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Purpose: To develop and evaluate a parallel imaging and convolutional neural network combined
image reconstruction framework for low-latency and high-quality accelerated real-time MR imaging.
Methods: Conventional Parallel Imaging reconstruction resolved as gradient descent steps was com-
pacted as network layers and interleaved with convolutional layers in a general convolutional neural
network. All parameters of the network were determined during the offline training process, and
applied to unseen data once learned. The proposed network was first evaluated for real-time cardiac
imaging at 1.5 T and real-time abdominal imaging at 0.35 T, using threefold to fivefold retrospective
undersampling for cardiac imaging and threefold retrospective undersampling for abdominal imag-
ing. Then, prospective undersampling with fourfold acceleration was performed on cardiac imaging
to compare the proposed method with standard clinically available GRAPPA method and the state-
of-the-art L1-ESPIRiT method.
Results: Both retrospective and prospective evaluations confirmed that the proposed network was
able to images with a lower noise level and reduced aliasing artifacts in comparison with the single-
coil based and L1-ESPIRiT reconstructions for cardiac imaging at 1.5 T, and the GRAPPA and L1-
ESPIRiT reconstructions for abdominal imaging at 0.35 T. Using the proposed method, each frame
can be reconstructed in less than 100 ms, suggesting its clinical compatibility.
Conclusion: The proposed Parallel Imaging and convolutional neural network combined reconstruc-
tion framework is a promising technique that allows low-latency and high-quality real-time MR
imaging. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13628]

Key words: compressed sensing, convolutional neural network, deep learning, low-latency, parallel
imaging, real-time magnetic resonance imaging

1. INTRODUCTION

With tremendous advances in MRI hardware performance
and fast imaging techniques in the past two decades, real-time
MRI has shown great potentials for a number of challenging
applications, such as speech imaging,1,2 cardiac imaging,3–5

functional imaging,6,7 and interventional MRI.8,9 To achieve
sufficient frame rate, real-time MRI typically requires signifi-
cant k-space undersampling to accelerate the data acquisition.
As a result, advanced image reconstruction algorithms are
needed to remove aliasing artifacts arising from k-space
undersampling. Two broad categories of these techniques are
parallel imaging and compressed sensing.10–12 Parallel

imaging takes advantage of the signal correlations between
different coil elements of a receiver coil array to estimate the
missing k-space data or calculate the aliasing free image by
inverting the sensitivity encoding process of MRI.10,11 Com-
pressed sensing algorithms use the image sparsity under cer-
tain mathematical transformations to reduce the size of
solution space and use a nonlinear process to recover the
image from the reduced solution space.12–14 For those real-
time MRI applications that require user interaction or real-
time decision making based on image feedback,15,16 such as
interventional MRI, there are a number of requirements that
may be different from conventional diagnostic MRI applica-
tions. In addition to generic performance metrics such as
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spatial and temporal resolution, these real-time MRI applica-
tions often have more stringent requirements with regard to
geometric distortion of the images and image reconstruction
latency, which is the time interval between the end of data
acquisition and the completion of image reconstruction. For
applications that only require fast data acquisition,17,18 slower
reconstruction methods may be used. For example, Uecker
et al.19 demonstrated 1.5 mm2 and 20 ms spatial/temporal
resolution real-time MRI with a 2.5 s per frame reconstruc-
tion time. In another real-time MRI study by Lingala et al.20,
the authors used a through time spiral GRAPPA method21 for
real-time speech imaging with a reconstruction latency per
frame of 114 ms and a modest spatial resolution of 2.4 mm2.
More recently, several more reconstruction approaches, such
as Borisch et al.22 using cluster computing, Sorensen et al.23

using non-Cartesian trajectory and GPU computation, and
Majumdar et al.24 using compressed sensing and dedicated
fast computation libraries, were proposed for high spatial and
temporal resolution real-time imaging.

Despite the promise of non-Cartesian trajectories and CS-
based iterative approaches in real-time imaging, these meth-
ods are limited in certain aspects: (a). Non-Cartesian trajecto-
ries are sensitive to different kinds of system imperfections,
such as gradient delays and field inhomogeneities, which
could lead to image blurring and geometric distortions in
real-time MRI. Therefore, these non-Cartesian approaches
usually require extra pre/postprocessing time for reconstruc-
tion.25 (b). For CS applications, fixed sparsifying transforms
are typically used in most CS-based algorithms. Although
there exist various simple yet powerful sparsifying trans-
forms, such as wavelet,12 total variation,14 that could be useful
for many applications, they may be too simple to capture the
underlying complex image features for all imaging applica-
tions26; (c) Solvers for iterative algorithm need to be specially
designed or modified so that low-latency online reconstruc-
tion is feasible.14 Recent developments in deep learning-
based MRI image reconstruction may provide solutions to
these issues. Taking the experiences from early success in
image classification27 and recent improvement in image
restoration28 and super-resolution,29 several neural network
architectures have been proposed30–34 to learn the (nonlinear)
mapping from artifact-contaminated images due to k-space
undersampling to the fully sampled reference images. This
could greatly relax the need for using non-Cartesian k-space
trajectories to achieve incoherent sampling, and alleviate the
need for optimizing the sparsifying transform. Automated
transform by manifold approximation (AUTOMAP)35 as a
general framework for image reconstruction consisting of
fully connected layers followed by a convolutional autoen-
coder, directly maps the k-space data to the image domain. A
stack of autoencoders has also been also proposed36 to map
undersampled radial images to high-quality fully sampled
images. Deep residual networks followed by linear fully con-
nected layers have been used37 to reconstruct the image from
compressively sensed measurements. Deep neural networks
have also been used to explore much more effective image
priors and sparsifying transforms from a given dataset and

combined with conventional CS methods. As proposed in
Ref. [38], the ADMM algorithm is used to solve the inverse
problems such as CS-MRI. Another interesting technique34

was recently reported using a variational autoencoder for
learning the effective priors to reconstruct knee datasets.
Generative adversarial networks (GANs) have been proposed
to achieve a higher perceptual quality in inverse problems
such as super resolution.39–42 Additional new techniques
have been proposed to increase the sharpness and preserve
the texture information in MR reconstruction tasks.43,44

