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Abstract

Electrical signaling is a fast mode of communication for cells within an organism. We are

concerned here with the formulation and analysis of mathematical models that are used to describe

this important class of physiological processes. These models generally take the form of partial

differential equations that are descendants of those introduced by Hodgkin and Huxley to describe

the propagation of an action potential along the squid giant axon. We review that work here and

then go on to describe more recent variations on the Hodgkin-Huxley theme, including the three-

dimensional bidomain (and monodomain) equations for cardiac electrophysiology, multiscale

models for the heart that take cellular structure into account near the action potential wavefront,

and finally a more detailed reformulation of electrophysiology in terms of electrodiffusion.

1 Introduction to Neuronal Electrophysiology: The Hodgkin-Huxley

Equations

Electrophysiology is concerned with the electrical activity of living cells. Every cell in the

body has a resting electrical potential difference across its cell membrane, with the inside

of the cell negative with respect to the outside. This rest potential is a byproduct of the

cell’s need to pump ions continually in an effort to control the cell volume, which would

otherwise increase without bound by osmosis until the cell would burst [54,87]. Specialized

cells known as neurons have learned how to manipulate the electrical potential difference

across the cell membrane in order to send electrical signals to other cells. All of human

thought and action is made possible by this trick.

The mathematical framework for describing the electrical activity of neurons was introduced

by Hodgkin and Huxley [35], who were concerned primarily with the wave of electrical

activity that propagates along an axon, which is a long, thin, membrane-bound cylinder that

typically carries signals away from the cell body of a neuron. Such signals are pulselike

in character, and each pulse is called an action potential. The action potential has several

remarkable characteristics that Hodgkin and Huxley sought to explain. First, the action

potential has a fixed amplitude and waveform, and both are essentially independent of the
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stimulus, provided that the stimulus is strong enough to produce an action potential. Second,

the action potential travels as a wave at a fixed speed, but despite the electrical nature of

this wave, its speed is many orders of magnitude less than the speed of light. Third, there

is no loss of amplitude as the wave propagates, even though it moves through a very lossy

medium (essentially saltwater) and generates heat as it goes. Finally, if two action potentials

traveling in opposite directions collide, they annihilate each other, a behavior which clearly

distinguishes them from many other forms of wave propagation, both linear and nonlinear.

The equations proposed by Hodgkin and Huxley to describe the nerve action potential are as

follows:

Cm
∂v
∂t + gNam3ℎ v − ENa + gKn4 v − EK + gL v − EL = r

2ρ
∂2v
∂x2 , (1.1)

τm(v)∂m
∂t = m∞(v) − m, (1.2)

τℎ(v)∂ℎ
∂t = ℎ∞(v) − ℎ, (1.3)

τn(v)∂n
∂t = n∞(v) − n . (1.4)

In these equations, the unknown variables are v(x, t), m(x, t), h(x, t), and n(x, t). Here, x
measures distance along the cylindrical axon, and t is the time. The voltage difference across

the cell membrane (intracellular voltage minus extracellular voltage, with the extracellular

space assumed isopotential and grounded) is denoted v(x, t). The gating variables, which are

m(x, t), h(x, t), and n(x, t), take values in [0, 1]; their interpretation will be discussed more

fully below.

The constants in equation (1.1) are the capacitance per unit area of membrane, Cm; the

maximum possible Na+, K+, and “leakage” conductances per unit area, gNa, gK, and gL,

respectively; the reversal potentials for the Na+, K+, and leakage channels, denoted ENa, EK,

and EL; the radius of the axon, r; and the electrical resistivity of the axoplasm, denoted ρ.

The values of these constants for the squid giant axon, which is the preparation used by

Hodgkin and Huxley in their classic studies, are given in Table 1.1.

Besides the given constants, the Hodgkin-Huxley equations contain six functions of voltage

that were determined by curve-fitting to experimental data, and which are regarded as

known. These are the time constants τm(v), τh(v), and τn(v), as well as the steady-state

values of m, h, and n at any given, fixed voltage, which are denoted m∞(v), h∞(v), and

n∞(v). These six functions, again for the squid giant axon, are recorded in Table 1.2, where

they are expressed in terms of six other functions: αm(v), βm(v), αh(v), βh(v), αn(v), and

βn(v). In each case s = m, h, or n, αs(v) is the rate constant (probability per unit time) for

opening a closed gate of type s, and βs(v) is the rate constant for closing an open gate of
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type s. We emphasize that the specific functional forms used by Hodgkin and Huxley to fit

their data to these measured rate constants have no known biophysical significance, but it

is convenient to have the specific formulae they provided as a surrogate for the raw dataset.

Extensions of this model that are more closely tied to the biophysics of ion channels are

described in Section 3.2.

The functions m∞(v), h∞(v), and n∞(v) are plotted in the upper panel of Figure 1.1, and

τm(v), τh(v), and τn(v) are plotted in the lower panel. Important qualitative points to note are

that m∞(v), h∞(v), and n∞(v) each look like a smoothed version of a step function, and that

m∞(v) and n∞(v) both increase monotonically from 0 at v = −∞ to 1 at v = +∞, whereas

h∞(v) has the opposite behavior, decreasing monotonically from 1 at v = −∞ to 0 at v =

+∞. With regard to the time constants τm(v), τh(v), and τn(v), it should be noted that τh(v)

and τn(v) are similar in magnitude to each other, and about an order of magnitude larger

(i.e., slower) than τm(v).

The Hodgkin-Huxley equations can be derived from electrical current conservation, together

with certain assumptions about the transmembrane and axial currents. Let Im(x, t) be the

transmembrane current density (i.e., the transmembrane current per unit area of membrane),

and let Iaxial(x, t) be the axial current density (i.e., the axial current per unit cross-sectional

area). Then the overall conservation of electrical current (including Maxwell’s displacement

current) gives the continuity equation

πr2∂Iaxial
∂x + 2πrIm = 0, (1.5)

since πr2 is the cross-sectional area of the axon, and 2πr is the membrane area per unit

length of axon. Let us now assume that the axial current is given by the distributed version

of Ohm’s law:

Iaxial = − 1
ρ

∂v
∂x . (1.6)

Substituting (1.6) into (1.5) and dividing by 2πr, we get equation (1.1) provided that we set

Im = Cm
∂v
∂t + gNam3ℎ v − ENa + gKn4 v − EK + gL v − EL . (1.7)

The rest of our discussion is therefore concerned with the interpretation of equation (1.7) as

a formula for the transmembrane current per unit area of membrane.

Equation (1.7) states that the transmembrane current density is a sum of four terms: a

capacitive current density and three ionic current densities. The capacitive term is a simple

physical consequence of the nature of the membrane as a thin insulator (pierced, however,

by conducting ionic channels) that separates two conductive media. As such, the membrane

has a capacitance per unit area, denoted by Cm, which turns out to be approximately 1

μF=cm2 for all lipid bilayer membranes. Of course, Cm
∂v
∂t  is the standard formula for the

current per unit area through such a capacitor. Each of the three ionic current densities is
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of the form g(v − E) where g is the conductance (reciprocal of resistance) per unit area,

and E is the reversal potential (i.e., the voltage at which the current changes sign). This is

the current-voltage relationship of a resistor in series with a battery. (Not all ionic channels

have such a simple current-voltage relationship, but, following Hodgkin and Huxley, we

assume it here.) The physical origin of the reversal potential is that ion concentrations are

typically different on the two sides of the cell membrane, i.e., interior and exterior to the

cell. In particular, Na+ concentrations are lower inside of cells than outside, whereas K+

concentrations are higher intracellularly than extracellularly. These concentration differences

are brought about by the Na+-K+ exchange pump, a protein that spans the cell membrane

and makes use of metabolic energy (in the form of adenosine triphosphate, or ATP) to

pump Na+ ions out of the cell and K+ ions into the cell. The concentration differences thus

established act as a reservoir of free energy that can be drawn upon to power the action

potential.

The constants ENa, EK, and EL in the Hodgkin-Huxley equations are nonzero because of

these concentration differences. In particular,

ENa = kT
q ln

Na+
e

Na+
i

> 0, (1.8)

EK = kT
q ln

K+
e

K+
i

< 0. (1.9)

In these equations, k is Boltzmann’s constant, T is the absolute temperature, q is the

elementary charge (i.e., the charge on a proton), [Na+]i and [Na+]e are the intracellular and

extracellular Na+ concentrations, respectively, and [K+]i and [K+]e are the intracellular and

extracellular K+ concentrations. It is worthwhile to know that kT/q is about 25 mV; this

can be thought of as the natural unit of voltage in electrophysiology. Equations (1.8) and

(1.9) are the Nernst equations, which can be derived from thermodynamics for the reversal

potential of an ion channel that is perfectly selective for one species of ion. This is the

case, to an excellent approximation, for the ion channels that carry the Na+ and K+ currents

of the squid giant axon. In this situation of perfect ion selectivity, the reversal potential is

also called the equilibrium potential. The leakage channel, by contrast, admits more than

one species of ion, so its reversal potential is not an equilibrium potential and is not given

by a Nernst equation. The reversal potential for the leakage channel depends on the ion

concentrations of more than one ion species in a manner that cannot be determined by

thermodynamics alone.

An important conceptual point (at least for large neurons) is that the ion concentrations, and

hence the reversal potentials, do not change appreciably during an action potential, despite

the ionic currents that flow across the cell membrane. In this respect a neuron is much like

a flashlight that can be flashed many times before its batteries run down. In the case of a

neuron, moreover, the batteries are rechargeable, and indeed are being continually recharged

by the Na+-K+ exchange pump. For these reasons, the ion concentrations do not appear

GRIFFITH and PESKIN Page 4

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the Hodgkin-Huxley equations as dynamical variables, and the quantities on which they

depend, namely ENa, EK, and EL, are treated as constants. There are, however, important

exceptions to this principle, as we shall discuss in later sections of this paper.

Finally, we come to the most important and distinctive feature of the Hodgkin-Huxley

equations, the gating variables m, h, and n. As mentioned above, ionic current flows through

specialized channels. These are membrane-spanning proteins that surround an aqueous pore

through which ions can flow. Besides being highly specific, such ion channels are often

voltage-gated. This means that they undergo conformational changes that can be interpreted

as the opening and closing of gates that regulate the flow of ions, and moreover, that the rate

constants for the opening and closing of gates are functions of the voltage difference across

the cell membrane.

We next give an interpretation of the Hodgkin-Huxley expressions for the Na+ and K+

currents that represents a possible scheme for the physical mechanism of ion channel gating.

We now know that real ion channels do not work in exactly the way that Hodgkin and

Huxley implicitly postulated, through their equations, even though their equations give a

good fit to their data. What is remarkable, however, is how much of the Hodgkin-Huxley

interpretation (explained in detail below) has survived, starting with the notion of ion

channels themselves, which was itself a bold hypothesis at the time, and including the

concept of discrete ion channel states, at least one of which represents the open channel,

with voltage-dependent probabilities per unit time for transitions from one state to another.

To obtain the Hodgkin-Huxley expression for the K+ conductance, we make the assumption

that each K+ channel has four identical gates that operate independently of each other, and

that all four must be open for the channel to be open. Let n(x, t) be the probability that any

particular one of these gates in a channel located near position x happens to be open at time

t. Then n4(x, t) is the probability that any particular K+ channel near x happens to be open

at time t. Thus, the expected K+ conductance per unit area at position x at time t is given by

gK = gKn4(x, t), where gK is the maximum possible K+ conductance per unit area, i.e., the K+

conductance per unit area when all of the K+ channels are open.

The story for the Na+ channel is exactly the same, except that the four gates, although still

independent, are no longer identical. In fact, there are three of one type (which might be

called “m-gates”) and one of a different type (which might be called an “h-gate”). Now let

m(x, t) be the probability that any particular m-gate in a Na+ channel near position x at time

t is open, and let h(x, t) be the probability that any particular h-gate in a Na+ channel near

x at time t is open; then the expected Na+ conductance per unit area at position x and time t

is given by gNa = gNam3(x, t)ℎ(x, t), where gNa is the maximum possible Na+ conductance per

unit area, i.e., the Na+ conductance per unit area when all of the Na+ channels are open.

As for the dynamics of the gating variables themselves, each of the gating variables of the

Hodgkin-Huxley model obeys a first-order differential equation that describes the opening

and closing of one particular kind of gate, with voltage-dependent opening and closing rates.

