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Abstract

Many individuals fail to engage in sufficient physical activity (PA), despite its well-known health 

benefits. This paper examines Model Predictive Control (MPC) as a means to deliver optimized, 

personalized behavioral interventions to improve PA, as reflected by the number of steps walked 

per day. Using a health behavior fluid analogy model representing Social Cognitive Theory, 

a series of diverse strategies are evaluated in simulated scenarios that provide insights into 

the most effective means for implementing MPC in PA behavioral interventions. The interplay 

of measurement, information, and decision is explored, with the results illustrating MPC’s 

potential to deliver feasible, personalized, and user-friendly behavioral interventions, even under 

circumstances involving limited measurements. Our analysis demonstrates the effectiveness of 

sensibly formulated constrained MPC controllers for optimizing PA interventions, which is a 

preliminary though essential step to experimental evaluation of constrained MPC control strategies 

under real-life conditions.

I. Introduction

The benefits of physical activity to personal health, and to public health in general, are 

enormous. It has been established that an increase in walking from 4,000 to 8,000 steps/day 

reduces the risk for all-cause mortality by 51% for adults; this includes reduced risk 

of cancer and heart disease [1]. The prevalence of this healthy behavior in the general 

population is low; approximately 53% of adults in the US are sedentary [2]. Much work 

has been done over the years to understand best methods for behavioral interventions. To 

date, the implementation of large-scale effective behavioral interventions has proven to be 

very difficult; nonetheless there is hope for affordable real-world interventions that can 

improve public health. Based on recent advances in technology and the availability of PA 

data through smartphones and other devices, control systems engineering (CSE) has been 

proposed as a tool to deliver optimal mobile health (mHealth) interventions on a large scale 
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[3], [4]; the work done in [5], [6] shows significant potential. Because of the importance of 

dynamic modeling to CSE, it is essential to choose an appropriate health behavior theory, 

and apply the proper dynamical systems framework to attain a meaningful control-oriented 

model.

Behavioral theories provide guidance regarding the driving forces behind behavior, and 

the interconnections between behavior and its influences. Such theories explain behavior 

through various psychological constructs, which in principle are similar to latent variables 

utilized in the chemical processing industry [7]. A particular variable might not be 

directly measured, yet its dynamics can be inferred through interrelations with measurable 

components. Social Cognitive Theory (SCT) has been regarded as one of the most 

influential theories and been incorporated in various health behavior interventions [8], [9], 

and is considered in this work.

MPC has been widely adopted in the chemical processes industries (and beyond) due to 

its versatility, simplicity, and ability to incorporate constraints [10], [11]. MPC applies a 

receding horizon strategy where a system model is used to predict the effect of future 

changes in manipulated variables on system states and outputs over a prediction horizon p. 

Future actions in the manipulated variables (Δu(k)) are obtained by solving the optimization 

problem shown in (1), over a move horizon m, subject to specified constraints. Then, only 

the first move is applied and the computations are repeated at each sampling instant utilizing 

measurements from the current state of the process [11]:

min
[Δu(k), …, Δu(k + m)] ∑

l = 1

p
Γl

Y (y(k + l ∣ k) − r(k + 1)) 2
2

+ ∑
l = 1

m
Γl

uu(k + l − 1) − ur 2
2 + ∑

l = 1

m
Γl

ΔuΔu(k + l − 1) 2
2

(1)

ur represents setpoint targets for manipulated variables. ΓY, Γu and ΓΔu represent controlled 

variable, manipulated variable, and move suppression weight matrices, respectively. ΓY, 

Γu, ΓΔu, p and m are adjustable controller parameters. MPC enables the enforcement of 

constraints on controlled (y), manipulated (u), and move-size (Δu) variables:

ymin ≤ y(k + i) ≤ ymax∀1 ≤ i ≤ p (2)

umin ≤ u(k + i) ≤ umax∀0 ≤ i ≤ m − 1 (3)

Δumin ≤ Δu(k + i) ≤ Δumax∀0 ≤ i ≤ m − 1 (4)

In the unconstrained case, the optimization problem per (1) reduces to a linear system of 

equations (Ax = b), which has a closed-form solution. On the other hand, when constraints 

are enforced, the optimization problem denoted by (1)-(4) is a quadratic objective with linear 

inequality constraints, which constitutes a readily solvable Quadratic Programming (QP) 

problem [11].
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In prior work, hybrid model predictive control (HMPC) was proposed as a means for 

implementing PA behavioral interventions [12]. In [12], behavior (as measured by steps/day) 

was the sole output of importance, while the manipulated variables were restricted to a series 

of predetermined discrete values. In this work, a hybrid formulation is abandoned with an 

emphasis on exploring diverse constraint enforcement strategies to examine if these result 

in desired intervention outcomes. Through judicious problem formulation and constraint 

enforcement, the controller can be guided towards making user-friendly decisions that will 

maximize intervention benefits while reducing the risk of reduced participant engagement 

and drop outs. Furthermore, in this paper we examine MPC strategies on an enhanced SCT 

model description that considers the possibility of dual, competing behavioral outcomes 

(such as fitness and fatigue). Both the modeling of this phenomena and the suitability of 

MPC-based strategies under these conditions is examined.