Transfer learning has also been explored as an effective
image reconstruction method.45,46

In this work, we sought to develop a Parallel Imaging and
Convolutional Neural Network (PI-CNN) combined recon-
struction framework and apply it to two-dimensional (2D)
real-time imaging for low-latency online reconstruction.
Compared with most existing neural network-based meth-
ods30–33 that only learn the mapping from single-coil data,
our framework integrated multicoil k-space data and utilize
them through parallel imaging. We demonstrate the capability
of our framework on two different applications: real-time car-
diac imaging at 1.5 T and real-time abdominal imaging at
0.35 T. Retrospective studies were performed to compare the
proposed method against an existing single-coil–based neural
network reconstruction32 and a PI-CS method.47 Prospective
examples were also shown to demonstrate the improved tem-
poral resolution from the accelerated acquisition and our
image PI-CNN reconstruction algorithm.

2. MATERIALS AND METHOD

2.A. Problem formulation

To reconstruct undersampled data in an accelerated MR
acquisition, an ill-posed linear inverse problem can be formu-
lated as follows:

Auxþ e ¼ y (1)

where x is the target image to be reconstructed; y is the
acquired multicoil undersampled k-space data padded with
zeros at unsampled k-space locations; Au is a chain of linear
operators including point-wise multiplication of sensitivity
maps, forward Fourier transform, and point-wise multiplica-
tion of undersampling mask; and e is measurement noise.
Since the system of Eq. (1) is ill-posed, as well as the fact that
measured data y are noisy in practical scenarios, minimizing
the least square error of Eq. (1) with additional regularization
term R xð Þ is usually used to prevent overfitting to noisy
image, given by the following optimization problem:

minx Aux� yk k22þkR xð Þ (2)

where k is the regularization parameter that trades off the
data fidelity term and regularization term.

Common choices of R xð Þ are l1 norm, which is the sum of
absolute values of every element in a vector or matrix, wave-
lets and total variation, aiming at exploiting the sparsity of
the underlying image in the transform domain. However,
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predetermined sparsifying transforms only preserve certain
features of the image and lack the generality of representing
complex natural features. For example, total variation
increases at edges of the image and therefore favors piece-
wise constant structures. As a result, image reconstructions
using total variation as regularizations could result in over-
smoothed images with blurred boundaries between struc-
tures. Inspired by early work of using sparse dictionary
learning-based regularization for MR reconstruction,26 and
more recent work of using convolutional neural networks
(CNN) for natural image reconstruction,48 we propose to use
a general CNN-based regularization in this work. Specifi-
cally, assume MCNN : xartifact ! xclean maps an artifact-con-
taminated image, mainly caused by k-space undersampling
and results in structural ghosting aliasing or incoherent noise-
like artifacts on image, to an artifact-free image. It can be rep-
resented by multiple layers of convolutional kernels parame-
terized by h.48,49 Hence, a compact representation of this
mapping is:

MCNNðxartifactjhÞ ¼ xclean (3)

Incorporating Eq. (3) as a regularization term into Eq. (2)
gives us the following reconstruction problem:

minx Aux� yk k22þk x�MCNN xzf jh
� ��� ��2

2 (4)

where xzf is the image derived from undersampled zero-filled
k-space data. In case the mapping MCNN xzf jh

� �
is already

learned with known parameters h�, equation [4] can be solved
using the gradient descent algorithm with some initial image
x0:

xtþ1 ¼ xt � 2at k xt �MCNN xzf jh�
� �� �þ A�

u Aux
t � yð Þ� �

(5)

where xt is reconstructed image at iteration t, at is the step
size at iteration t, and A�

u is the adjoint chain of linear opera-
tors. Although the global minimal of Eq. (4), which is a
pure quadratic optimization problem, can be obtained by set-
ting its derivative to be zero, and solving a system of linear
equations through direct matrix inversion or pseudo-inver-
sion, we chose to solve it with the gradient descent algo-
rithm due to the large size of the coefficient matrix
(A�

uAu þ 2kI) when multiple coil sensitivity maps are
included, as well as its poor conditioning when undersam-
pling factor is high. For previously mentioned natural image
reconstruction task,48,49 learning parameters h for MCNN is
usually performed in image domain only. However, by incor-
porating the k-space data in training, which is a representa-
tion of the image in the spatial-frequency domain, we
hypothesize that we will be able to improve image recon-
structions compared to traditional image-based training in
terms of image artifact removal when the image was
acquired with k-space undersampling. In several previously
proposed CNN-based MR reconstruction methods32,33 that
utilized k-space data for reconstruction, the investigators
either utilized the k-space data after the network training is
completed33 or only considered single-coil data.32 On the

contrary, the proposed approach alternatively learns parame-
ters h through CNN and solves the parallel imaging problem
in equation [5], using a cascaded network architecture32 as
shown in Fig. 1. Our approach not only generalizes the com-
mon regularization terms used in CS methods but also
allows the CNN to better use the acquired multicoil k-space
data by incorporating parallel imaging.