Such an equation can always be put in the form that appears in (1.2)–(1.4).
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2 Traveling Wave Solutions of a Simplified Hodgkin-Huxley System

Several ways of simplifying the Hodgkin-Huxley equations have been introduced by various

authors in order to make it possible to see analytically that equations of this kind can have

traveling wave solutions and to study the qualitative properties of such solutions. Here we

combine ideas from the piecewise-linear approach of McKean [49] and Rinzel and Keller

[75] with the singular perturbation method of Casten, Cohen, and Lagerstrom [6]. The

particular combination described here (previously presented only in unpublished lecture

notes [67]) has the virtue of allowing us to stay close to the original form of the Hodgkin-

Huxley equations while still making it possible to obtain traveling wave solutions in a

singular-perturbation limit almost completely analytically, with just one nonlinear equation

in one unknown that has to be solved numerically for the action potential duration.

Our simplified Hodgkin-Huxley model is as follows:

ϵCm
∂v
∂t + gNamℎ v − ENa

+ gKn4 v − EK + gL v − EL = ϵ2 r
2ρ

∂2v
∂x2 ,

(2.1)

m =
1, v > v*,
0, v < v*, (2.2)

τℎ
∂ℎ
∂t = (1 − m) − ℎ, (2.3)

τn
∂n
∂t = m − n . (2.4)

The changes that we have made in going from the original Hodgkin-Huxley system to the

above model are as follows: First, we have introduced a dimensionless parameter ϵ in two

places in equation (2.1). Later, we shall let ϵ → 0. If we have introduced this parameter ϵ
in an artful way, then the solution obtained in the limit ϵ → 0 will be a good approximation

to the solution with ϵ = 1. This method of sneaking a “small parameter” into an equation

is surely more ad hoc and unmotivated than the more systematic approach of rewriting the

equations in dimensionless form and looking for a small parameter to emerge naturally.

The approach we follow here has one important advantage, however. It leaves all variables

and parameters with their original physical meanings and their original physical values and

units. This allows us to study an interesting limiting case without draining the life out of the

equations by making everything dimensionless. The logic of what we are doing is that we

are replacing the original system by a family of systems depending upon a parameter ϵ such

that ϵ = 1 yields the original system, but the limit ϵ → 0 is one that we can analyze.

The remaining modifications all concern the gating variables. First, we have replaced the

functions τm(v), τh(v), and τn(v) by constants, and, moreover, we have set τm(v) = 0 so
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that m = m∞(v) instantaneously, with no lag. Next, we have replaced the smooth functions

m∞(v), h∞(v), and n∞(v) by step functions. In particular, we have set

n∞(v) = 1 − ℎ∞(v) = m∞(v) =
1, v > v*,
0, v < v* . (2.5)

This introduces an explicit threshold, denoted v*, into our model. We assume that this

threshold is related to the reversal potentials in the following way:

EK < EL < v* < ENa . (2.6)

It is then easy to see by inspection that EL is the rest potential of our simplified Hodgkin-

Huxley system. The resting state is given by v = EL, m = 0, h = 1, and n = 0.

Finally, since m is now equal to 0 or 1, we have, without actually making any further

change, replaced m3 by m in the formula for the Na+ current density.

Note that equations (2.1)–(2.4) are now self-contained in the sense that there are no

additional functions of voltage that need to be specified, as there were in the case of the

original Hodgkin-Huxley equations.

We are now ready to construct a traveling wave solution of equations (2.1)–(2.4) in the limit

ϵ → 0. The first step is to postulate a solution in the form of a traveling wave by setting

v = V t + x
θ = V (T ), (2.7)

m = M t + x
θ = M(T ), (2.8)

ℎ = H t + x
θ = H(T ), (2.9)

n = N t + x
θ = N(T ), (2.10)

where θ is the unknown wave speed. The resulting ordinary differential equations are

ϵCmV ′ + gNaMH V − ENa

+ gKN4 V − EK + gL V − EL = ϵ2 r
2ρθ2V ′′, (2.11)

M =
1, V > v*,
0, V < v*, (2.12)
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τℎH′ = (1 − M) − H, (2.13)

τnN′ = M − N . (2.14)

Here and in the following, ′ is used to indicate the derivative of any function of one variable

with respect to its argument.

The next step is to specify the qualitative form of the traveling wave that we seek, namely

an isolated pulse. That is to say, we look for a solution in which V(T) is above threshold

during some bounded interval of values of T, and below threshold otherwise. Without loss of

generality, we may assume that the above-threshold interval is of the form (0, T1), in which

the duration T1 of the above-threshold interval is unknown. In that case, we can immediately

write down formulae in terms of T1 for M(T), H(T), and N(T), as follows:

M(T ) =
0, T < 0,
1, 0 < T < T1,
0, T1 < T ,

(2.15)

H(T ) =

1, T < 0,

exp − T
τℎ

, 0 < T < T1,

1 − 1 − exp − T
τℎ

exp − T − T1
τℎ

, T1 < T ,

(2.16)

N(T ) =

0, T < 0,

1 − exp − T
τn

, 0 < T < T1,

1 − exp − T
τn

exp − T − T1
τn

, T1 < T .

(2.17)

These functions are plotted in the lower panel of Figure 2.1. Of particular importance in the

following are the values of H and N at T = 0 and at T = T1. These are

H0 = H(0) = 1, (2.18)

N0 = N(0) = 0, (2.19)

H1 = H T1 = exp − T1
τℎ

, (2.20)
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N1 = N T1 = 1 − exp − T1
τn

. (2.21)

Now we are ready to consider equation (2.11). If we simply let ϵ → 0 in equation (2.11)

without any rescaling, we get an algebraic equation for what is known as the outer solution:

gNaMH V − ENa + gKN4 V − EK + gL V − EL = 0. (2.22)

This is easily solved for V in terms of M, N, and H:

V = gNaMHENa + gKN4EK + gLEL
gNaMH + gKN4 + gL

. (2.23)

Since M(T), H(T), and N(T) have already been determined, this defines a function V(T),

which is plotted in the upper panel of Figure 2.1. Note that V(T) jumps through threshold at

T = 0 and at T = T1. These jumps are consequences of the jumps in M, since H and N are

continuous functions of T.

At this stage our traveling wave solution is completely determined except for two important

details. The wave speed θ and the duration T1 of the above-threshold time interval are

still unknown. In order to determine these quantities, we need to take a closer look at the

structure of the solution in the neighborhood of T = 0 and also in the neighborhood of T =

T1. To do this, we need to rescale the T-variable before taking the limit ϵ → 0. Considering

first the neighborhood of T = 0, which is called the front of the wave, we set

T = ϵS, (2.24)

V (T ) = V (ϵS) = U0(S) . (2.25)

Equation (2.11) then becomes

CmU0′ + gNaMH U0 − ENa + gKN4 U0 − EK + gL U0 − EL = r
2ρθ2U0′′ . (2.26)

Notice that after this rescaling, the parameter ϵ no longer appears in our system except

through the functions M, H, and N, which must now be evaluated at T = ϵS before letting ϵ
→ 0. Carrying out this program, we get

lim
ϵ 0

M(ϵS) = 0, S < 0,
1, 0 < S, (2.27)

lim
ϵ 0

H(ϵS) = H0 = 1, (2.28)
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lim
ϵ 0

N(ϵS) = N0 = 0. (2.29)

Thus, to lowest order in ϵ, equation (2.26) simplifies as follows:

CmU0′ + g0(S) U0 − E0(S) = r
2ρθ2U0′′ (2.30)

where g0(S) and E0(S) are each piecewise constant:

g0(S) =
g0− = gL, S < 0,
g0

+ = gL + gNa, 0 < S,
(2.31)

E0(S) =
E0

− = EL, S < 0,

E0
+ = gLEL + gNaENa

gL + gNa
, 0 < S .

(2.32)

Note that the superscripts + and − here refer to the above-threshold state and to the below-

threshold state, respectively.

The unique solution to equation (2.30) with the property that

U0(0) = v* (2.33)

and with U0 bounded as S → ±∞ is as follows:

U0(S) =
E0

− + v* − E0
− exp λ0

−S , S < 0,

E0
+ + v* − E0

+ exp λ0
+S , 0 < S .

(2.34)

Here λ0
− is the positive root of P0

−(λ) and λ0
+ is the negative root of P0

+(λ), where

P0
±(λ) = r

2ρCmθ2λ2 − λ −
g0

±

Cm
. (2.35)

Thus

λ0
− = ρCmθ2

r 1 + 1 + 2rg0−

ρCm
2 θ2 , (2.36)

λ0
+ = ρCmθ2

r 1 − 1 +
2rg0

+

ρCm
2 θ2 . (2.37)
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A remarkable feature of our problem is that the matching conditions U0(+∞) = V(0+) and

U0(−∞) = V(0−) are automatically satisfied, as the reader may easily verify, without having

been imposed explicitly. Recall that only boundedness was imposed on U0 as |S| → ∞; the

equation for U0 seems to know already what the limiting values of U0 should be.

We have yet to impose the condition that U0′ (S) should be continuous at S = 0. This gives the

equation

λ0
− v* − E0

− = λ0
+ v* − E0

+ (2.38)

or

E0
+ − v*

v* − E0
− = λ0

−

−λ0
+ =

1 + 2rg0−

ρCm2 θ2 + 1

1 +
2rg0

+

ρCm2 θ2 − 1
. (2.39)

To simplify the notation, let

α0 = g0−

g0
+ = gL

gL + gNa
∈ (0, 1), (2.40)

β0 =
rg0

+

ρCm
2 θ2 = r gL + gNa

ρCm
2 θ2 > 0, (2.41)

γ0 = E0
+ − v*

v* − E0
− =

gLEL + gNaENa
gL + gNa

− v*

v* − E0
− . (2.42)

Then (2.39) becomes

γ0 = 1 + 2α0β0 + 1
1 + 2β0 − 1 . (2.43)

In this equation, α0 and γ0 are functions of the given parameters only, but β0 contains the

unknown wave speed θ. Thus, we can find the wave speed if we can solve equation (2.43)

for β0 as a function of α0 and γ0. As noted above, α0 ∈ (0, 1), and we are interested only in

β0 > 0.

With α0 ∈ (0, 1), it is straightforward to show that γ0 as given by (2.43) is a strictly

decreasing function of β0 for β0 > 0. As β0 → 0, γ0 → +∞, and as β0 → +∞, γ0 α0.

It follows that (2.43) has a unique positive solution β0 for each γ0 > α0, and no positive

solution for γ0 ≤ α0.
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Let us now proceed to find this solution explicitly (when it exists). A convenient way to do

so is to reduce (2.43) to a pair of linear equations. Let

A = 1 + 2α0β0, (2.44)

B = 1 + 2β0 . (2.45)

Then (2.43) becomes

γ0 = A + 1
B − 1, (2.46)

and we also have

A2 − 1
B2 − 1

= 2α0β0
2β0

= α0 . (2.47)

Now (2.47) can be written as

A + 1
B − 1

A − 1
B + 1 = α0, (2.48)

and this can be simplified with the help of (2.46) to read

γ0
A − 1
B + 1 = α0 . (2.49)

Equations (2.46) and (2.49) can now be rearranged to yield a pair of linear equations in the

unknowns A and B. The solution of this linear system is

A =
α0 + 2α0γ0 + γ0

2

γ0
2 − α0

, (2.50)

B =
α0 + 2γ0 + γ0

2

γ0
2 − α0

. (2.51)

We can now solve for β0 from either A or B (and of course we should get the same answer

either way!). The result is

β0 = 2γ0
α0 + γ0 1 + γ0

γ0
2 − α0

2 . (2.52)

It follows (see (2.41)) that

θ = ±
γ0

2 − α0
Cm

r gL + gNa
2ργ0 α0 + γ0 1 + γ0

(2.53)

GRIFFITH and PESKIN Page 12

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where α0 and γ0 are given by equations (2.40) and (2.42). The above formula for the wave

speed is only valid when

γ0 > α0 . (2.54)

When this condition fails, there is no traveling wave of the type we are constructing here (at

least not in the limit ϵ → 0).