All of the results discussed in the paper impact the design of the YourMove intervention, 

which is being developed by our research team as part of the activities of NIH grant 

R01CA244777 [13]. The paper is organized as follows: Section II describes the simulation 

model and intervention design, Section III presents and discusses simulation results for the 

various formulations, while Section IV ends with conclusions and implications for future 

work.

II. Simulation Model & Intervention Design

A. Social Cognitive Theory (SCT)

SCT describes the reciprocal influence between behavior, personal (cognition, confidence, 

and biology) and environmental factors [14], [15]. As a consequence, behavior interacts 

with these factors in recycle loops allowing the possibility of predicting the ability of 

an individual to engage in determined behavior based on endogenous and exogenous 

parameters. Some of the constructs are self-perceived and relative, while others can be 

directly measured [5], [9]. The work done in [5] proposes a fluid analogy based on the 

main constructs of SCT and their connections. In this paper, only the subsystem involving 

behavior (η4), self-efficacy (η3), and behavioral outcomes (η5) is considered, as seen in 

Figure 1. This subsystem consists of Operant Learning (OL) and Self-Efficacy (SE) loops 

[16], which is collectively referred to as OLSE system in this paper.

B. Fluid Analogy Formulation for SCT

Fluid analogies are used to relate SCT components to each other over time. In the fluid 

analogy main constructs are modeled as tanks (inventories), while exogenous components 

are treated as inflows/outflows of the system. This provides a structure and framework to 

readily obtain mathematical formulas from SCT following chemical engineering principles 

such as mass conservation [3], [5]. By applying conservation of mass to each inventory, a 

system of ODEs is obtained to represent the schematic shown in Figure 1.

τ3
dη3
dt = γ311ξ11(t) + β34η4(t) − η3(t) + ζ3(t) (5)
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τ4
dη4
dt = γ48ξ8(t) + γ49ξ9(t) + β43η3(t) + β45η5(t) − η4(t) + ζ4(t) (6)

τ5
dη5
dt = γ510ξ10(t) + γ57ξ7(t) + β54η4(t) − η5(t) + ζ5(t) (7)

τi represents the time constant for inventory i, γij represents the gain between inventory i 
and the inflow/outflow j, βiz represents the gain in inventory i for changes in inventory z, 

and ζi represents unmeasured disturbances, where i, j, z are integers. To assure abiding by 

conservation of mass:

0 ≤ β43 ≤ 1, 0 ≤ β45 ≤ 1, 0 ≤ β34 + β54 ≤ 1 (8)

The primary inventory for the intervention is behavior (η4) for the daily step-count. This 

construct can represent different characteristics (e.g. duration, frequency, and type) and 

their fluctuations over time [5], [9]. The time frame used in this study is on a daily 

level, however, similar frameworks can be applied on a different temporal granularity (e.g. 

weekly level) based on the behavior of interest. Self-efficacy (SE; η3) is a core component 

of SCT, and represents the perceived capability of the individual to engage in behavior. 

Fluctuations in SE depend on other main constructs in the SCT model (like behavior) and 

other inflows/outflows. Another important construct in SCT is behavioral outcomes (BO; 

η5), which represents physical and psychological consequences (like fatigue and positive 

reinforcement) of engaging in a particular behavior. Some of the external factors that can 

influence behavioral outcomes include environmental context and the presence of financial 

or psychological incentives.

C. Intervention Design & Development

In an intervention setting like the one being developed in YourMove, individualized goal 

targets are given to participants on a daily basis [13], [18]. Those who achieve their daily 

goals earn points that can be transferred to various rewards chosen as part of a wellness 

program (e.g., water bottles, gift cards, etc). The number of expected points for each day and 

the daily step target are delivered through a digital user platform, such as a smartphone. To 

utilize the SCT model in the intervention the following input signals are included:

• Goals (ξ8; u8): These represent the daily step target and directly influence 

behavior.