2.B. Network design

As illustrated in Fig. 1, our network consists of composite
CNN layers and Parallel Imaging data consistency (PI-DC)
layers cascaded in series. Each subconvolution layer in the
CNN layer has filters with size 3 9 3. Complex images are
input to CNN layers in two separate channels (real and imagi-
nary), which are combined back to a single-channeled com-
plex image at the output of CNN layers. In the PI-DC layer,
the output of the preceding CNN layer is iteratively updated
according to Eq. (5). In consideration of computation time,
three iterations are performed in the PI-DC layer with k set to
0.4 empirically in Eq. (5).

During the offline network training process, the goal is to
find an optimal parameter set h for the convolution filters.
Since there is no updatable parameter in the PI-DC layer, a
total of N � K � 3� 3� 48� 2 parameters need to be
trained. To set up this procedure, we minimize a loss function
over a set of paired reconstructed image and reference image
with respect to h. Based on previous literature,50,51 we choose
L1 norm instead of conventional L2 norm as our main loss
function, which is defined as follows:

L hð Þ ¼ minh
XP
i¼1

Mag xirecon hð Þ� ��Mag xiref
� ����

���
1

þ c hk k2 (6)

where xirecon and xiref is the ith pair of images in the set of size
P, and Mag �ð Þ is the operation that takes the magnitude of the
complex image. To prevent model overfitting, we further
added an L2 regularization on the network parameters. Due

to the fact that Mag �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
realð�Þ2 þ imagð�Þ2

q
is not differ-

entiable at the origin point, we relaxed it with

Mage �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
realð�Þ2 þ imagð�Þ2 þ e

q
in our practical imple-

mentation. The above optimization problem is solved by the
well-known back-propagation algorithm,52 that is, applying
the chain rule for parameters hm of the mth layer:

@L hð Þ
@hm

¼ @x mþ1½ �
recon

@hm
� @x

mþ2½ �
recon

@x mþ1½ �
recon

. . .
@x N�KþN½ �

recon

@x N�KþN�1½ �
recon

� @L hð Þ
@x N�KþN½ �

recon

(7)

where x mþ1½ �
recon is the output of (m+1)th layer from a total of

N � K þ N layers including the subconvolution layers and PI-
DC layers. Note that we are performing an end-to-end train-
ing, and therefore, the back-propagation starts from the last
cascaded layer. Although no parameter is updated in the PI-
DC layer, the derivative of its output with respect to its input
still needs to be calculated, so that the gradient can flow
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backward. In other words, the derivative of layer output in
both CNN and PI-DC layers, with respective to the corre-
sponding layer input, needs to be evaluated so that every term
on the righthand side of Eq. (7) is well-defined. For each PI-
DC layer, which consists of three gradient descent update
steps shown in Eq. (5), it can be unpacked as three separate
sublayers, with the input as xt, and output as xtþ1. This can
simplify the calculation of derivative for one PI-DC layer to
be a chain of three derivatives associated with each of these
thee sublayers, calculated as I � 2at kI þ A�

uAu
� �

. For the
resting CNN layers, the derivatives used in the back-propaga-
tion is calculated using numerical differentiation provided in
the backend network libraries mentioned at the end of section
“Network Training.”

For comparison purposes, the single-coil–based network
described in Ref. [18] was also implemented in this work. In
this network, the k-space data y in equation [4] is replaced
with a synthesized single-coil k-space data, which is gener-
ated by inverse Fourier transform of fully sampled multicoil
k-space data to image domain, coil combination in image
domain using SENSE,10 another Fourier transform, and retro-
spective k-space undersampling. The chain operator A only
involves performing Fourier transform and applying the
undersampling mask. Moreover, Eq. (5) is replaced with a

single-step k-space data substitution operation. Equation (6)
in Ref. [32] describes this operation in more details.

2.C. Data acquisition

To evaluate the performance of the proposed PI-CNN
method and demonstrate its utility, we tested our strategy for
real-time cardiac and abdominal imaging applications. The
study was approved by our institutional review board, and
each subject provided written informed consent. For cardiac
imaging, 20 healthy volunteers were scanned on a 1.5 T MRI
scanner (Avanto Fit, Siemens Medical Solutions, Erlangen,
Germany) using a standard bSSFP sequence with a 32-chan-
nel body coil array (TE/TR = 1.5/3 ms, flip angle = 60°,
bandwidth = 814 Hz/pixel, field of view = 260 � 350 9

160 – 220 mm2, matrix size = 192 9 122, slice thick-
ness = 6 mm2). In each volunteer, 250 short-axis view fully
sampled images (temporal resolution = 3 frames per second)
at various slice locations across the heart were acquired dur-
ing free-breathing without ECG gating. The image acquisi-
tion time was 84 s for each volunteer. Prospectively 4X
undersampled data using a one-dimensional (1D) variable
density Poisson-disc pattern12 were acquired in two addi-
tional volunteers in the short-axis view. As a comparison, a

FIG. 1. Structure of the proposed parallel imaging and convolutional neural network (PI-CNN) combined reconstruction network. The PI-CNN network consists
of N composite CNN layers and PI-DC layers cascaded in series. Each composite CNN layer contains K subconvolution layers.
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separate cardiac cine MRI using conventional 3X GRAPPA
acceleration with 20 reference lines and partial Fourier 5/8,
corresponding to a 4X net acceleration, was acquired at the
same slice locations as our Poisson-disc undersampled data.
For both undersampled acquisitions, imaging time was 21 s.