Now that the wave speed is determined, there is only one unknown remaining: the duration

T1 of the time interval during which the voltage is above threshold. To find it, we resolve the

rapid voltage change that occurs near T = T1 by making the change of variables

T = T1 + ϵS, (2.55)

V (T ) = V T1 + ϵS = U1(S) . (2.56)

Equation (2.11) then becomes

CmU1′ + gNaMH U1 − ENa + gKN4 U1 − EK + gL U1 − EL = r
2ρθ2U1′′ . (2.57)

As before, ϵ appears in this equation only through M, H, and N, but this time we have

lim
ϵ 0

M(ϵS) = 1, S < 0,
0, 0 < S, (2.58)

lim
ϵ 0

H(ϵS) = H1 = exp − T1
τℎ

, (2.59)

lim
ϵ 0

N(ϵS) = N1 = 1 − exp − T1
τn

, (2.60)

so that, to lowest order, (2.57) becomes

CmU1′ + g1(S) U1 − E1(S) = r
2ρθ2U1′′ (2.61)

where g1(S) and E1(S) are piecewise constant:

g1(S) =
g1

+ = gKN1
4 + gL + gNaH1, S < 0,

g1− = gKN1
4 + gL, S > 0,

(2.62)
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E1(S) =
E1

+ = gKN14EK + gLEL + gNaH1ENa
gKN14 + gL + gNaH1

, S < 0,

E1
− = gKN14EK + gLEL

gKN14 + gL
, S > 0.

(2.63)

As before, the superscripts + and − refer to the above-threshold state and to the below-

threshold state, respectively. Here, however, the above-threshold state occurs during S < 0

and the below-threshold state during S > 0.

The solution to (2.61) that remains bounded as S → ±∞ and satisfies U1(0) = v* is

U1(S) =
E1

+ + (v* − E1
+)exp(λ1

+S), S < 0,

E1
− + (v* − E1

−)exp(λ1
−S), 0 < S .

(2.64)

Here λ1
+ is the positive root of P1

+(λ), and λ1
− is the negative root of P1

−(λ), where

P1
±(λ) = r

2ρCmθ2λ2 − λ −
g1

±

Cm
. (2.65)

Thus,

λ1
+ = ρCmθ2

r 1 + 1 +
2rg1

+

ρCm
2 θ2 , (2.66)

λ1
− = ρCmθ2

r 1 − 1 + 2rg1−

ρCm
2 θ2 . (2.67)

We still need to impose the boundary condition that U1′ (S) is continuous at S = 0. This gives

λ1
+ v* − E1

+ = λ1
− v* − E1

− (2.68)

or

E1
+ − v*

v* − E1
− = −λ1

−

λ1
+ =

1 + 2rg1−

ρCm2 θ2 − 1

1 +
2rg1

+

ρCm2 θ2 + 1
. (2.69)
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Recall that the wave speed θ is already known. Therefore, the only unknown in equation

(2.69) is T1, which appears indirectly through E1
+, E1

−, g1
+, and g1−, which in turn depend on

H1 and N1, which are functions of T1. Let

γ1 T1 = E1
+ T1 − v*

v* − E1
− T1

, (2.70)

ω1 T1 = 1 + 2ag1− T1 − 1
1 + 2ag1

+ T1 + 1
, (2.71)

where

a = r
ρCm

2 θ2 . (2.72)

Then equation (2.69) reduces to

γ1 T1 = ω1 T1 . (2.73)

We propose to show that this equation has a unique positive solution. To do so, we study the

properties of the functions γ1 and ω1.

Since H1(0) = 1 and N1(0) = 0, we see immediately that

γ1(0) = γ0 . (2.74)

Now recall that EK < EL < v* < ENa, and also that H1(T1) is a decreasing function with

the property that H1(T1) → 0 as T1 → ∞, whereas N1(T1) is an increasing function with

the property that N1(T1) → 1 as T1 → ∞. Moreover, E1
+ T1  is a weighted average of

EK, EL, and ENa, with weights gK N1 T1
4, gL, and gNaH1 T1 , respectively, whereas E1

−

is a weighted average only of EK and EL with weights gK N1 T1
4 and gL, respectively. It

follows from these facts that E1
+ and E1

− are both decreasing functions of T1, and therefore

that γ1 is also a decreasing function of T1. In fact, it follows further that there is some

finite positive value of T1, which we shall call T*, such that E1
+ T* = v*, which implies that

γ1(T*) = 0. Thus, in summary, γ1(T1) is a decreasing function with γ1(0) = γ0 and γ1(T*) =

0.

We now turn to the study of ω1(T1). First, we note that

ω1(0) = 1 + 2ag1−(0) − 1
1 + 2ag1

+(0) + 1
< 1 + 2ag1−(0) + 1

1 + 2ag1
+(0) − 1

= γ0 = γ1(0) . (2.75)

Next, we consider the sign of the derivative of ω1(T1). Let

GRIFFITH and PESKIN Page 15

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



N T1 = 1 + 2ag1− T1 − 1, (2.76)

D T1 = 1 + 2ag1
+ T1 + 1, (2.77)

so that

ω1 T1 = N T1
D T1

. (2.78)

Then

N′ T1 = a g1− ′ T1
1 + 2ag1− T1

, (2.79)

D′ T1 =
a g1

+ ′ T1

1 + 2ag1
+ T1

, (2.80)

and the sign of ω1′ T1  is the same as the sign of the expression

D T1 N′ T1 − N T1 D′ T1

= a g1− ′ T1
1 + 2ag1

+ T1 + 1
1 + 2ag1− T1

− a g1
+ ′ T1

1 + 2ag1− T1 − 1
1 + 2ag1

+ T1
.

(2.81)

Recall that

g1− T1 = gK N1(T ) 4 + gL, (2.82)

g1
+ T1 = gK N1(T ) 4 + gL + gNaH1 T1 , (2.83)

and that H1 is a decreasing function of T1, whereas N1 is increasing. Also, all of the

quantities appearing in (2.82)–(2.83) are positive. It follows that

g1− T1 < g1
+ T1 , (2.84)

g1− ′ T1 > g1
+ ′ T1 . (2.85)

Given these facts, it is clear that the right-hand side of (2.81) is positive: If g1
+ ′ ≤ 0, then

the first term is positive and the second is nonnegative, so the whole expression is obviously
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positive. If g1
+ ′ > 0, then the first term dominates the second one because of (2.84) and

(2.85).

In summary, we have shown that ω1(0) < γ1(0) and that ω1(T1) is an increasing function of

T1. It follows from this and the properties of γ1(T1) derived above that the equation γ1(T1)

= ω1(T1) has a unique positive solution, and that this solution lies in the interval (0, T*);

see Figure 2.2. Although we do not have an explicit formula for T1, it is a simple matter to

evaluate T1 numerically. This completes the construction of a traveling wave solution of our

simplified Hodgkin-Huxley equations (2.1)–(2.4) in the limit ϵ → 0.

Some important qualitative properties of the traveling wave constructed above are as

follows. These properties are literally true in the limit ϵ → 0, and approximately true for

sufficiently small ϵ.

First, the wave has a well-defined front and back, designated in the foregoing by T = 0

and T = T1, respectively. At the front, the voltage jumps up through the threshold value

as the Na+ current turns on; at the back it jumps down through the threshold value as the

Na+ current turns off. Thus, in particular, the action potential has a shorter duration than

one would expect based on the idea that the slow evolution of the h and n variables has to

bring the voltage all the way back down to threshold before the Na+ current can turn off.

That reasoning would predict an action potential duration of T*, but in fact T1 < T*; see

Figure 2.2. The physical reason for this effect is that axial currents, which are large in the

neighborhood of the front and back of the wave, bring about the rapid changes in voltage

that are seen at the front and at the back.

Another interesting phenomenon is that the wave speed is determined by conditions at the

front, whereas the action potential duration is determined by conditions at the back. In the

case we have considered here, the action potential travels into an axon at rest, so that H0 =

1 and N0 = 0. More generally (see, for example, the discussion of periodic traveling waves

below), the wave speed may differ from the value found above if the values of H and N at

the front are different from their resting values.

It is of particular interest to see how the different parameters of the problem come

together to determine the wave speed, which is given explicitly for our model by equation

(2.53), together with the definitions (2.40) and (2.42). First, the wave speed involves the

dimensional quantity

r gL + gNa
2ρCm

2 , (2.86)

which has units of velocity, since r/(2ρCm) is the effective diffusion coefficient in the

Hodgkin-Huxley equations and therefore has units of length2/time, whereas gL + gNa /Cm
has units of 1/time.

Notice, however, that the wave speed also depends on the dimensionless quantities γ0 and

α0, which have the following interpretations. The parameter α0 is the ratio of the below-
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threshold membrane conductance to the above-threshold membrane conductance at the front

of the wave. In practice, α0 is a small parameter, since gNa ≫ gL. To describe the parameter

γ0, we note that there are three relevant voltages at the front. These are the voltage

immediately before the arrival of the front, denoted E0
−, the threshold voltage, denoted v*,

and the voltage immediately after the front has passed, which is denoted E0
+. In the case we

have considered here, E0
− is equal to the rest potential (which is EL in our model), and E0

+

is approximately equal to ENa. The parameter γ0 is the ratio E0
+ − v* / v* − E0

− . The wave

speed is an increasing function of γ0; in fact, it is proportional to γ0 when γ0 is large,

which is in fact the case. When γ0 becomes less than α0, propagation fails.

An interesting exercise, which we leave for the enjoyment of the reader, is to generalize the

results of this section to the case of a periodic traveling wave, in which an above-threshold

interval of duration T1 alternates with a below-threshold interval of duration T2, so that the

period of the wave is T1+T2. As a first step, it is straightforward to solve for periodic H(T)

and N(T) and, in particular, to find the values of (H0, N0) and (H1, N1) that apply at the front

and at the back of the wave, respectively, as functions of T1 and T2. The slope-matching

conditions at the front and at the back of the wave then give two nonlinear equations that

relate the three unknowns (θ, T1, T2). We thus expect a one-parameter family of solutions,

and it is convenient to choose this one parameter to be the wave speed θ. By solving

numerically for T1 and T2 as functions of θ and then adding the results, one can compute

the period of the wave as a function of the wave speed. This is the inverse of the dispersion
relation, which is the wave speed as a function of the period. The dispersion relation is an

important property of any Hodgkin-Huxley-like system, since it sets limits on the fidelity

of neuronal communication [51], and also since it can be used as the foundation of an

approximation scheme [18, 51, 76] for the solution of more general initial/boundary value

problems.

In the case of periodic traveling waves, it is also of interest to consider the situation in which

the threshold is below the rest potential, contrary to what we have assumed up to now. This

leads to spontaneous oscillation, also known as automaticity or pacemaker activity, which

is particularly important in the heart but which also occurs in the nervous system. In the

context of periodic traveling waves, such pacemaker activity manifests itself through the

existence of traveling waves of arbitrarily high wave speed. The limit of infinite wave speed

corresponds to synchronized activity, in which all variables are independent of x. The case

of large but finite wave speed arises when the system is driven at a higher frequency (shorter

period) than the one at which it would spontaneously oscillate. Such a wave can be thought

of as a wave of entrainment—its speed is larger when there is a better match between the

driving frequency and the natural frequency of the system, becoming infinite when the two

frequencies coincide.

In summary, there are two distinct cases of the the foregoing exercise for the reader,

depending on whether the rest potential is below or above threshold. In the former case, the

period can be arbitrarily large, and the wave speed is bounded from above. In the latter case,
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there is pacemaker activity, with a upper bound on the period and no upper bound on the

wave speed.

3 Introduction to Cardiac Electrophysiology: Cardiac Myocytes

In humans and other mammals, and also in birds (and crocodiles!), the heart is a four-

chambered organ. The left side of the heart pumps oxygenated blood from the lungs to all of

the tissues of the body, and the right side of the heart pumps deoxygenated blood back to the

lungs, where the blood is reoxygenated. Each side of the heart has two chambers, an atrium

and a ventricle, with the atrium acting as a primer pump for the more powerful ventricle. In

a normal heart beat, first the atria contract; then, after a brief delay, the ventricles contract.

These contractions are coordinated by cardiac action potentials that are three-dimensional

waves which are similar to the essentially one-dimensional action potential waves that

propagate along nerve axons. Each cardiac action potential wave originates from the

sinoatrial node, which is a collection of pacemaker cells with oscillatory transmembrane

voltages that is located in the right atrium and spontaneously generates propagating action

potential waves at regular intervals. Because the atria are electrically coupled, the action

potential wavefront that emanates from the cardiac pacemaker is able to spread through the

right atrium and to the left atrium. The atria and ventricles are electrically insulated from

each other except at the atrioventricular node, which is a specialized structure where the

atrial waves collect. Following a delay at the atrioventricular node, the electrical impulse is

transmitted to the ventricles by a specialized system of fast-conducting fibers, including the

bundle of His and the Purkinje fibers.1 The electrical impulse is delivered to the working

ventricular myocardium at Purkinje-muscle junctions located along the endocardial (inner)

surface of the heart.2 The action potential wavefront then propagates transmurally to the

epicardial (outer) surface of the heart.