• Expected Points (EP; ξ9; u9): The amount of points a participant expects to get, 

should they meet the daily target. A maximum of 500 points/day can be earned.

• Granted Points (GP; ξ10): The amount of granted points, which is equivalent to 

ξ9 when a participant achieves the daily step goal.

• Goal Attainment (GA; y7; ξ11): This signal represents the difference between the 

behavior and given goal.
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y7 = ξ11 = η4 − ξ8 (9)

Goals and EP are independent signals, whereas GP and GA depend on meeting the daily 

goal. It is important to note that GA can act both as an inflow (when behavior exceeds the 

given goal) and as an outflow (when the goal is not met); this significantly impacts SE. Due 

to the importance of GA, it is considered as a measurable system output. Environmental 

context (ξ7) represents environmental factors that can affect behavior. In the context of this 

work, outside temperature is considered as a stochastic disturbance that can impact behavior, 

for example by deviating from the participant’s ideal temperature to exercise.

MATLAB and Simulink are used to implement the simplified SCT model and MPC 

controller depicted in Figure 1. A state-space representation of the system shown in 

equations (5) – (7) and (9) is utilized to design the controller. All examined scenarios utilize 

the following parameters:

1. τ3 = 1, τ4 = 2, τ5 = 5.

2. γ311 = 1.3, γ48 = 1, γ49 = 0.3, γ57 = 4, γ510 = 5.

3. β34 = 0.5, β43 = 0.2, β45 = 0.2, β54 = 0.4.

The intent of the simulations in this work is to explore different MPC strategies, starting 

with the simplest unconstrained case on the SE loop as the system. Subsequent decisions 

like more sufficient problem specifications and constraint boundaries are made based on 

expert (behavioral scientists) judgement of the feasibility and likely limitations of the 

obtained responses in each scenario. Based on the experts feedback, the complexity of the 

system is increased and the control strategy and tuning are adjusted to reach responses that 

capture real-life behavior in four scenarios.

III. Results and Discussion

The results of four different scenarios are presented and discussed; these are: 1) SE loop 

unconstrained, 2) SE loop with constraints on SE, 3) SE loop with constraints on GA, and 4) 

a dual competing dynamics behavioral outcomes OLSE system with constraints on GA and 

stochastic disturbances. The baseline for all simulations assumes an initial goal level ξ8initial 

= 1, 000 steps/day. While this value may seem somewhat low, it provides insights into the 

performance of the control strategies at extreme initial conditions. The desired outcome 

of the simulated intervention is to achieve a sustained level of 10,000 steps/day for the 

behavior of the participants. All shown results are in terms of deviation from steady-state. 

The findings of each of the cases are discussed, along with their implications on future work.

A. Self-Efficacy (SE) loop: Unconstrained Case

This first case illustrates the issues resulting from an insufficient problem specification: no 

constraints are enforced, only behavior serves as a controlled variable (ΓY = diag(0, 1, 0)), 

and there is no target tracking for manipulated variables (Γu = 0). This leads to the large 

moves in the manipulated variables, seen in Figure 2; such moves imply setting very high 

goals which would not be met immediately, consequently yielding a large negative GA at 
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the beginning of the intervention. This results in a significant drop in SE, while behavior 

increases rapidly to meet the given goals after day 5. This scenario demonstrates a short 

and very ambitious intervention which may not be a very successful way of adopting and 

maintaining a healthy behavior, as it is too demanding on participants. The sudden large 

decrease in SE can lead to participants dropping out of the intervention [18]. It is also 

seen that the EP signal required is very large, which suggests that this intervention may be 

impractical; it relies heavily on financial rewards to engage participants in PA, and exceeds 

the maximum amount of allowed daily points.

This scenario illustrates the need for imposing sensible constraints during interventions. 

There are physical limitations to the manipulated variables involved: a participant can only 

walk a finite number of steps within a day, and there are financial limitations to EP. Such 

limitations are akin to the limitations in opening a valve, which can be addressed through 

constraints as seen in subsequent scenarios.

B. Self-Efficacy (SE) loop: Constrained Self-Efficacy

To take into account the physical and financial limitations of the system, constraints on the 

manipulated variables, as seen in (10), are applied to all presented constrained cases.