For abdominal imaging, a total of eight healthy volunteers
and eight liver cancer patients were scanned on a 0.35 T
MRI-guided radiotherapy (MRgRT) system (MRIdian, View-
Ray, Cleveland, OH) using a standard bSSFP sequence with a
12-channel body coil array (TE/TR = 1.7/3.4 ms, flip
angle = 110°, bandwidth = 548 Hz/pixel, field of view =
300 – 420 9 180 – 250 mm2, matrix size = 192 9 114,
slice thickness = 8 mm2). The MRgRT system is capable of
simultaneous MRI and radiotherapy, but was only used as an
MRI scanner in the study. In each volunteer and patient, 250
sagittal fully sampled images (temporal resolution = 3 fps)
at various locations of the liver region (covering the tumor
for patients) were acquired during free breathing. The image
acquisition time was 84 s.

2.D. Network training

Both the proposed network and the single-coil–based net-
work described in Ref. [18] were trained using retrospectively
undersampled data paired with their corresponding fully sam-
pled reference data. As mentioned above, SENSE reconstruc-
tion10 was used to generate single-coil images from multicoil
images in the single-coil–based network.32 In the proposed
network, SENSE type reconstruction was used in the PI-DC
layer to enforce data consistency under the parallel imaging
framework. For cardiac imaging, 3750 short-axis image pairs
from 15 volunteers were used for training. For abdominal
imaging, 3000 sagittal image pairs from 6 volunteers and 6
patients were used. The network trainings were performed
separately for cardiac imaging datasets and abdominal imag-
ing datasets. For a given undersampling factor (3X-5X), the
Poisson-disc undersampling masks were varied for the train-
ing datasets so that the network learns various aliasing pat-
terns. The coil sensitivity maps used in the proposed method
were calibrated from the 24 9 24 central k-space region
using ESPIRiT.47

Both networks were implemented in Python using Theano
and Lasagne libraries. Parameters of the networks were ini-
tialized with He initialization,53 trained with Adam opti-
mizer54 using following parameters: a ¼ 1e�4, b1 ¼ 0:9, and
b2 ¼ 0:999. One thousand epochs with minibatch size of 16
were used. All training and experiments were performed on a
Linux PC (8 Core/4 GHz, 64 GB, Nvidia GTX 760). It took
approximately 1 day to train each network.

2.E. Evaluation

The proposed PI-CNN network was tested on data from
the remaining five volunteers in cardiac imaging, and the
remaining two volunteers and two patients in abdominal
imaging. All test data were not included in the training
process.

In the first step, we evaluated the effect of different N and
K in the proposed PI-CNN network. Two experiments were
performed: (a) We fixed K ¼ 4 for each composite CNN
layer but varied N ¼ 1� 6. This experiment would show the
value of increasing cascade iteration. (b). We compared two
architectures, both with a total number of 25 layers:
N ¼ 5;K ¼ 4 and N ¼ 1;K ¼ 24. The first architecture ben-
efits from the repeated enforcement of data consistency while
the second one can extract very deep features.55 This experi-
ment allowed us to evaluate the benefit of using k-space data
within a network. For each network trained in the two experi-
ments, a fourfold acceleration factor was set.

Next, we evaluated the performance of the proposed net-
work against a single-coil–based network32 and L1-
ESPIRiT,47 a state-of-the-art PI-CS reconstruction method,
through a retrospective study on the cardiac imaging. Based
on experiments in the first step, we set N ¼ 5;K ¼ 4 for both
the proposed network and the single-coil–based network.
Threefold to fivefold acceleration factors were evaluated with
the 1D variable density Poisson-disc undersampling pattern.
L1-ESPIRiTwas performed using a previously described tool
(Berkeley Advanced Reconstruction Toolbox, BART),56 with
the same sensitivity maps used for network reconstruction.
All hyperparameters for L1-ESPIRiT such as the number of
iterations and regularization parameters were tuned empiri-
cally to provide best image quality based on visual assess-
ment.

Since our network learns to de-alias undersampled arti-
fact-contaminated images in general, it is possible that the
network trained at one acceleration factor may be used to
reconstruct images acquired with a different acceleration fac-
tor. To explore this, we used the network trained with the
intermediate fourfold acceleration factor in the previous
experiment to reconstruct images retrospectively undersam-
pled with threefold to fivefold acceleration factors. As a com-
parison, these images were also reconstructed using the
networks trained with the corresponding acceleration factors.
L1-ESPIRiT, as a representative of nontraining-based meth-
ods, was also performed.

As a next step, we further evaluated the performance of
the proposed PI-CNN network on the prospectively under-
sampled data. However, it is not possible to reconstruct them
with the single-coil–based network.32 This is because it only
works with the synthesized single-coil data (i.e., it is trained
on the synthesized coil-combined image and coil-combined
retrospectively undersampled k-space data), while the
acquired prospective undersampled k-space data have multi-
ple channels and there is no easy way to derive coil-com-
bined undersampled k-space data from that. Therefore, we
only compare it with the L1-ESPIRiT reconstruction based
on the same data, as well as the additionally acquired
GRAPPA accelerated data.