By volume, cardiac muscle is primarily composed of myocytes, which are electrically

excitable contractile cells. Cardiomyocytes are roughly cylindrical, with a length of

approximately 100 μm and a radius of approximately 10 μm. At the cell scale, myocyte

models may be formulated by requiring that the capacitive current Cm
dv
dt  balances the total

transmembrane ionic current Iion(v, w) and any applied stimulus current Is(t),

Cm
dv
dt = − Iion(v, w) + Is(t), (3.1)

in which w is a collection of variables that includes both state variables for the

transmembrane ion channels and also dynamic ion concentrations. The dynamics of the

state variables w are determined by a system of nonlinear ordinary differential equations,

1The Purkinje fibers of the heart should not be confused with nerve cells found in the cerebellum that also bear the name Purkinje.
Both types of cells were discovered and first characterized in the mid-nineteenth century by the Czech physiologist Jan Evangelista
Purkinje.
2The Purkinje cells of the heart also demonstrate weak automaticity and can act as a backup pacemaker in the event that the primary
cardiac pacemaker is damaged. Unfortunately, this property of Purkinje cells also predisposes them to spontaneous activation that can
precipitate the formation of potentially fatal ventricular arrhythmias.
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dw
dt = f(v, w) . (3.2)

The forms of the functions Iion(v, w) and f(v, w) are different for models of different types

of myocytes (e.g., atrial or ventricular) and for different species. In the Hodgkin-Huxley

neuronal model that is the subject of Sections 1 and 2,

Iion = gNam3ℎ v − ENa + gKn4 v − EK + gL v − EL , (3.3)

w = (m, h, n), and f(v, w) is given by equations (1.2)–(1.4). Modern cardiac cell models like

those outlined in Section 3.1 include significantly more membrane state variables.

The cardiac action potential is similar to that of neurons, but cardiac cells generally exhibit

a prolonged period of depolarization, the plateau of the action potential, which lasts for

hundreds of milliseconds. The cardiac action potential proceeds as follows: Depolarization

of the cell membrane opens voltage-gated sodium channels, drawing inward current and

further depolarizing the cell membrane.3 The large depolarization induced by the inward

sodium current activates calcium channels, which open more slowly than the Na+ channels

and which draw additional current into the cell. Potassium channels, which also activate

more slowly than sodium channels, generate outward K+ currents that balance the inward

Ca2+ currents during the plateau of the action potential and are ultimately responsible for

returning the cell to its resting potential. An action potential generated by a detailed model

of the guinea pig ventricular myocyte [19] is shown in Figure 3.1, and an action potential

generated by a reduced model of a guinea pig ventricular myocyte [21] is shown in Figure

3.3. Both figures demonstrate these major features of the cardiac action potential.

Cardiac contraction is triggered by the presence of free calcium ions in the cytosol, and

when the cell is at rest, it sequesters Ca2+ in the sarcoplasmic reticulum. Intracellular

calcium buffers (i.e., proteins that bind to free calcium ions) also act to maintain low levels

of cytosolic calcium when the cell is at rest. Contraction is initiated by the calcium influx

during the action potential; however, the transmembrane calcium currents do not provide

sufficient calcium to produce in maximal contraction. Instead, the transmembrane Ca2+

currents trigger the myocyte to release its intracellular stores of free calcium ions maintained

within the sarcoplasmic reticulum, a process known as calcium-induced calcium release

(CICR). Thus, modeling excitation-contraction coupling requires descriptions of not just the

transmembrane calcium channels but also the calcium dynamics within the cell.

A feature of many types of ion channels is that they may be activated (i.e., open),

deactivated (i.e., closed, but able to reactivate), or inactivated (i.e., closed, but temporarily

unable to reactivate). Deactivation and inactivation are distinct states that correspond to

different channel conformations. Specifically, when a voltage-gated channel is closed but

not inactivated, it may be activated by a sufficiently large perturbation to the membrane

potential. By contrast, an inactivated channel is unable to be activated until the channel

3The sign conventions used in electrophysiological models are such that inward transmembrane ionic currents are negative, but note
that such negative ionic currents have the effect of increasing the transmembrane voltage v; see equation (3.1).
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recovers from inactivation. In particular, once inactivated, a large current stimulus or change

in transmembrane voltage will not cause the inactivated channel to reopen. A typical mode

of voltage-dependent inactivation is for channels to transition from activated to inactivated

states, with recovery from inactivated to deactivated states requiring repolarization of the

cell membrane. This mode of inactivation and recovery from inactivation is seen in Na+

channels. Thus, after opening during the action potential upstroke, the sodium channels

inactivate and become unavailable to reactivate until after the completion of the action

potential. Because large inward sodium currents are responsible for the fast action potential

upstroke, inactivation of the sodium channels helps to protect the heart from propagating

premature or ectopic beats that can lead to the formation of fatal arrhythmias. K+ channels

also show voltage-dependent inactivation, and Ca2+ channels display calcium-dependent

inactivation. For further details, see the monograph of Bers [4].

3.1 Detailed Models of Single-Cell Cardiac Electrophysiology

Much of the work to characterize mathematically the electrophysiology of cardiac myocytes

has been carried out by physiologists who have sought to develop increasingly complete

quantitative descriptions of the transmembrane ion channels, pumps, and exchangers present

in cardiomyocytes, as well as the intracellular ion dynamics, especially intracellular calcium

dynamics. This approach has resulted in biophysically detailed models of high complexity

that rely heavily on numerical analysis and computer simulation.

The same mathematical formalisms introduced to describe neurons can also be used to

describe the dynamics of cardiac cells. Indeed, the first mathematical model in cardiac

electrophysiology based on experimental data was due to Noble [61], who adapted and

extended the Hodgkin-Huxley model (1.1)–(1.4) to fit data from cardiac Purkinje cells.

McAllister, Noble, and Tsien extended the original Noble model to include a more complete

description of the transmembrane ion currents and developed the first cardiac model to

include a description of the transmembrane calcium channels [48]. DiFrancesco and Noble

further extended this model and produced the first cardiac model to include a description of

intracellular calcium dynamics [13]. The first mathematical model of the ventricular action

potential was introduced by Beeler and Reuter [3]. During this time, mathematical models

were also introduced for atrial cells [14] and the sinoatrial node [62].

In 1991, Luo and Rudy published an updated version of the Beeler-Reuter model [45]. This

initial version of the Luo-Rudy model was among the first cardiac models to incorporate

voltage-clamp recordings obtained from isolated myocytes and was arguably the most

influential of the early models to incorporate such data. In 1994, Luo and Rudy published

an updated version of their model that was the first ventricular model to account for

intracellular ion dynamics [46, 47]. This Luo-Rudy dynamic model became the prototype

of modern, biophysically detailed cellular models. Such models include experimentally

based descriptions of all of the major transmembrane ion transporters and intracellular

compartments that influence the action potential, and over the more than twenty years

following the publication of the original Luo-Rudy model, there has been tremendous

growth in the number of species and cell types for which detailed, experimentally based

cellular models are available. Models that were at least partially based on human data began
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to appear in the research literature in the late 1990s [12, 36, 63, 85, 86]. The most recent

human cardiac models are those of Bers and coworkers [25, 26] and of Rudy and coworkers

[64].

3.2 Beyond the Hodgkin-Huxley Model of Ion Channel Gating

From the first cardiac models of Noble until the late 1990s, models of cardiac

electrophysiology generally continued to employ the Hodgkin-Huxley formalism to describe

the voltage-dependent gating of transmembrane ion channels. This formalism was developed

before experimental data were available on ion channel structure, and such models generally

do not reflect the actual biophysics of individual channels. Hodgkin-Huxley-type models

are therefore primarily phenomenological and cannot be readily modified to account for

experimental data on structural differences between wild-type and mutant channels. Ion

channel models based on a more general Markov chain description can better reflect the

structure of individual channels. The first detailed cardiac cell models to incorporate such

Markovian ion channel models were due to Clancy and Rudy [8, 10], who developed new

models of the wild-type sodium channel as well as sodium channel mutants implicated in

conduction abnormalities that result in an increased susceptibility to the development of fatal

arrhythmias.

In the original Markovian wild-type Na+ channel model of Clancy and Rudy [8], each Na+

channel may be in one of several different states, including three closed states (C1, C2, and

C3); a fast-inactivated state (IF); a slow-inactivated state (IS); and an open state (O), which

is the only state in which the channel is able to conduct transmembrane current.4 The state

variables of the model are the fractions of channels that are in a particular state, and the

dynamics of these state variables are governed by a first-order system of ODE,

dC1
dt = α12(v)C2 + β13(v)O + α3(v)IF

− α13(v) + β12(v) + β3(v) C1,
(3.4)

dC2
dt = α11(v)C3 + β12(v)C1 − α12(v) + β11(v) C2, (3.5)

dC3
dt = β11(v)C2 − α11(v)C3, (3.6)

dIF
dt = α2(v)O + β3(v)C1 + β4(v)IS − α3(v) + α4(v) + β2(v) IF , (3.7)

dIS
dt = α4(v)IF − β4(v)IS, (3.8)

4Recall that Na+ channels may be either activated (open), deactivated (closed but ready to be reactivated), or inactivated (closed but
unable to be reactivated until the channel recovers from inactivation).
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dO
dt = α13(v)C1 + β2(v)IF − α2(v) + β13(v) O, (3.9)

with [8]

α11(v) = 3.802/(0.1027exp( − v/17) + 0.20exp(v/150)), (3.10)

α12(v) = 3.802/(0.1027exp( − v/15) + 0.23exp( − v/150)), (3.11)

α13(v) = 3.802/(0.1027exp( − v/12) + 0.25exp( − v/150)), (3.12)

β11(v) = 0.1917exp( − v/20.3), (3.13)

β12(v) = 0.20exp( − (v − 5)/20.3), (3.14)

β13(v) = 0.22exp( − (v − 10)/20.3), (3.15)

α2(v) = 9.178exp(v/29.68), (3.16)

β2(v) = α13(v)α2(v)α3(v) / β13(v)β3(v) , (3.17)

α3(v) = 3.7933e‐9exp( − v/5.2), (3.18)

β3(v) = 8.4e‐3 + 2.0e‐5v, (3.19)

α4(v) = α2(v)/100, (3.20)

β4(v) = α3(v) . (3.21)

Here the state occupancy variables are nondimensional and lie within the interval [0,1], the

transmembrane voltage is in mV, and the state transition rates are in units of 1/ms. The

macroscopic sodium current density is given by

INa = gNaO v − ENa , (3.22)

which is similar to the corresponding expression in the Hodgkin-Huxley model (1.1), but

with gNa = gNaO instead of gNa = gNam3ℎ. This model is summarized by the state-transition

diagram shown in Figure 3.2. The mutant Na+ channel model of Clancy and Rudy was

similar, but it also included a second set of open and closed states that lack inactivation
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and therefore generate a persistent inward sodium current. Persistent inward currents act to

prolong the action potential duration, which is a hallmark of electrophysiological disorders

such as long QT syndrome. Subsequent Markovian models were introduced by Rudy and

coworkers for the rapid-activating [9] and slow-activating [81] components of the delayed

rectifier K+ current, and of the L-type Ca2+ channel [19]. (Notice that the version of the

Luo-Rudy model [19] shown in Figure 3.1 incorporates this Markovian L-type Ca2+ channel

model.) Markov chain models of ion channels have also been developed and adopted by

others, and represent the present state of the art in macroscopic ion channel modeling.

Although the Markovian approach allows for a clearer relationship between the ion channel

model and the underlying biophysics, in practice, many of these models have a somewhat

limited connection to the actual structure of the channel. A notable exception is the work of

Rudy and coworkers [80], who developed a Markovian model of the slow-activating delayed

rectifier K+ current IKs, in which the transition rates are determined from detailed molecular

dynamics and continuum electrostatic simulations of wild-type and mutant channels. By

spanning length scales from the molecular to the cellular, and by offering a more direct

means to understand the effects of molecular structure on cellular activity, this work could

represent the next stage in the evolution of cellular cardiac electrophysiology models.