0 ≤ u8(k + i) ≤ 15000[steps/day]
0 ≤ u9(k + i) ≤ 500[points/day]
∀0 ≤ i ≤ m − 1

(10)

The SE output also is constrained to assure that its level does not get too low, where

η3initial − 500 ≤ y3(k + i) ≤ ∞∀0 ≤ i ≤ p (11)

The results seen in Figure 3 paint a very interesting picture. The intervention in this 

constrained case reaches steady-state in twice the time, taking close to 11 days for the 

response to settle. This is due to constraint enforcement, where optimal moves in the 

manipulated variables are obtained as a result of the QP problem; initial moves in the 

manipulated variables are significantly lower than the unconstrained case. Although EP is 

changed abruptly by the controller, the constraint is not violated and the EP signal is phased 

off by the end of the intervention.

Despite improved controller performance, this case demonstrates yet another “ambitious” 

intervention. This is evident in the initially negative GA values, which progressively 

decrease until the behavior response reaches the settling time. The observed GA dynamic 

response shows the shortcomings of this intervention, as participants are most likely to drop 

out if they do not achieve their given daily goals for long periods of time.

C. Self-Efficacy (SE) loop: Constrained Goal Attainment

The self-efficacy is a behavioral construct perceived by the participant, and cannot be easily 

measured. In cases of unreliable SE measurement methods, more reliable signals can be 
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used by the controller to infer on SE levels. In this case GA is utilized as it is an inflow to 

the SE inventory in (5), and can be readily estimated through (9).

In this control strategy a lower constraint of −100 steps/day is placed on the GA output; 

to avoid dependency on financial rewards a target for EP is set at u9r = 0 points/day with 

an associated weight Γu(2,2) = 1. The remaining tuning parameters and constraints are 

maintained the same as in Section III-B. The control strategy and tuning in this case 

are ideal for achieving the desired output. Figure 4 shows that the controlled variable 

response settles within the span of 32 days, which is slower than the previous cases. This 

is reached by modest and achievable moves in the goals over a longer period of time to 

reach steady-state, due to the constrained GA. This is evident also in the GA signal being 

positive throughout the simulation and not violating the applied constraints. Consequently, 

there is no observable large drop in SE. This is a testament to the effectiveness of applying 

constraints on the readily available signal of GA, to avoid significant changes in SE. 

Moreover, EP use does not exceed the placed upper constraint of 500 points/day and follows 

the 0 points/day target to avoid financial dependency on EP in maintaining healthy PA 

levels.

D. Dual Behavioral Outcomes Dynamics OLSE System: Constrained Goal Attainment 
with Disturbances

In this scenario the scope of the simulation is increased by the inclusion of OL recycle loop. 

In real world circumstances, distinct behavioral outcomes can vary at different speeds and 

have a separate impact on behavior. For instance fatigue might predominate after initially 

engaging in PA, however, over the long run fatigue fades away and fitness takes effect, 

especially if engagement in the intervention is maintained. To mimic the separate and 

possibly competing dynamics for behavioral outcomes an addition to the SCT model is 

made by including separate inventories for the mentioned expected outcomes (fatigue; η5
ftg, 

and fitness; η5
fit). Figure 5 depicts the proposed fluid analogy for the OL recycle loop in 

an open-loop setting. To model the dual dynamics in behavioral outcomes equation (7) is 

replaced with the following equations in the ODEs representing the system:

τ5
fitdη5

fit

dt = γ510ξ10(t) + β54
fitη4(t) − η5

fit(t) + ζ5
fit(t) (12)

τ5
ftgdη5

ftg

dt = γ57ξ7(t) + β54
ftgη4(t) − η5

ftg(t) + ζ5
ftg(t) (13)

τ5
dη5
dt = β45

fitη5
fit − β45

ftgη5
ftg − η5(t) + ζ5(t) (14)

Assuming an instantaneous effect of fatigue and fitness on the overall behavioral outcome 

(i.e., performance), τ5 = 0, which simplifies the problem as follows.
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η5 = β45
fitη5

fit − β45
ftgη5

ftg + ζ5(t) (15)

The same analysis can be applied to any behavioral outcome or construct in the SCT 

model, based on the behavior of interest and whether behavioral outcomes can be separately 

quantified. In this scenario, only fitness and fatigue behavioral outcomes dynamics are 

included. This dual behavioral outcomes OL recycle loop system can model a variety of 

second order behavioral outcomes responses (e.g. inverse response, overshoot) based on the 

choice of participant parameters. The coefficients for the added system components in this 

simulation are as follows:

1. τ5
fit = 2, τ5

ftg = 1, τ5 ≈ 0.

2. γ57 = 4, γ510 = 5.

3. β45
fit = 0.5, β45

ftg = 0.2, β45 = 0.2, β54
fit = 0.8, β54

ftg = 0.7.