Next, to evaluate the proposed network in a different body
site, a different SNR scenario, and to demonstrate its poten-
tial in clinical utility in patients, we performed a study for
abdominal imaging acquired at 0.35 T. The patients in this
evaluation were liver cancer patients who underwent MR-
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guided radiation therapy using our MRgRT system. The
abdominal images were acquired immediately after the
patient finished a treatment session. The k-space data from
one volunteer and two patients were retrospectively under-
sampled by a threefold acceleration factor, and reconstructed
with the proposed network and L1-ESPIRiT. Because of the
improved performance of the proposed network over single-
coil–based network based on cardiac imaging (shown in the
Section 3), here we used the clinically available linear PI
reconstruction GRAPPA as the alternative comparison, based
on the same data that were retrospectively undersampled with
a regular pattern and net acceleration factor of threefold.

Finally, we assessed the robustness of the proposed net-
work by performing a fourfold cross-validation study. Specif-
ically, we evenly divided the datasets acquired from cardiac
and abdominal imaging experiments into four subsets, with a
subset size of 1250 images for cardiac imaging, and 1000
images for abdominal imaging. The retrospective reconstruc-
tion evaluation process, as detailed above, was then repeated
four times for each imaging experiment, such that each time,
one of four subsets was used as a testing dataset and the other
thre subsets were combined together to form the training

dataset. Corresponding comparisons with other algorithms
(single-coil–based network and L1-ESPIRiT for cardiac
imaging, GRAPPA and L1-ESPIRiT for abdominal imaging)
were also performed on the testing dataset.

2.F. Data analysis

To compare the different reconstruction strategies quanti-
tatively in the cross-validation evaluation, both normalized
root mean square errors (nRMSE) and structural similarity
index (SSIM)56 were calculated between each frame of the
reference images and images reconstructed with the different
strategies (proposed network, single-coil based network, L1-
ESPIRiT and GRAPPA). The calculated nRMSE and SSIM
were averaged across all frames and all volunteers/patients.
Although reduction in nRMSE indicates greater fidelity to
the original image, an SSIM value of 1 indicates a perfectly
identical pair and the SSIM value decreases as the images dif-
fer. Quantitative measurements were reported separately for
each cross-validation repetition. In addition to the quantita-
tive evaluation, the image quality of all reconstructed images,
using a single-coil–based network, the proposed network,

FIG. 2. Example images reconstructed with the proposed parallel imaging and convolutional neural network (PI-CNN) network using different network depths
(i.e., number of composite CNN and parallel imaging data consistency layers) at fourfold acceleration factor. With increased depth (N from 1 to 6), the recon-
structed image has less aliasing artifact (red arrows) and sharper edges (yellow and green arrows), although this comes with longer reconstruction time. The net-
work with N ¼ 5; hboxK ¼ 4 represents a good balance between image quality and required reconstruction time. [Color figure can be viewed at wileyonlinelibra
ry.com]
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and L1-ESPIRiT, from five testing volunteers in the cardiac
imaging were subjectively evaluated by two readers with an
experienced knowledge of MR cardiology and were blinded
to the MRI reconstruction methods. The presented images
were graded using a 4-point ordinal scale in terms of image
sharpness (1: no blurring, 2: mild blurring, 3: moderate blur-
ring, 4: severe blurring), and overall image quality (1: excel-
lent, 2: good, 3: fair, 4: poor). Reported subjective scores
were averaged over the two readers.

3. RESULTS

Figure 2 shows example images reconstructed from the six
networks that have different cascading depths (N ¼ 1� 6).
As N increased, the reconstructed images had fewer aliasing
artifacts (red arrows), sharper tissue boundary (yellow

arrows) and better delineated myocardium (green arrows).
The rate of improvement and artifact reduction slowed down
as N increased. There was obvious difference between the
(N ¼ 1;K ¼ 4) image and the (N ¼ 2;K ¼ 4) image. The
difference between the (N ¼ 5;K ¼ 4) image and the
(N ¼ 6;K ¼ 4) image was subtler, although the
(N ¼ 6;K ¼ 4) image required increased reconstruction time
(46 ms for N ¼ 5 and 90 ms for N ¼ 6 to reconstruct a 12-
channel data) and potentially increased sensitivity to overfit-
ting. Therefore, we used the N ¼ 5;K ¼ 4 network for the
remaining study of this work.

Figure 3 shows the comparison of the two network archi-
tectures that have the same total number of 25 layers on
selected reconstructed frames. As illustrated, the architecture
that employs very deep convolution layers (N ¼ 1;K ¼ 24)
for feature extraction was not able to remove residual aliasing

FIG. 3. Selected reconstructed images of retrospective fourfold acceleration at three cardiac phases from two networks that have the same number of total layers
but different architectures. For the network that has very deep convolution layers (N ¼ 1; hboxK ¼ 24), it fails to remove residual aliasing artifacts and sharpen
the edges. On the other hand, the proposed cascaded architecture (N ¼ 5; hboxK ¼ 4) allows good utilization of the feature extraction from convolutional neural
network layers and data consistency enforcement from PI-DC layers, and produces cleaner and sharper reconstructions. [Color figure can be viewed at wileyon
linelibrary.com]
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artifacts (blue arrows) and failed to recover sharp myocar-
dium boundaries (red arrows). On the contrary, using the
same size of training data, the interleaved architecture
(N ¼ 5;K ¼ 4) reconstructed much cleaner and sharper
images, benefitting from the fact that it consistently provides
an updated improved image from a PI reconstruction for each
composite CNN layer.