3.3 Reduced Models of Single-Cell Cardiac Electrophysiology

A major limitation of detailed models of single-cell cardiac electrophysiology is

their complexity. This complexity makes simulations that use these detailed models

computationally expensive. It also precludes, or at least greatly complicates, detailed

mathematical analyses of the model equations like that performed in Section 2 for

a reduced version of the Hodgkin-Huxley model. Reduced cellular models of cardiac

electrophysiology have also been developed. These include the FitzHugh-Nagumo model

[22,23,59], which was originally introduced as a simplification of the Hodgkin-Huxley

neuronal model but was subsequently adapted for use as a model of the cardiac action

potential, e.g., by Rogers and McCulloch [77] and by Aliev and Panfilov [2]; the Fenton-

Karma model [21]; and the Mitchell-Schaeffer model [52], which is a reduction of the

Fenton-Karma model.

Of these simplified models, the formulation that most closely reflects the underlying

biophysics is the Fenton-Karma model [21]. It describes the total transmembrane ionic

current Iion as

Iion(v, w) = Ifi(v, w) + Iso(v, w) + Isi(v, w), (3.23)

in which Ifi is a fast inward current analogous to the Na+ current, Iso is a slow outward

current analogous to the K+ current, Isi is a slow inward current analogous to the Ca2+

current, and w = (h, d) are gating variables. The currents and the dynamics of the gating

variables can be concisely stated in terms of a nondimensionalized membrane voltage u = (v
− vo)/(Efi − vo), in which vo is the resting membrane potential in mV and Efi is the Nernst

potential of the fast inward current. The currents are defined in terms of the functions

GRIFFITH and PESKIN Page 24

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jfi =
− ℎ

τd
(1 − u) u − uc if u ≥ uc,

0 otherwise,
(3.24)

Jso =

1
τr

if u ≥ uc,

u
τ0

otherwise,
(3.25)

Jsi = − d
2τsi

1 + tanh k u − ucsi . (3.26)

The dimensional forms of the currents are given by Ifi = Cm(Efi − vo)Jfi, Iso = Cm(Efi −

vo)Jso, and Isi = Cm(Efi − vo)Jsi. The gating variables are governed by the piecewise-linear

dynamics

dℎ
dt =

− ℎ
τℎ

+ if u ≥ uc,

1 − ℎ
τℎ1− if uc > u ≥ uℎ,

1 − ℎ
τℎ2− otherwise,

(3.27)

dd
dt =

− d
τd

+ if u ≥ uc,

1 − d
τd−

otherwise.
(3.28)

Notice that the nondimensional voltage uc is a threshold potential. Once u ≥ uc, the

fast inward current activates instantaneously, with no lag, and then rapidly but smoothly

inactivates. The slow outward current also instantaneously achieves maximal activation

when u > uc but only inactivates once the membrane potential decreases below the fixed

threshold value. Unlike the fast inward and slow outward currents, the slow inward current

smoothly activates in response to the depolarization of the cell membrane before smoothly

inactivating. Because the inward currents both inactivate following activation, whereas the

outward current remains maximally activated so long as the cell is above threshold, the

outward current ultimately acts to return the membrane voltage to its resting value. An

action potential generated by a fit of the Fenton-Karma model to the 1991 version of the

Luo-Rudy ventricular model [45] is shown in Figure 3.3. The parameter values used in this

simulation are reported in Table 3.1. Other parameterizations of the model are provided by

Fenton and Karma [20, 21].5
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The formulation and dynamics of this model are similar to those of the simplified Hodgkin-

Huxley model (2.1)–(2.4). Both models feature a fast inward (Na+-like) current that is

activated only when the transmembrane voltage exceeds a fixed threshold and which rapidly

inactivates following activation. The dynamics of the h gate, which drives the inactivation of

the fast inward current, are similar in both models, although in the Fenton-Karma model, τh

is a function of v, whereas the reduced Hodgkin-Huxley model uses a fixed value for τh. The

dynamics of the slow outward (K+-like) currents are somewhat different in the two models.

In the Fenton-Karma model, the conductance of the slow outward current is set to a constant

value whenever v is above threshold, and the dynamics of this current are not governed by

any gating variables. In the reduced Hodgkin-Huxley model, the slow outward current has a

gating variable n that smoothly tracks the m gating variable. Because m is a step function,

achieving the value 1 whenever v is above threshold, n acts like a smoothed step function,

and the outward current activates rapidly but continuously as a function of v. Finally, the

Fenton-Karma model includes a slow inward (Ca2+-like) current with nontrivial dynamics,

whereas the reduced Hodgkin-Huxley model includes only a linear “leakage” current that is

meant to account for the effects of various transmembrane currents, including calcium and

chloride currents.

4 Electrical Impulse Propagation in Cardiac Tissue

In a healthy heart, the left and right atria contract nearly synchronously, as do the left

and right ventricles. Abnormal timing of the contractions of the heart can impair pumping

efficacy, thereby reducing cardiac output and possibly leading to or complicating heart

failure. Cardiac conduction system disorders such as bundle branch block can result in an

abnormal time difference between the activation of the left and right ventricles. A treatment

for this condition is cardiac resynchronization therapy, in which an implanted biventricular

pacemaker reestablishes the synchronous contraction of the left and right sides of the

heart [1, 42]. Pump function can also be impaired by arrhythmic activation of the heart

muscle. A tachyarrhythmia, such as atrial or ventricular tachycardia, is a rapid, uncontrolled

beating of the heart. Stable tachyarrhythmias are generally not themselves fatal, although

they can induce circulating blood clots that may lead to stroke or pulmonary embolism.

Unstable tachyarrhythmias, however, can devolve into fibrillation, an electrophysiological

analogue of turbulence, in which multiple reentrant activation waves produce completely

uncoordinated and therefore ineffective contractions of the cardiac muscle. The most

dangerous cardiac arrhythmia is ventricular fibrillation, which rapidly leads to death unless

halted. A common approach to defibrillation is to apply a large external electric shock

that is meant to extinguish the reentrant waves and allow the heart a chance to reestablish

normal activation [39]. Patients with a high susceptibility to ventricular fibrillation may

be fitted with an implanted cardioverter-defibrillator [58]. When this device detects the

presence of a potentially fatal arrhythmia, it automatically administers a defibrillatory shock.

Equations describing cardiac impulse propagation are needed to model conditions such

5The paper of Fenton and Karma [21] uses different notation than that used herein. In that paper, transmembrane voltage is V, the
Nernst potential of the fast inward current is Vfi, the resting potential is Vo, the fast inward current gating variable is v, and the slow
inward current gating variable is w.
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as cardiac arrhythmias and to model electrophysiological interventions such as cardiac

resynchronization therapy, and such models increasingly inform clinical decision making.

In cardiac muscle, the intracellular spaces of neighboring myocytes are electrically coupled

via gap junction channels, which are low-resistance connections that allow for the direct

transfer of ions between pairs of cells. Cardiac muscle is therefore frequently referred to as a

syncytium or as syncytial tissue. Depolarization of a myocyte is able to initiate intercellular

currents that are transmitted via gap junctional connections. Thus, although the dynamics

of the cardiac action potential are driven at the level of an individual cell by voltage-gated

transmembrane currents, the spatial spread of excitation throughout the tissue is driven by

the essentially passive flow of intracellular, intercellular, and extracellular currents. Cardiac

conduction can therefore be described as a reaction-diffusion process.

Gap junctions are preferentially localized to structures called intercalated discs, which are

located at the ends of the myocytes, where the membranes of neighboring cells are in

close proximity. Individual myocytes are organized into muscle fibers, and the myocytes

are aligned with the macroscopic fiber direction. Because of the preferential localization

of gap junctions to the ends of the cells and the effects of cellular geometry, macroscopic

conduction is highly anisotropic, and action potential waves travel more rapidly along fibers

than in the cross-fiber directions. The cellular architecture of cardiac muscle is shown in

Figure 4.1.

Mathematical models that describe excitation propagation in cardiac tissue must account

for these cellular and subcellular features; however, the computational costs associated with

fully microscale models that include detailed representations of the tissue microstructure

are high, and three-dimensional versions of such models have only been used to simulate

excitation propagation for relatively small regions comprised of tens to hundreds of cells. In

particular, the computational demands of fully microscale models presently preclude their

use in simulating tissue- or organ-scale propagation.

Macroscale models of cardiac conduction, in which the cellular microstructure is averaged

away to yield a homogenized description of impulse propagation, were introduced in part

to yield equations that are less computationally demanding than fully microscale models.

This approach has been extremely successful, and at present, most tissue- and organ-scale

simulations of cardiac electrical dynamics use such models. However, because the spatial

extent of the upstroke of the normal action potential wavefront is typically only a few

hundreds of microns, accurate numerical simulations of the macroscale equations require

spatial discretizations that use relatively fine macroscopic grids with nearly cell-scale

resolutions. Moreover, in pathological conditions in which conduction is slowed, the action

potential upstroke may have a spatial extent of only one or two cell lengths. In such

cases, the continuum macroscale equations are unable to capture the dynamics of the

underlying microscale model because the key assumptions underlying the derivation of the

homogenized equations, namely that the voltage and membrane state variables vary slowly

at the length scale of cells, are strongly violated. Standard macroscale models also cannot

account for certain aspects of the microstructure of cardiac tissue, such as the difference

between the extracellular potential along the sides of cells and the extracellular potential
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at the ends of cells, or the differences in the subcellular localization of different types of

transmembrane ion channels.

Multiscale models offer an alternative to fully microscale models that is suitable for tissue-

and organ-scale simulations of cardiac dynamics. In this approach, detailed descriptions of

the microstructure are deployed only in critical tissue subregions, and macroscale equations

are used in the remainder of the tissue domain. We discuss one possible multiscale approach

below. Before doing so, however, we first describe much more commonly used macroscale

approaches to modeling cardiac conduction.

4.1 Macroscale Models of Cardiac Impulse Propagation

Most large-scale models of cardiac impulse propagation use either the bidomain model

or the closely related monodomain model. Both are macroscopic descriptions of cardiac

impulse propagation that are extensions of the one-dimensional cable model of Hodgkin

and Huxley to three-dimensional tissues. An early description of the monodomain model

appears in the 1975 monograph of Jack, Noble, and Tsien [37], and the bidomain model of

cardiac tissue was introduced in 1978 by Tung in his Ph.D. thesis [88] and by Miller and

Geselowitz [24, 50]. Related work on formulating bidomain-type models was also carried

out by Eisenberg and coworkers [17] and by Peskoff [69, 70]. We focus here primarily

on the bidomain model, which provides a more complete description of the underlying

biophysics. In particular, the bidomain model is able to account for the strong difference

in tissue anisotropy in the intracellular and extracellular spaces. In addition, the bidomain

model allows for extracellular current sources, as required to model interventions such

as defibrillation or devices such as pacemakers. As described below, the equations of the

monodomain model can be obtained directly from the bidomain equations. Sample results

from two types of bidomain calculations are shown in Figures 4.2, 4.3, and 4.4.

The bidomain model [33] conceptually partitions the myocardium into continuous (i.e.,

connected) intracellular and extracellular compartments that are electrically coupled via

a continuous membrane. The intracellular spaces of neighboring myocytes are connected

via gap junction channels, and it is natural to regard the interiors of the gap junctions

themselves as part of the intracellular space. This makes the intracellular space of the whole

myocardium into a single connected set. Similarly, it is natural to regard the protein walls

(or “sleeves”) of the gap junctions as extensions of the cell membrane, since these walls

separate the intracellular milieu from the extracellular, and this connects the membranes

of the different myocytes into one large continuous “membrane” for the myocardium as a

whole.

The standard bidomain model does not, however, make any attempt to resolve the

microstructure described in the previous paragraph. Instead, it employs the conceptual

framework of homogenization (see further discussion, with references, at the end of this

section), which is intuitively described as follows: Let vi(x, t) and ve(x, t) be smooth

functions of space and time which are defined for all x in the myocardium, without regard

to whether x is an interior, exterior, or membrane point. In the following, we denote the

region of space occupied by the myocardium by Ω ⊂ ℝ3. The function vi(x, t) gives the local
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average of the intracellular voltage in the neighborhood of the point x at time t. By local

average of the intracellular voltage in the neighborhood of x, we mean the integral over

the intersection of some control volume containing x with the intracellular space divided by

the volume of that intersection. The control volume needs to be large in comparison to the

scale of the cellular structure of the myocardium, but small in comparison to any spatial

scale that may be of interest (e.g., the thickness of the action potential wavefront). The

existence of such an intermediate size for the control volume is a condition for the validity

of homogenization. (Indeed, as we have already mentioned and discuss further later in this

section, this condition is only moderately well satisfied, if at all.) The extracellular voltage

ve(x, t) is defined in exactly the same way as vi but with the word extracellular substituted

for intracellular.

