Table 7.
FWHM and FWTM for image‐domain and sinogram‐domain denoising methods.
| Domain | Method | 160 HU Contrast | 60 HU Contrast | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 25% Dose | 50% Dose | 75% Dose | 25% Dose | 50% Dose | 75% Dose | ||||||||
| FWHM | FWTM | FWHM | FWTM | FWHM | FWTM | FWHM | FWTM | FWHM | FWTM | FWHM | FWTM | ||
| Image | CNN‐MSE | 0.23 | 0.43 | 0.25 | 0.46 | 0.26 | 0.48 | 0.17 | 0.32 | 0.19 | 0.35 | 0.23 | 0.42 |
| CNN‐MAE | 0.23 | 0.43 | 0.26 | 0.48 | 0.26 | 0.48 | 0.18 | 0.34 | 0.20 | 0.36 | 0.22 | 0.40 | |
| CNN‐VGG | 0.26 | 0.48 | 0.27 | 0.49 | 0.30 | 0.55 | 0.25 | 0.46 | 0.25 | 0.46 | 0.28 | 0.52 | |
| CNN‐VGGMSE | 0.21 | 0.39 | 0.23 | 0.42 | 0.25 | 0.45 | 0.18 | 0.33 | 0.21 | 0.39 | 0.22 | 0.41 | |
| CNN‐VGGMAE | 0.21 | 0.39 | 0.22 | 0.41 | 0.23 | 0.42 | 0.17 | 0.32 | 0.21 | 0.38 | 0.21 | 0.39 | |
| WGAN‐VGGMSE | 0.25 | 0.45 | 0.28 | 0.52 | 0.29 | 0.52 | 0.20 | 0.36 | 0.23 | 0.43 | 0.25 | 0.45 | |
| WGAN‐VGGMAE | 0.25 | 0.46 | 0.28 | 0.52 | 0.29 | 0.52 | 0.19 | 0.35 | 0.25 | 0.46 | 0.26 | 0.48 | |
| Sinogram | CNN‐MSE | 0.14 | 0.26 | 0.15 | 0.27 | 0.16 | 0.31 | 0.13 | 0.25 | 0.13 | 0.25 | 0.15 | 0.28 |
| CNN‐MAE | 0.14 | 0.26 | 0.15 | 0.27 | 0.15 | 0.29 | 0.13 | 0.24 | 0.13 | 0.25 | 0.13 | 0.25 | |
| CNN‐VGG | 0.22 | 0.41 | 0.29 | 0.53 | 0.31 | 0.57 | 0.21 | 0.39 | 0.26 | 0.48 | 0.29 | 0.54 | |
| CNN‐VGGMSE | 0.18 | 0.34 | 0.20 | 0.37 | 0.24 | 0.43 | 0.17 | 0.33 | 0.21 | 0.38 | 0.24 | 0.44 | |
| CNN‐VGGMAE | 0.17 | 0.32 | 0.21 | 0.39 | 0.21 | 0.39 | 0.18 | 0.33 | 0.20 | 0.37 | 0.22 | 0.41 | |
| WGAN‐VGGMSE | 0.20 | 0.37 | 0.23 | 0.42 | 0.24 | 0.43 | 0.20 | 0.36 | 0.23 | 0.42 | 0.24 | 0.44 | |
| WGAN‐VGGMAE | 0.19 | 0.35 | 0.25 | 0.45 | 0.26 | 0.47 | 0.19 | 0.34 | 0.24 | 0.44 | 0.25 | 0.47 | |
| TV‐IR | 0.24 | 0.44 | 0.28 | 0.52 | 0.28 | 0.51 | 0.23 | 0.43 | 0.29 | 0.53 | 0.30 | 0.54 | |
| FBP | 0.33 | 0.60 | 0.33 | 0.60 | 0.33 | 0.60 | 0.31 | 0.58 | 0.31 | 0.58 | 0.31 | 0.58 | |
MSE, mean‐squared error; MAE, mean absolute error; CNN, Convolutional neural network; VGG, Visual Geometry Group network; WGAN‐GP, Wasserstein generative adversarial network with gradient penalty; FWHM, full width at half maximum; FWTM, full width at tenth maximum. The bold values indicate superior performance.