To better understand how the proposed network utilizes
the interleaving CNN and PI-DC structure, Fig. 4 shows the
intermediate images from each of the composite CNN layers
(top row) and PI-DC layers (bottom row) within the proposed
network. Since end-to-end training was used, the intermedi-
ate layers internally learned to correct for the errors caused
by the previous layers, and thus produced from the final layer
images that were similar to the reference image.

Figure 5 shows representative images reconstructed from
zero-filling, single-coil–based network,32 proposed network,
L1-ESPIRiT, and fully sampled reference data. With threefold
undersampling, all three strategies were able to reconstruct
images with acceptable quality. With fourfold undersampling,
single-coil–based network reconstructed an image with
apparent residual aliasing artifact (white arrow) and over-
smoothed blocky artifacts (yellow arrow). L1-ESPIRiT simi-
larly had blurred myocardium (red arrow) and small blood
vessel (blue arrow). The proposed network, however, could
reconstruct similar image compared with the reference. At
fivefold acceleration, the proposed PI-CNN method started to
show oversmoothed images (green arrows). The other two
methods had similar reconstruction errors with fourfold
undersampling. These observations correlate well with the

numerical analysis shown in Table I and the subjective scores
shown in Table II.

Figure 6 shows the results of applying the proposed net-
work trained with one acceleration factor to reconstruct
images undersampled with other acceleration factors. Apply-
ing the network trained on fourfold undersampled data to
threefold undersampled data produces images with the simi-
lar quality compared with the image reconstructed directly
with a network trained on threefold undersampled data. How-
ever, when such a network was applied to fivefold undersam-
pled data, an additional artifact (yellow arrow) and overall
increased blurriness can be seen in the reconstructed image.
This indicates that for different undersampling scenarios, in
contrast to nontraining-based methods like L1-ESPIRiT,
which only needs to adapt the regularization parameter value,
the proposed network requires adaptive training process to
achieve the best performance.

Figure 7 depicts the reconstruction results of prospectively
undersampled data from GRAPPA, L1-ESPIRiT and the pro-
posed PI-CNN network. We observed performance of the
three reconstructions that was similar to the retrospectively
study. GRAPPA reconstruction suffered from a high noise
level, and L1-ESPIRiT resulted in residual aliasing artifacts
for certain case (blue arrows). On the other hand, the PI-CNN
network was able to produce much cleaner reconstruction
and was less prone to remaining artifacts.

Figure 8 demonstrates the advantage of the proposed
method in single to noise ratio (SNR) limited scenario and its
generalization capacity in patient cases. For both healthy vol-
unteers and tumor patients, the linear reconstruction

FIG. 4. Intermediate network layer outputs of the parallel imaging and convolutional neural network for a retrospectively fourfold undersampled data. We observe
overall continuously suppression of aliasing artifacts and sharpening of fine structures as the data pass through each cascaded layer. Due to the end-to-end train-
ing, our proposed parallel imaging data consistency network can internally correct for these deviations and produce an artifact-free image after the final layer.
[Color figure can be viewed at wileyonlinelibrary.com]
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GRAPPA suffered from high noise level due to the poor con-
ditioning of the system matrix in low SNR situation. L1-
ESPIRiT was able to reconstruct cleaner images but still has
visible noise compared with the reference image. The pro-
posed method, however, was able to reconstruct high quality
images with well-delineated tumor regions (blue, yellow, and
red arrows). The reconstructed images also had a much lower
noise floor and were comparable to the fully sampled refer-
ence. Quantitative measurements shown in Table I also con-
firm these observations.

The single-coil–based network and proposed network, as
well as the GRAPPA method are all compatible with on-the-
fly reconstruction. Reconstruction time on eight cores and
single GPU was 28 ms/frame for the single-coil–based net-
work, 46–108 ms/frame for proposed method depends on
coil number, and 76–95 ms/frame for GRAPPA including

calibration weight calculation. L1-ESPIRiTwith spatial wave-
let constraint, on the other hand, took 1.2–1.4 s to reconstruct
each frame.

4. DISCUSSION

This work demonstrates the feasibility of using a PI and
CNN combined network to perform low-latency reconstruc-
tion on accelerated real-time acquisitions. By taking advan-
tage of an interleaved PI and CNN reconstruction, the
network, once trained, is capable of reconstructing 2D images
within tens of milliseconds and will likely enable on-the-fly
reconstruction for high spatial and high temporal resolution
real-time MRI. In particular, we demonstrated that the PI-
CNN network is superior to both previously proposed single-
coil–based network32 and L1-ESPIRiT47 at fourfold

FIG. 5. Comparison of different reconstruction strategies at three acceleration factors for short-axis cardiac acquisition. From left to right, each column represents
selected cardiac frame reconstructed with zero-filling, single-coil–based network, L1-ESPIRiT, proposed parallel imaging and convolutional neural network (PI-
CNN) and reference, respectively. Normalized residual error maps between the PI-CCN reconstructions and the reference are shown to demonstrate the magni-
tude of errors. As expected, as the acceleration rate increases, there is more residual errors. [Color figure can be viewed at wileyonlinelibrary.com]
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acceleration in 1.5 T for real-time cardiac imaging. Compar-
ison with L1-ESPIRiT and clinical available GRAPPA recon-
structions at SNR-limited 0.35 T environment for real-time
abdominal imaging also shows the improved performance of
proposed PI-CNN network with threefold acceleration.