We emphasize that, in the above definitions, it does not matter whether the point x itself is

an intracellular point, an extracellular point, or a point of the membrane. What matters is

that the control volume, which is large in comparison to the microstructure, is intersected

with the intracellular space in the definition of vi and with the extracellular space in the

definition of ve. Also, because the control volume is large in comparison to the scale of

the microstructure, the functions vi(x, t) and ve(x, t) vary very little over distances that are

comparable to the scale of the microstructure.

Besides voltages, we must also consider the intracellular and extracellular current densities,

ji(x, t) and je(x, t). These are vector fields, defined on Ω and slowly varying on the scale of

the microstructure, and defined so that, for any smooth surface S with a scale that is large in

comparison to the microstructure,

∫
S

ji(x, t) ⋅ n(x)da = ∫Si
jmicro(x, t) ⋅ n(x)da, (4.1)

∫
S

je(x, t) ⋅ n(x)da = ∫
Se

jmicro(x, t) ⋅ n(x)da .
(4.2)

Here n(x) is the unit normal to S and da is the area element on S. On the right-hand sides

of these equations, jmicro is the microscopic current density, Si is the intersection of the

surface S with the intracellular space, and Se is the intersection of the surface S with the

extracellular space. Like vi and ve, ji and je are defined for all x, regardless of whether

x belongs to the intracellular space, the extracellular space, or the membrane. Note that

ji is intracellular current per unit area and not intracellular current per unit intracellular

area. Similarly, je is extracellular current per unit area, without any distinction between

intracellular and extracellular area.

We assume that the relationship between intracellular voltage and intracellular current

density can be described by a conductivity tensor (that is, by a symmetric, positive

definite, 3 × 3 matrix at every x) denoted σi(x), and likewise that the relationship between

extracellular voltage and extracellular current density can be described by a conductivity

tensor denoted σe(x), so that

GRIFFITH and PESKIN Page 29

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ji = − σi∇vi, (4.3)

je = − σe∇ve . (4.4)

The conductivity tensors σi and σe account for the effects of local muscle fiber orientation

(and perhaps also for the local distribution of muscle fiber orientations, as discussed

below) on conduction. Because the influence of fiber orientation on conduction is stronger

intracellularly than extracellularly, these conductivity tensors are generally different, and,

moreover, there is no simple scaling that relates them (i.e., there is generally no scalar λ
such that σe = λσi, even though the principal axes of σi and σe will generally be aligned).

The intracellular and extracellular currents are coupled by transmembrane current, which is

driven by transmembrane voltage. We evaluate the transmembrane voltage v in the following

simple way:

v(x, t) = vi(x, t) − ve(x, t), (4.5)

so that v, like vi and ve, is defined throughout the myocardium.

By identifying v as defined by (4.5) with the transmembrane voltage difference, it is clear

that we are making an approximation. Recall that vi and ve are locally averaged, so v is

locally averaged as well. Since the response of the membrane current to v is generally

nonlinear, either directly or through gating variables (see next paragraph), it is clear that

computing transmembrane current from an averaged transmembrane voltage is not the same

thing as computing the transmembrane current from local transmembrane voltage and then

averaging the result. Nevertheless, because the local transmembrane voltage is not readily

available in the bidomain model, we shall proceed without worrying about this!

The transmembrane current also depends on additional state variables, like the gating

variables m, h, n of the original Hodgkin-Huxley equations, the state variables of

the Markovian Na+ channel model of Clancy and Rudy, and possibly dynamic ion

concentrations. These will be collectively denoted w(x, t). The variables denoted by w
satisfy spatially decoupled differential equations of the form

∂w
∂t = f(v, w) . (4.6)

Since this equation, together with suitable initial conditions that will be stated below, defines

w(x, t), we see that w inherits from v the property of being defined throughout Ω, i.e.,

throughout the myocardium.

Finally, with v and w defined, the transmembrane current is given by

Im(x, t) = Cm
∂v
∂t + Iion(v, w), (4.7)
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in which Cm is the membrane capacitance per unit area, and Iion(v, w) is the ionic

transmembrane current per unit area, so that Im is the total transmembrane current per unit

area of membrane.

We can convert current/area to current/volume by making use of a geometrical parameter

β, which is the area of membrane per unit volume of tissue. Note that 1/β has units

of length and defines the length scale of the microstructure. The quantity βIm is the

transmembrane current per unit volume of tissue. Because of the sign convention that

outward transmembrane current is positive, the term βIm will appear as a source in the

equation of the extracellular current density and as a sink in the equation of the intracellular

current density. Another possible source in either compartment is an externally applied

stimulus current per unit volume of tissue, which we denote by Is,i(x, t) in the intracellular

compartment and by Is,e(x, t) in the extracellular compartment. Thus, using the notation

ℒk = ∇ ⋅ σk∇ for k = i or e, we have the following equations of current conservation:

∇ ⋅ ji = − ℒivi = − βIm + Is,i, (4.8)

∇ ⋅ je = − ℒeve = + βIm + Is,e . (4.9)

Adding equations (4.8) and (4.9), it is clear that in the bidomain model, current conservation

takes the form of an elliptic constraint on vi and ve, namely,

∇ ⋅ ji + ∇ ⋅ je = − ℒivi + ℒeve = Is,i + Is,e . (4.10)

Although it is not essential to do so, we assume for simplicity that Is,i = −Is,e, so that

ℒivi + ℒeve = 0, (4.11)

and we use the simpler notation Is for Is,i and −Is for Is,e. Assuming that the current stimuli

are of this form makes it especially easy to model the application of localized current

stimulations such as those provided by a pair of colocated microelectrodes, one injecting

current intracellularly and the other removing that same current extracellularly.

The bidomain equations can now be summarized:

ℒivi = + β Cm
∂v
∂t + Iion(v, w) − Is, (4.12)

ℒeve = − β Cm
∂v
∂t + Iion(v, w) + Is, (4.13)

v = vi − ve, (4.14)

∂w
∂t = f(v, w) . (4.15)
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Suitable boundary conditions for the bidomain equations may be specified in the following

way. For simplicity, we assume that no current passes through the boundary ∂Ω of the tissue

volume Ω in either compartment, so that for x ∈ ∂Ω,

ji ⋅ n = −σi∇vi ⋅ n = 0, (4.16)

je ⋅ n = −σe∇ve ⋅ n = 0, (4.17)

in which n is the exterior unit normal to ∂Ω.

With these boundary conditions, vi and ve can only be determined up to an arbitrary,

spatially uniform function of time. That is to say, if vi and ve are solutions of the bidomain

equations, then so are

vi(x, t) = vi(x, t) + ψ(t), (4.18)

ve(x, t) = ve(x, t) + ψ(t), (4.19)

in which ψ depends only on t and not on x. We can obtain unique values for vi and ve by

requiring ve to satisfy6

∫
Ω

vedx = 0. (4.20)

Notice that the arbitrariness of the intracellular and extracellular voltages does not

complicate the use of the bidomain model in interpreting experimental voltage recordings

since such recordings always take the form of a difference of voltages recorded at two

spatial locations. Because ψ(t) is spatially uniform, its value does not affect the numerical

value of such voltage differences.

A confusing feature of the bidomain equations is that the state of the system may appear

to be (vi, ve, w), but the equations (4.12)–(4.15) do not give a recipe for ∂vi/∂t and ∂ve/∂t
in terms of (vi, ve, w). Instead, they only define ∂(vi − ve)/∂t. Worse, they give two recipes

for ∂(vi − ve)/∂t, and it is not obvious that these are consistent (and indeed they are not if

vi and ve are chosen arbitrarily; see (4.11)). In fact, the state of the system described by the

bidomain equations is given by (v, w), so that good initial data7 for these equations are v(x,

0) and w(x, 0), with no initial condition on vi or ve.

We illustrate this general fact by proving uniqueness with these initial conditions in a special

case. Suppose that we replace Iion(v, w) by

6Another approach to obtain unique values for vi and ve is to require ve to satisfy ve(x0, t) = 0 at some position x0 ∈ Ω for all time t.
One drawback of this approach is that carrying it over to the spatially discretized equations results in a poorly conditioned system of
equations.
7To obtain initial values, we assume that v and w are initially at their unstimulated resting values, denoted vrest and wrest. This
together with equation (4.20) implies that at time t = 0, vi = v = vrest and ve = 0.
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Iion(v, x) = g(x)v, (4.21)

in which g is some given function with g(x) > 0 for all x ∈ Ω. Note that there are no

dynamical gating variables in this special case, but there are, in effect, “frozen” gating

variables, since we allow the membrane conductance to depend on position. With the above

form for Iion the bidomain equations become linear and read as follows:

ℒivi = + β Cm
∂v
∂t + gv − Is, (4.22)

ℒeve = − β Cm
∂v
∂t + gv + Is, (4.23)

v = vi − ve, (4.24)

with the same boundary conditions (4.16)–(4.17) as before. We specify initial data for the

above system of equations as

v(x, 0) = v0(x), (4.25)

with no initial condition on vi or ve separately. The stimulus current Is(x, t) is taken to be a

given function of position and time.

We claim that the solution to equations (4.22)–(4.24) with boundary conditions (4.16)–

(4.17) and initial condition (4.25) is uniquely determined in the sense that v, ∇vi, and ∇ve

are uniquely determined. As discussed above, this means that vi and ve are determined only

up to one arbitrary function of time (not two separate functions of time, since vi−ve = v is

uniquely determined). This arbitrary function of time has no physical consequences and can

in any case be fixed by imposing the condition (4.20).

To prove this uniqueness result, we first derive an energy identity for the bidomain equations

in the above special case. To do so, we multiply both sides of equation (4.22) by vi,

both sides of equation (4.23) by ve, add the results, and integrate over Ω. Note on the

right-hand side that the multiplying factors vi and ve conveniently combine to give v when

the equations are added together. The result is

∫
Ω

viℒivi + veℒeve dx = ∫
Ω

v β Cm
∂v
∂t + gv − Is dx

= d
dt ∫

Ω
β 1

2Cmv2dx + ∫
Ω

βgv2 − vIs dx .
(4.26)

On the left-hand side, we can integrate by parts and make use of the boundary conditions to

eliminate the boundary terms. The result, slightly rearranged, is as follows:
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d
dt ∫

Ω
β 1

2Cmv2dx =

∫
Ω

vIsdx − ∫
Ω

βgv2 + ∇vi ⋅ σi∇vi + ∇ve ⋅ σe∇ve dx .
(4.27)

On the left-hand side of (4.27) we have the rate of change of the energy stored in the

membrane capacitance (recall that β is the membrane area per unit volume of tissue, and

Cm is the capacitance per unit area of membrane). On the right-hand side, the first term is

the power applied by the stimulus, and the second term is minus the rate of Joule heating

produced by transmembrane currents, intracellular currents, and extracellular currents. Note

that the rate of Joule heating is nonnegative, since σi and σe are symmetric positive-definite

matrices at each x.

Let (v(1), vi
(1), ve

(1)) and (v(2), vi
(2), ve

(2)) be two solutions to (4.22)–(4.24) with boundary

conditions (4.16)–(4.17), with the same initial condition (4.25), and with the same stimulus

current Is. Let u = v(1) – v(2), ui = vi
(1) − vi

(2), and ue = ve
(1) − ve

(2). Then u, ui, and ue satisfy the

same equations and boundary conditions but with the initial condition u(x, 0) = 0 and with Is

= 0. It follows that

d
dt ∫

Ω
β 1

2Cmu2dx = − ∫
Ω

βgu2 + ∇ui ⋅ σi∇ui + ∇ue ⋅ σe∇ue dx ≤ 0. (4.28)

Thus, since u(x, 0) = 0, we have u(x, t) = 0 for all t > 0. This proves the uniqueness of v.

With u = 0, equation (4.28) also shows that ∇ui = ∇ue = 0, which implies that vi and ve are

uniquely determined up to an arbitrary function of time only, as claimed above.

Next, we describe a practical time discretization of the bidomain equations. Let vn(x) = v(x,

nΔt), and similarly for all other variables. Consider the scheme

ℒivi
n + 1 = + β Cm

vn + 1 − vn

Δt + Iion vn, wn − Is
n, (4.29)

ℒeven + 1 = − β Cm
vn + 1 − vn

Δt + Iion vn, wn + Is
n, (4.30)

vn + 1 = vi
n + 1 − ven + 1, (4.31)

wn + 1 − wn

Δt = f vn, wn . (4.32)

Note that this scheme is a hybrid of the forward- and backward-Euler time discretizations.

