measurements (Table 2) vary from zero to one, where zero means no

superposition between the two volumes, and one shows a perfect superposition between both.

All metrics were performed on the binarized 3D images resulting from the post-processing.

From a clinical point of view, it is better to have over-segmented images rather than under-seg-

mented ones, and hence the F2 score was computed considering recall as twice as important as

precision.

The average results for the mandible and the skin show the high precision of the automatic

segmentations with a Dice above 0.96. Additionally, the standard deviation is quite low, indi-

cating that the predictions are robust, consistent, and generalizable to unseen patients. Maxilla

and cranial base showed similar results. The lower Dice compared to the mandible can be

explained by fewer data used to train, but more importantly because of inconsistency from one

ground-truth segmentation to another. The separation between the maxilla and the mandible

can change, those regions have very thin bones and the amount of details segmented is differ-

ent depending on the center. With only 14 segmentation available from one center, the cervical

vertebra results are promising, showing the potential to be generalizable in future training

with a larger sample.

We processed a full-face segmentation (Fig 5) of the patient Fig 1 that was kept out of all

training. The CLP and even the cervical vertebra were successfully segmented, showing the

robustness of the UNETR.

6 Discussion

This is the first study to our knowledge to use the new 3D UNETR architecture to segment

multiple anatomic skeletal, dental, and soft tissue structures in the craniofacial complex of

CBCT scans. Recent studies have focused on only one specific facial structure such as the max-

illa, [17], mandible [18] or airway [12], and used smaller samples from a single CBCT acquisi-

tion protocol, thus, those algorithms are not yet generalizable like the proposed AMASSS.

Traditional image processing methods, such as super-voxels and graph clustering [19],

atlas-based segmentation [8, 20], watershed methods [21] are available tools that presented

good accuracy for segmentation, however, due to image artifacts and noise, that can be caused
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by intercuspation of the dentition and the presence of metallic crowns, it is still a challenge to

segment the images properly and also to segment different tissues such as bone with different

densities (boundaries) and soft tissues. Due to these limitations, machine learning methods for

image segmentation in dentistry have become popular, and the major limitation in training AI

models such as the proposed AMASS is to have a gold standard to serve as training models

[22]. To overcome this limitation, inthis study, manual annotations were performed for each

scan used in the training, provided by clinicians with expertise and experience in 3D CBCT

segmentations.

Moreover, AMASSS showed better and similar accuracy when compared to Si Chen et al.’s

Maxilla segmentation with a dice score of 0.800 ± 0.029 and Verhelst et al.’s with a dice of

0.9722 ± 0.006 for the mandible segmentation, respectively. Commercial companies such as

Materialise [23], Relu [24], and Diagnocat [25] have recently marketed AI-based segmentation

for CBCT scans, but they are expensive and the precision of their algorithms require validation

by clinicians.

Another important challenge in automated systems in dentistry, explained by Schwendicke

et al. [26], is to provide solutions that can be largely entered into dental routine practice, and

also follows principles such as demonstrating clinical value, protecting patient data, individual

privacy, maintaining trustworthiness, and ensuring robustness and generalizability of the tools

Towards these goals, the proposed open-source AMASSS algorithm was deployed as a free 3D

Slicer extension “Automated dental tools”. The software interface allows users to select the

most updated trained model for increased precision of anatomic structures segmentation, con-

tinuously updating toward improved identification of patient facial structures and clinical

applications [27].

Regarding the advantages and limitations, this study has the capacity of performing the seg-

mentation of multi-structures in approximately 5 minutes; however, to achieve the necessary

precision the ground-truth data can take several hours to be manually produced by the clini-

cians, which makes the addition of new structures of interest challenging and still human-

dependent. Also, automated tools such as AMASS focus on future clinical decision support

systems, to improve the human-computer interface rather than interrupt the clinical workflow

[28], and for this reason, human interaction is still required, but less time-consuming.

Future work will continue to increase the databases for cervical vertebra, maxilla, and cra-

nial base as well as add detailed anatomic structures such as the teeth roots and mandibular

canals segmentation. Additional potential applications may be generalizable to other imaging

Fig 5. Visualization of the automatic full-face segmentation results. In red, the prediction is superposed with the manual segmentation in

transparent green. On the full-face, we can see that the models managed to average the separation line between the maxilla and the mandible. The

separation on the manual segmentation is different. It also explains why the metrics are lower than the mandible for those two skull structures.

https://doi.org/10.1371/journal.pone.0275033.g005
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modalities such as Magnetic Resonance Imaging, CT, micro CT, and ultrasound, which is

been shown in recent manuscripts in the medical field [29, 30].

7 Conclusion

This proposal is a step towards the implementation of dentistry decision support systems, as

machine learning techniques are becoming important to automatically and efficiently analyze

dental images. The MONAI framework facilitated the processing of 618 CBCTs to perform

fast training and data augmentation, which led to the high accuracy and robustness of the

AMASSS tool. The UNETR showed high overall performance, achieving a Dice up to

0.962 ± 0.02 on heterogeneous CBCT images.

Given its robustness and performance time, this validated free tool was implemented in 2

open-source ecosystems, a web-based clinical decision support system (the Data Storage for

Computation and Integration, DSCI) [31], and a user-friendly 3D Slicer module Fig 6. These

computer-aided diagnostic tools will aid in diagnosis and therapy planning, especially for

patients with craniomaxillofacial anomalies and deformities.
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