Previous literature in deep learning-based MR image
reconstruction30–33 only shows the feasibility of reconstruc-
tion with single-coil data and lacks a clear demonstration of
how the clinical multiple-coil data are handled. Compared
to the selected single-coil–based network used in this work,
the proposed PI-CNN network includes multicoil informa-
tion to allow the network to better de-alias the artifact-con-
taminated zero-filled input image. Given the same amount
of training data and number of epochs, we believed the
improved results of the proposed method come from a faster

convergence and a smaller gap between the training-testing
errors (i.e., less overfitting), all resulting from the fact that
more (multicoil) information is included in the PI-CNN
network.

The overfitting issue has always been a concern for learn-
ing-based methods, especially with a training dataset of a rel-
atively small size. To alleviate this, the proposed PI-CNN
network utilized a cascaded structure that interleaves the
CNN layer and PI-DC layer to constrain the size of the recep-
tive field for each layer. The benefit of such a strategy can be
clearly seen from Fig. 3. We also carefully choose the param-
eters related to the network design (K, N, S) that satisfies our
application needs, which is essentially a trade-off between
model complexity and training efficiency. With increased
model complexity (larger K, N, S), the network may be

TABLE I. Quantitative comparisons of the different reconstruction strategies and the different undersampling factors in the cardiac and abdominal imaging appli-
cations with regard to nRMSE and SSIM.

Experiments Recon. methods nRMSE SSIM

Cardiac 3-fold Zero-filling 0.27 � 0.04 (min:0.25, max:0.31)* 0.53 � 0.02 (min:0.49, max:0.56)*

Single-coil Network 0.11 � 0.03 (min:0.1, max:0.13)* 0.86 � 0.02 (min:0.83, max:0.9)

L1-ESPIRiT 0.07 � 0.04 (min:0.06, max:0.09) 0.91 � 0.01 (min:0.88, max:0.92)

PI-CNN Network 0.07 � 0.03 (min:0.06, max:0.09) 0.91 � 0.03 (min:0.87, max:0.92)

Cardiac 4-fold Zero-filling 0.42 � 0.01 (min:0.37, max:0.46)* 0.46 � 0.02 (min:0.42, max:0.48)*

Single-coil Network 0.21 � 0.02 (min:0.18, max:0.24)* 0.73 � 0.04 (min:0.68, max:0.78)*

L1-ESPIRiT 0.12 � 0.03 (min:0.1, max:0.15) 0.82 � 0.01 (min:0.8, max:0.84)

PI-CNN Network 0.09 � 0.03 (min:0.08, max:0.13) 0.88 � 0.02 (min:0.86, max:0.89)

Cardiac 5-fold Zero-filling 0.57 � 0.03 (min:0.52, max:0.59)* 0.38 � 0.04 (min:0.35, max:0.43)*

Single-coil Network 0.31 � 0.02 (min:0.28, max:0.33)* 0.62 � 0.01 (min:0.6, max:0.64)*

L1-ESPIRiT 0.19 � 0.01 (min:0.18, max:0.21) 0.75 � 0.02 (min:0.74, max:0.77)

PI-CNN Network 0.14 � 0.04 (min:0.11, max:0.16) 0.81 � 0.02 (min:0.79, max:0.82)

Abdominal 3-fold Zero-filling 0.29 � 0.02 (min:0.25, max:0.31)* 0.51 � 0.01 (min:0.5, max:0.53)*

Single-coil Network 0.15 � 0.02 (min:0.14, max:0.17)* 0.81 � 0.02 (min:0.79, max:0.83)*

L1-ESPIRiT 0.10 � 0.01 (min:0.09, max:0.12) 0.85 � 0.04 (min:0.82, max:0.89)

PI-CNN Network 0.08 � 0.02 (min:0.07, max:0.1) 0.90 � 0.02 (min: 0.88, max:0.91)

nRMSE: normalized root mean square error; SSIM: structural similarity index.
*Statistically significant difference between the labeled reconstruction method and the proposed parallel imaging and convolutional neural network (PI-CNN) method.

TABLE II. Subjective image quality scores in terms of image sharpness and overall image quality evaluated on the different reconstruction strategies and the differ-
ent undersampling factors for cardiac imaging.

Experiments Recon. method Image sharpness Overall quality

Cardiac 3-fold Single-coil Network 1.65 � 0.16 (min:1, max:3) 1.32 � 0.06 (min:1, max:3)

PI-CNN Network 1.54 � 0.18 (min:1, max:2) 1.26 � 0.12 (min:1, max:2)

L1-ESPIRiT 1.36 � 0.22 (min:1, max:2) 1.21 � 0.18 (min:1, max:2)

Cardiac 4-fold Single-coil Network 2.84 � 0.12 (min:1, max:4)* 2.55 � 0.32 (min:1, max:4)*

PI-CNN Network 2.05 � 0.07 (min:1, max:3) 1.98 � 0.19 (min:1, max:3)

L1-ESPIRiT 2.18 � 0.11 (min:1, max:3) 2.08 � 0.34 (min:1, max:3)

Cardiac 5-fold Single-coil Network 3.52 � 0.43 (min:2, max:4)* 3.32 � 0.38 (min:2, max:4)*

PI-CNN Network 3.04 � 0.35 (min:2, max:4) 2.86 � 0.26 (min:2, max:4)

L1-ESPIRiT 3.11 � 0.26 (min:2, max:4) 2.92 � 0.42 (min:2, max:4)

*Statistically significant difference between the labeled reconstruction method and the proposed parallel imaging and convolutional neural network (PI-CNN) method.
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capable of delineating finer structures and removes stronger
aliasing artifacts, but requires more training data and longer
computation time. With increased training efficiency (smaller
K, N, S), the network converges much quicker and needs less
training data, but it will perform poorly when the undersam-
pling factor increases. With the current setup (K ¼ 4, N ¼ 5,
S ¼ 48), our experiments show that the proposed network
can recover high-quality images with less than 100 ms from
moderate undersampled images.