In particular, the backward (or implicit) part of the scheme is that (4.29)–(4.31) is a system
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of equations that needs to be solved for the unknowns (vn + 1, vi
n + 1, ven + 1), subject to the

boundary conditions

σi∇vi
n + 1 ⋅ n = 0, (4.33)

σe∇ven + 1 ⋅ n = 0, (4.34)

and also subject to the constant-determining condition

∫
Ω

ven + 1dx = 0. (4.35)

We claim that vn+1, vi
n + 1, and ven + 1 are uniquely determined by the above equations (with

all quantities at time level n regarded as given data). The proof is very similar to the previous

uniqueness proof, so we omit the details.

In practice, when using the above scheme, we eliminate vi and work with the variables v and

ve. This gives the system

βCm
Δt − ℒi −ℒi

−ℒi − ℒi + ℒe

vn + 1

ven + 1 =
βCm
Δt un

0
, (4.36)

where un (not the same u as in the discussion of uniqueness above) is defined by

un = vn + Δt
Cm

−Iion vn, wn + Is
n

β . (4.37)

As before, we have the constant-fixing condition (4.35) and also the boundary conditions

(4.33)–(4.34), except that (4.33) must here be rewritten in terms of v and ve. This gives

σi∇ven + 1 ⋅ n + σi∇vn + 1 ⋅ n = 0. (4.38)

As in the earlier work of Pennacchio and Simoncini [66], we solve (4.36) iteratively using

multigrid-preconditioned Krylov subspace methods such as GMRES [79].

The monodomain model is similar to the bidomain model except that the monodomain

model does not separately account for the intracellular and extracellular currents, but instead

describes the state of the tissue in terms of only the transmembrane voltage v and the

spatially distributed gating variables w. One way to obtain the monodomain model from

the bidomain model is to assume that the extracellular compartment is well approximated

as being isopotential. This will occur, for instance, if the extracellular conductivity is very

large. In the limiting case of infinite extracellular conductivity, ve = 0, v = vi, and (4.12)–

(4.15) reduce to
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ℒiv = β Cm
∂v
∂t + Iion(v, w) − Is, (4.39)

∂w
∂t = f(v, w) . (4.40)

Similar equations can also be obtained without the assumption of large extracellular

conductivity if we assume instead that there exists a scalar value λ, independent of x, such

that σe(x) = λσi(x). In this case,

ℒe = λℒi, (4.41)

and we can look for a solution to (4.12)–(4.15) in which

vi = λv
1 + λ , (4.42)

ve = −v
1 + λ . (4.43)

Equations (4.12)–(4.15) then reduce to

λ
1 + λℒiv = β Cm

∂v
∂t + Iion(v, w) − Is, (4.44)

∂w
∂t = f(v, w) . (4.45)

In the limit λ → ∞, the extracellular conductivity becomes infinite and these two

monodomain formulations become identical.

The requirement that vi and ve satisfy equation (4.10) makes the numerical solution of

the bidomain equations significantly more computationally intensive than the solution of

the monodomain equations. The monodomain model is also conceptually simpler than the

bidomain model, and in many cases of interest it gives reasonable results. For these reasons,

the monodomain model remains popular, despite the greater realism of the bidomain model.

It is therefore of interest to consider how to construct a monodomain model that best

approximates some particular bidomain model. Of course, “best approximates” can be

defined in many ways. One possibility that we think would be reasonable (although to the

best of our knowledge it has not yet been tried) is to find the number λ that minimizes

∫
Ω

σe(x) − λσi(x) 2dx, (4.46)

in which, for any 3 × 3 symmetric matrix A, we define its norm by
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A = trace A2 . (4.47)

It is then easy to see that the optimal λ is given by

λ =
∫Ωtrace σiσe dx
∫Ωtrace σi

2 dx
. (4.48)

With λ known, we replace σe by λσi (thereby changing the model, but by an amount that we

hope is small), and after that we can work with the equivalent monodomain formulation, as

given by equations (4.44)–(4.45).

Note that the above procedure is asymmetrical, in that it leaves σi alone, while tinkering

only with σe. This reflects the intuition that the intracellular conductivity has a more

profound influence on cardiac conduction than the extracellular conductivity, but it might be

possible to achieve a better monodomain approximation to the bidomain model by allowing

both the intracellular and the extracellular conductivities to change.

It should be a source of concern, however, that the derivation of the monodomain model

from the bidomain model requires unrealistic assumptions. In reality, the extracellular

conductivity is not so large that the extracellular space is approximately isopotential, nor

does there exist some constant λ such that σe(x) ≈ λσi(x). In fact, concerning the latter

issue, the intracellular space is much more anisotropic than the extracellular space. The ratio

of maximum to minimum conductivity is about 10 : 1 intracellularly, but only about 2 :

1 extracellularly. This implies that σe is very far from being a scalar multiple of σi. One

case in which it is clearly not suitable to employ the monodomain model is in simulations

of defibrillation. This is because the defibrillatory shock appears as a current stimulus

or boundary condition in the extracellular compartment, thereby requiring the use of the

bidomain model [38, 39].

Although we have given an informal derivation of the bidomain equations here, it is

important to note that these equations can also be derived more formally by the methods

of homogenization [31,39,60,65,74]. The starting point for such a derivation is a detailed

microscopic cardiac tissue model. Homogenization can also be used to obtain numerical

values for the intracellular and extracellular conductivity tensors from experimentally

measurable quantities such as cellular dimension and distributions of gap junction coupling

strengths. The first derivation of the bidomain equations via homogenization was due to

Neu and Krassowska [60], who used a PDE-based description of the microstructure in their

derivation. To obtain numerical values for the macroscopic parameters of the bidomain

model, however, Neu and Krassowska used a simplified resistor network-based microscale

model. To our knowledge, the first work to use the tools of homogenization theory to

compute macroscopic bidomain parameters was that of Hand, Griffith, and Peskin [31], who

described myocytes as rectangular prisms and gap junctions as flux boundary conditions

imposed at the ends and the sides of the cells. This approach allows for the parameters

of the bidomain model to be obtained directly from measurable microscale properties.

The numerical values obtained in this manner were found to be in good agreement with
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similar values obtained from simulations of a detailed, physiologically realistic cardiac

microstructure [84].

An open problem related to the determination of the macroscopic model parameters from

microscale data, regardless of approach, is that the resulting macroscopic conductivities are

too small in the sense that when these parameter values are used in bidomain simulations,

the speed of propagation is unphysiologically slow. This effect is strongest in the transverse

(cross-fiber) directions. The cause of this discrepancy is presently unknown. One possibility

is that the underlying microscale models generally assume parallel arrays of cardiomyocytes,

whereas in reality, although myocytes are roughly aligned with a predominant fiber

direction, myocytes can branch and are not perfectly aligned with the macroscopic fiber

direction. Incorporating some dispersion in the local myocyte orientation may provide

enough additional transverse coupling at the macroscale to yield significantly more realistic

propagation velocities.

4.2 Multiscale Models of Cardiac Impulse Propagation

As discussed earlier in this section, macroscale models of cardiac impulse propagation are

widely used, but they also present challenges. For instance, because the spatial extent of

the upstroke of the normal action potential wavefront is typically only a few hundreds

of microns, accurate numerical simulations of the macroscale equations require spatial

discretizations that use relatively fine macroscopic grids with nearly cell-scale resolutions.

In addition, in pathological situations that lead to propagation slowing, the voltage and

membrane state variables may no longer vary slowly at the cellular-length scale of the

microstructure, and in such cases, the macroscale equations cannot describe the dynamics of

the underlying microscale system.

Standard macroscale models like the bidomain model also cannot account for certain aspects

of the microscopic anatomy and physiology of the cardiac tissue. An example is the

difference between the extracellular potential along the sides of cells and the extracellular

potential at the ends of cells. Specifically, because neighboring cardiomyocytes are separated

at their ends by extremely narrow cleft spaces, and because inward sodium channels are

preferentially located on the cleft-facing membranes, the voltage in the cleft space is not

equal to the bulk extracellular potential throughout the entire action potential, and the

differences between the bulk and cleft potentials are most pronounced during the action

potential upstroke. In fact, the effects of such cleft potentials offer one explanation for

the experimental observations of Fishman and coworkers [28], who demonstrated that the

ventricular tissue of mice with a tissue-specific knockout of the gene that expresses the

major ventricular gap junction protein still exhibits conduction, although at dramatically

reduced propagation speeds. A possible route by which action potential propagation occurs

in the absence of gap junctions is known as ephaptic conduction or as the electric field
mechanism [11, 55, 71, 73, 82]. Standard macroscale models also cannot account for

physiological differences in the subcellular localization of certain types of transmembrane

ion channels, although it is possible to derive homogenized equations that include such

features [32].
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The mechanism of ephaptic conduction can be described most simply by considering two

neighboring cells within a tissue that are coupled end-to-end. Suppose that the action

potential wave first reaches the “prejunctional” cell, depolarizing the cell membrane

and activating the Na+ channels of that cell. The Na+ channels located along the

intercalated disc will draw inward current through the cleft and thereby reduce the cleft

potential and increase8 the transmembrane voltage along the cleft-facing membrane of the

“postjunctional” cell. If this depolarization is sufficient to activate the Na+ channels of the

postjunctional cell, then the action potential is able to continue to propagate even without the

benefit of gap-junctional currents. Although this ephaptic conduction mechanism does not

strictly require the presence of narrow cleft spaces and, in principle, could be mediated by

the bulk extracellular space, in physiological parameter regimes, ephaptic coupling appears

to be an effective mechanism of propagation only for extremely narrow domains like those

observed at the intercalated discs.

A microscale model of cardiac conduction that includes this electric field mechanism

was described by Kucera, Rohr, and Rudy [41], and Hand and Peskin [32] subsequently

developed a homogenized version of this microscale model. The macroscale equations of the

homogenized model successfully capture the dynamics of the microscale model for tissues

with high levels of gap-junctional coupling, but they yield inaccurate results at low levels

of gap-junctional coupling, and they do not predict propagation in the complete absence

of gap junctions. Thus, the macroscale model yields accurate results in cases in which the

action potential waveform is relatively smooth at the length scale of cells, but it produces

inaccurate results in conditions that yield very slow conduction.

To address the shortcomings of the macroscale model of Hand and Peskin, Hand and Griffith

[29] developed an adaptive multiscale model in which the microscale equations of Kucera et

al. [41] are used in only a fully resolved tissue subregion, whereas the macroscale equations

of Hand and Peskin [32], or a simplification of those equations, are used in the remainder

of the tissue. Specifically, the microscale equations are used only in the vicinity of action

potential upstrokes, where the large inward Na+ currents along the cleft-facing membranes

result in large negative cleft potentials.

This model has been shown to produce results that are essentially identical to those of the

fully microscale model [29], and it has been demonstrated to be remarkably insensitive to

the macroscale grid used to discretize the equations in the “unresolved” tissue subregions

[30]. In addition, this multiscale model is able to yield propagation even under the complete

ablation of gap-junctional coupling, despite the fact that the macroscale model is not able

to generate such dynamics [30]. Important extensions of this work that have not yet been

attempted include developing a three-dimensional version of the model. Because the models

described above all assume that the bulk extracellular space is isopotential, another possible

extension of the model would be to allow for spatial variations in bulk extracellular voltage.

8The increase here is a decrease in magnitude, i.e., a “depolarization,” since the voltage across the resting cell membrane is negative
(inside with respect to outside). Also, the increase is caused by a decrease in extracellular potential within the cleft, not by any change
in the intracellular potential of the post-junctional cell.
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Work to develop a microscale model that is similar to the bidomain model has been carried

out by Lin and Keener [44].

Microscale Model—The microscale model describes the dynamics of a linear strand of

myocytes. Each myocyte is idealized as a cylindrical cell of length ℓ and radius r. A cable

model similar to the Hodgkin-Huxley axonal model is used to describe the dynamics of

each cell. Neighboring cells in the strand are directly coupled via gap junctions that are

modeled as linear resistors. Neighboring cells are also indirectly coupled via a shared cleft

space of the intercalated disc, which is modeled as isopotential and is resistively coupled to

the grounded extracellular space. A schematic diagram of the microscale model is shown in

Figure 4.5.