The addition of the dual BO dynamics OL recycle loop increases problem complexity 

through nonlinearity resulting from the condition of granted points and the presence of 

higher order dynamics. The same control strategy and controller tuning from the previous 

case is applied in this scenario, with the main differences being the inclusion of fatigue and 

fitness behavioral outcomes dynamics in the internal controller model, the addition of 50 

points/day as an upper move size constraint for change in EP (Δu9), and inclusion of GP as 

a measured disturbance. Moreover, a stochastic temperature disturbance is also introduced in 

this scenario on day 50. Simulation results illustrate the ability of the controller to effectively 

handle stochastic conditions in a complex system.

As seen in Figure 6, the controlled variable response settles within 33 days from the 

beginning of the intervention. Due to the negative effect of fatigue on the amount of daily 

steps taken at the beginning of the intervention, the participant does not meet the given 

goals for the first 9 days. This is evident in the slightly negative GA signal at the beginning 

of the intervention, and is deemed acceptable as the GA signal does not violate the −100 

steps/day constraint and progressively increases along with the behavior. Furthermore, the 

slightly negative GA values do not lead to a significant drop in SE levels. All enforced 

constraints are satisfied including the constraint on the move size for EP. Moreover, EP 

use is within constraints and is phased off to minimal utilization after reaching the 10,000 

steps/day setpoint. The inclusion of manipulated variable target on EP proves to be very 

effective in maintaining EP close to 0 points/day despite stochastic conditions after day 

50; the controller only relies on EP when needed. This is important in terms of avoiding 

financial dependency as the main driver to maintain a healthy behavior, and also plays a 

major role in assuring that such control strategies are feasible to apply on a large scale.

IV. Conclusions and Future Work

The results discussed in this paper show the benefits of proper problem formulation and 

provide a proof of concept for the use of fluid analogies and MPC in operating behavioral 
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interventions. It has been demonstrated that MPC, with sensibly formulated objective 

function and constraints, can provide a reliable approach for delivering physical activity 

interventions, even under circumstances involving limited measurement capabilities. The full 

benefits of this research will be achieved by integrating system identification and control in 

what we refer to as a “control-optimization trial” (COT; [19]), which is part of the efforts 

being developed for YourMove [13]. Dynamic modeling based on system identification 

concepts [17], particularly input signal design, will enable estimating participant-specific 

coefficients for the SCT model from experimental data. Moreover, the work done in this 

paper focuses on deterministic conditions to reach a better understanding of the impact 

of different control strategies. The experimental data from our clinical trial will help 

identify noise and stochastic conditions, enabling simulations to further understand these 

diverse control strategies in more realistic conditions. Additional efforts include automating 

controller tuning to facilitate personalized MPC-based interventions with minimal user 

involvement.
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Fig. 1: 
Schematic illustrating the fluid analogy of the SCT model for an Operant Learning-Self-

Efficacy (OLSE) system in an intervention setting including the implementation of MPC 

controller. Adapted from [5], [9], [17]
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Fig. 2: 
Simulation results from applying an unconstrained MPC controller on the Self-Efficacy 

loop. The controller parameters are: p = 100, m = 50, ΓY = diag(0, 1, 0), Γu = 0, ΓΔu = 

diag(1, 1).
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Fig. 3: 
Simulation results from applying a constrained MPC controller on the Self-Efficacy loop, 

with a lower level constraint on the self-efficacy. The controller parameters are: p = 100, m = 

50, ΓY = diag(0, 1, 0), Γu = 0, and ΓΔu = diag(0.1, 0.1).
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Fig. 4: 
Simulation results from applying a constrained MPC controller on the Self-Efficacy loop. 

Low constraint is applied on goal attainment. The controller parameters are: p = 100, m 
= 50, ΓY = diag(0, 1, 0), Γu(2, 2) = 1, and ΓΔu = diag(0.1, 0.1). Additional enforced 

constraints: −100 ≤ y11 ≤∞ steps/day.
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Fig. 5: 
Schematic illustrating dual (and competing) behavioral outcome dynamics for the Operant 

Learning recycle loop.
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Fig. 6: 
Simulation results from applying constrained MPC on dual BO dynamics OLSE system in 

the presence of a measured noisy disturbance. Low constraint is applied on goal attainment. 

The controller parameters are: p = 100, m = 50, ΓY = diag(0, 1, 0, 0, 0), Γu(2, 2) = 1, and 

ΓΔu = diag(0.1, 0.1). Additional constraints: −∞ ≤ Δu9 ≤ 50 points/day, and −100 ≤ y11 ≤ ∞ 
steps/day.
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