Compared with the conventional CS approaches, the pro-
posed learning-based PI-CNN network offers two distinct
advantages for image reconstruction. First, CS methods usu-
ally require the selection of specific sparsifying transform(s)
as regularization term(s) to constrain the solution space for
the underdetermined problem, which is not a trivial task.
Using the learning-based approach allows the network to
adapt its kernels to the underlying features of the image and
artifacts automatically and requires minimal human

FIG. 6. Selected cardiac images reconstructed with different testing/training acceleration factor settings in the proposed PI-CNN network. [Color figure can be
viewed at wileyonlinelibrary.com]
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interaction. Based on criteria given by the loss function, the
training process optimally adjusts the convolutional kernels
such that the output matches well with the reference. How-
ever, such data-driven–based adaption from the training pro-
cess can also limit the way that a learned network is used for
reconstruction. As shown in Fig. 6, if the severity of aliasing
artifacts is drastically different between the training and

application stages, learning-based PI-CNN network performs
inferior to the CS approach. Fortunately, recent research
results have highlighted the potential of transfer learning45 to
handle this training-application mismatch. Its applicability to
our proposed PI-CNN network warrants future study. Second,
CS reconstruction usually requires long reconstruction time
since every reconstruction is treated as an individual

FIG. 7. Reconstruction results of prospectively fourfold undersampled data from GRAPPA, L1-ESPIRiT and the proposed parallel imaging and convolutional
neural network (PI-CNN) network. GRAPPA reconstruction has high noise level that results in poor visualization of the myocardium (green arrows). L1-ESPIRiT
reconstruction has a small residual aliasing artifact (blue arrows) in certain cases. Reconstructions from the proposed PI-CNN network have less undersampling
artifacts and an improved single to noise ratio. [Color figure can be viewed at wileyonlinelibrary.com]
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optimization problem. On the contrary, the learning-based
PI-CNN network offloads the computational expensive opti-
mization process offline and precalculates the network
parameters. Once the parameters are determined, the applica-
tion to new data is extremely fast since no optimization is
needed.

Our study shows that the proposed network can learn the
general and global mapping from undersampled aliased

image to reference image, using different sampling patterns
with fixed undersampling factor during the training. This
suggests that a fixed aliasing pattern or strong incoherence is
not required, although more incoherent aliasing from trajecto-
ries such as radial sampling might be helpful at a higher
undersampling factor. To further improve the network, one
may pretrain the network with various undersampling masks,
and fine tune it with a fixed pattern that will be finally used

FIG. 8. Comparison of different reconstruction strategies at threefold acceleration factor for sagittal view abdominal acquisitions at 0.35T low-field environment.
From left to right, each column represents selected frame reconstructed with zero-filling, GRAPPA, L1-ESPIRiT, proposed parallel imaging and convolutional
neural network and reference, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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in the prospective study. Furthermore, jointly training the
undersampling mask and aliased image for reconstruction
may provide further improvement.

In the proposed PI-CNN network, we utilized the multi-
coil information through an interleaved PI-DC layer, which
is essentially solving a parallel image problem with precal-
culated sensitivity maps. Alternatively, the multicoil data
can be input into the network directly, and let the network
itself to learn the implicit relationship between coils. As
shown in a recent work (AUTOMAP),35 a general manifold
approximation can be learned to map the acquired k-space
data directly to image domain, which in essence replaced
the entire image reconstruction process with a knowledge-
free training network. Similarly, such a network can be
employed to map multicoil k-space data directly to single
image without explicitly using the parallel imaging infor-
mation. This could be better than the proposed approach
which uses the coil sensitivity explicitly, but will greatly
increase the network size and requires more processing
such as data shuffling to prevent the network from learning
a fixed coil arrangement.

In the low-field abdominal imaging experiment, we incor-
porated patient cases to demonstrate the generalization capa-
bility of the proposed network. We ascribe the high-quality
reconstruction on patient data partly due to the fact that we
incorporate k-space data into the network and enforce the
consistency repeatedly. This allows the network to capture
the unseen features, including the pathology-related features,
during the application stage. However, since there is no clear
idea what exactly the convolutional kernels represent in a
learned network, the capacity of the proposed network to han-
dle more complicated pathology cases remains undefined and
warrants further investigation.

5. CONCLUSION

In conclusion, by taking advantage of multicoil infor-
mation and convolutional neural network, a PI-CNN recon-
struction network has been successfully implemented and
evaluated in both cardiac and abdominal real-time imaging
on retrospective and prospective data. Better image quality
was achieved using the proposed PI-CNN network than a
single-coil–based reconstruction network, L1-ESPIRiT and
GRAPPA on moderate 3X–4X acceleration. In terms of
reconstruction speed, the proposed method can achieve
less than 100-ms reconstruction for clinical multicoil data,
which implies its potential of real-time reconstruction for
real-time imaging applications. A limitation of our study is
that we developed and evaluated our technique only in a
small number of subjects. A larger validation study would
be appropriate to show the clinical utility in various
patient populations.
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