Let vi,j (x, t) be the intracellular potential in cell j, with x ∈ (0, ℓ], and let vc,j+1/2(t) be the

cleft potential in the intercalated disk to the right of cell j. Let wjside(x, t) be the collection

of membrane state variables along the sides of cell j, and let wjleft(t) and wj
right(t) be the

membrane state variables along the left and right ends of cell j, respectively. Because we

assume that the extracellular space is grounded, the transmembrane voltage difference along

the sides of the cell j is vjside(x, t) = vi, j(x, t). At the left end of the cell, the transmembrane

voltage is the difference between the intracellular voltage and the cleft voltage, i.e.,

vjleft(t) = vi, j(0, t) − vc, j − 1/2(t), and at the right side of the cell, the transmembrane voltage

is vj
right(t) = vi, j( ℓ , t) − vc, j + 1/2(t). For convenience, we also define vi, j

left(t) = vi, j(0, t) and

vi, j
right(t) = vi, j( ℓ , t). The transmembrane ionic currents along the sides and left and right

ends of cell j are Iion, j
side (x, t) = Iion

side(vjside(x, t), wjside(x, t)), Iion , j
left (t) = Iion

end(vjleft(t), wjleft(t)) and

Iion, j
right (t) = Iion

end(vj
right(t), wj

right(t)), respectively.9 The governing equations of the microscale

system are

A
S σcyt

∂2vi, j
∂x2 = Cm

∂vjside

∂t + Iion, , j
side , (4.49)

+σcyt
∂vi, j
∂x x = 0

= Cm
∂vjleft

∂t + Iion, j
left + gGJ(vi, j

left − vi, j − 1
right ), (4.50)

−σcyt
∂vi, j
∂x x = ℓ

= Cm
∂vj

right

∂t + Iion, j
right + gGJ(vi, j

right − vi, j + 1
left ), (4.51)

9Notice that this formulation permits different ion channel densities to be assigned to the sides and the ends of the cells by allowing

different functions to be used for Iion
side and Iion

end.
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vc, j + 1/2 = RcAσcyt
∂vi, j + 1

∂x x = 0
− ∂vi, j

∂x x = ℓ
, (4.52)

∂wjside

∂t = f(vjside, wjside), (4.53)

∂wjleft

∂t = f(vjleft, wjleft), (4.54)

∂wj
right

∂t = f(vj
right, wj

right), (4.55)

in which A = πr2 is the cross-sectional area of a cell, S = 2πr is the perimeter of a cross

section, σcyt is the cytosolic conductivity, gGJ is the gap-junctional conductance per unit area

of membrane, Cm is the membrane capacitance per unit area of membrane, and Rc is the

cleft-to-ground resistance. A version of the model that does not include ephaptic coupling

is obtained by setting Rc = 0, and in this limiting case, the bulk and cleft extracellular

potentials are equal, so that vc,j+1/2 = 0.

Macroscale Model—A homogenized version of the microscale model is defined in

terms of the macroscopic intracellular voltage vi(x) and cleft potential vc(x) along with

macroscopic membrane state variables defined along the sides and ends of the cells,

respectively wside(x) and wend(x). Because the extracellular space is assumed isopotential,

the macroscopic transmembrane voltage difference along the sides of the cells is vside(x,

t) = vi(x, t). The transmembrane voltage at the ends of the cells is vend(x, t) =
vi(x, t) − vc(x, t). The transmembrane ionic current along the sides of the cells is

Iion
side = Iion

side vside(x, t), wside(x, t) , and the transmembrane current along the ends of the cells

is Iion
end = Iion

end vend(x, t), wend(x, t) . The governing equations for the macroscale model are

A
S σ∂2vi

∂x2 = Cm
∂vside

∂t + Iion
side + 1

S ℓ Rc
vc, (4.56)

1
2ARc

vc = Cm
∂vend

∂t + Iion
end, (4.57)

∂wside

∂t = f vside, wside , (4.58)

∂wend

∂t = f vend, wend , (4.59)
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in which κ = ℓgGJ/σcyt is the ratio of gap-junctional and cytosolic conductances and

σ = κ
1 + κ σcyt.

In simulations using this model, the cleft potential vc is found to be significantly different

from 0 only near action potential wavefronts, where the inward sodium current is activated.

In the multiscale model, such locations within the tissue are precisely where we deploy the

localized microscale model. Consequently, in the regions of the tissue where we employ the

macroscale equations in the multiscale model, the full macroscale equations are extremely

well approximated by treating the cleft space at the intercalated discs as grounded, which

corresponds to limit Rc → 0. In this limit, vc(x, t) = 0, and it becomes impossible to

distinguish between the sides and ends of cells. Consequently, v(x, t) = vi(x, t) is the

voltage difference across the cell membrane and w(x) are the membrane state variables

along both the sides and ends of cells. In addition, Iion
side = Iion

end = Iion(v(x, t), w(x, t)). With

these simplifications, equations (4.56)–(4.59) become

ℓ A
S ℓ + 2Aσ∂2vi

∂x2 = Cm
∂v
∂t + Iion, (4.60)

∂w
∂t = f(v, w) . (4.61)

Multiscale Model—The macroscale model equations are derived via a homogenization

procedure that assumes that spatial variations in the voltages and membrane state variables

vary slowly over the cellular length scale. This assumption generally holds away from

action potential wavefronts, but it may be violated near action potential wavefronts. The

multiscale model therefore deploys the microscale equations (4.49)–(4.55) in a localized

fashion near action potential wavefronts. The simplified macroscale equations (4.60)–(4.61)

are employed in the remainder of the tissue, where the macroscale model yields an excellent

approximation to the dynamics of the underlying microscale model. Figure 4.6 provides a

schematic depiction of the microscale domain, a particular multiscale representation of that

domain, and a possible discretization of that multiscale representation.

The microscale and macroscale equations can be coupled by requiring current and voltage

to be continuous at interfaces in model resolution. The relevant currents can be either

gap-junctional or intracellular currents. Here we present the case in which the macro- and

microdomains are coupled via gap-junctional current. Let x* be an interface in model

resolution, and assume that the unresolved region is to the left of x*, and that the resolved

region is to the right. Let j* be the index of the myocyte immediately to the right of x*.

In this case, equations (4.49)–(4.55) and (4.60)–(4.61) are supplemented by the boundary

conditions:

−σ∂vi
∂x x = x*

= gGJ vi x = x* − vi, j* x = 0 , (4.62)
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σcyt
∂vi, j*

∂x x = 0
= Cm

∂vj*
left

∂t + Iion, j
left + gGJ vi, j* x = 0 − vi x = x* . (4.63)

Analogous coupling conditions would apply at other interfaces in model resolution. The

conditions for the case that continuity of intracellular current is used to couple the

microscale and macroscale equations are similar [30].

Comparisons of simulation results for the microscale, macroscale, and multiscale models are

shown in Figures 4.7 and 4.8 for the nonephaptic version of the model, in which Rc = 0, and

in Figures 4.9 and 4.10 for the ephaptic version of the model. In all cases, the macroscale

model is shown to fail to reproduce the dynamics of the underlying microscale model for

certain numerical or physical parameters. For instance, even without accounting for ephaptic

conduction (i.e., with Rc = 0), the macroscale model is shown to be extremely sensitive to

numerical discretization in the slow-conducting regime, as seen in Figures 4.7 and 4.8. By

contrast, the multiscale model exactly reproduces the dynamics, including both the wave

speed and the shape of the action potential wave, of the underlying microscale model. In

addition, although not shown here, it does so in a manner that is robust to the numerical grid

used to discretize the macroscale part of the domain [30].

The difference between the macroscale and multiscale models is more pronounced in cases

that include both conduction slowing and ephaptic conduction (i.e., in slow-conducting

regimes with Rc ≠ 0). In these parameter regimes, the macroscale model is fundamentally

unable to reproduce the dynamics of the microscale model, independent of the macroscale

grid spacing. Again, the multiscale model exactly reproduces the wave shapes generated by

the microscale model. Moreover, the multiscale model also captures the wave speeds of the

multiscale model, including the nonlinear relationship between cleft width and conduction

velocity, i.e., the so-called ephaptic effect.

Because nearly cell-scale resolution appears to be required when solving the macroscale

equations even in fast-conducting regimes, we expect that the additional robustness of

adaptive multiscale models will ultimately outweigh their modest increase in model

complexity and will lead to the adoption of these or similar approaches in large-scale models

of cardiac dynamics.

5 Electrodiffusion

In this section, we describe a framework for electrophysiological modeling that is based

on the electrodiffusion of ions [78]. The difference between electrodiffusion and ordinary

diffusion is that in electrodiffusion the diffusing particles do not move independently.

Instead, they interact through the electric field which they themselves create.

An important complication in electrodiffusion is the phenomenon of electroneutrality with

space charge layers near membranes. This is a consequence of a small parameter: the ratio of

the Debye length (which roughly measures the range of the influence of one ion on another

through an ionic solution) to any of the typical dimensions of the region of interest, which in

our case would be a collection of biological cells. This small parameter makes it impractical
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to solve the equations of electrodiffusion directly, except possibly for very small systems

[43].

This section is an expository introduction to the mathematical formulation of the

electroneutral limit of the electrodiffusion equations, following closely the papers of Mori

et al. [53, 55–57]. In this formulation, there is a subtle issue of well-posedness of the

electroneutral limit, which we resolve here in a new and physically intuitive way.

Our framework is fundamentally three-dimensional. Unlike in the formulation of the

bidomain equations, we do not homogenize, but instead model the microstructure of the

cardiac or neural tissue as it actually exists. That is, we think of the tissue of interest as a

region of three-dimensional space partitioned by membranes, on which we apply internal

boundary conditions that reflect the properties of the ion channels that reside in these

membranes. This framework therefore provides a significantly more detailed microscale

model than that considered in the previous section.

5.1 The Equations of Electrodiffusion

Away from the membranes, we have the drift-diffusion equations, also known as the

Poisson-Nernst-Planck system [7] or, in the semiconductor literature, as the van Roosbroeck

equations [89]:

∂ci
∂t + ∇ ⋅ fi = 0, (5.1)

fi = − Di ∇ci + qzi
kBT (∇ϕ)ci , (5.2)

−Δϕ = 1
ϵW

∑
i = 1

n
qzici + ρ0(x) . (5.3)

Here ci (x, t) is the concentration and fi (x, t) is the flux of the ith species of ion, and ϕ(x,

t) is the electrostatic potential. These are the 4n+1 unknown functions (since each of the fi

has three components) of our problem, where n is the number of ion species that we are

considering. The given constants are the diffusion coefficient Di and the charge number zi of

the ith species of ion; the elementary charge q, which is the absolute value of the charge on

an electron; Boltzmann’s constant kB; the absolute temperature T; and the dielectric constant

of water ϵw. The given function ρ0(x) represents the density of any immobile background

charge that may be present.

Equation (5.1) is simply the conservation law for the ith species of ion. Equation (5.2)

resolves the flux of the ith species into two terms. The first term −Di∇ci is the diffusion term

and expresses Fick’s law that the flux is proportional to minus the concentration gradient.

The second term,
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− Di
kBT qzi(∇ϕ)ci, (5.4)

is the drift term, which is explained as follows: First, −∇ϕ is the electric field, and qzi is

the charge on each ion of the ith species, so −qzi (∇ϕ) is the force of the electric field

on each individual ion of the ith species. In a condensed medium, such as an aqueous

solution, this force results in a drift velocity that is proportional to the force. The constant of

proportionality is related (as shown by Einstein [16]) to the diffusion coefficient and in fact

is given explicitly by Di/(kBT). Thus, the drift velocity of the ith species of ion is

− Di
kBT qzi(∇ϕ) . (5.5)

Finally, this drift velocity is multiplied by the concentration ci to get the contribution of drift

to the flux as given by (5.4).

Equation (5.3) is simply the Maxwell equation ∇ · E = ρ/ϵ with an electric field E of the

form −∇ϕ so that ∇ · E = −Δϕ, a dielectric constant ϵ equal to that of water ϵw, and a total

charge density ρ that includes a contribution from each species of ion and also from any

background charge that may be present.

Note that the above formulation completely neglects the effects of magnetic fields. In

particular, the force on an ion is assumed to come from the electric field alone, and the

electric field itself is assumed to be curl-free, which can only be true to the extent that there

are no time-dependent magnetic fields in the region of interest.

(5.2) The Electroneutral Limit

Equations (5.1)–(5.3) can be made dimensionless in the following way. Let ℓ* be a typical

length, t* a typical time, and c* a typical concentration. Also let

ϕ* = kBT
q . (5.6)

Then introduce the following dimensionless variables, constants, and operators, denoted by a

bar above the usual symbol, and defined as follows:

x = ℓ* x, (5.7)

t = t*t , (5.8)

ci = c*ci, (5.9)

fi = c* ℓ*
t* fi, (5.10)
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ϕ = ϕ*ϕ = kBT
q ϕ, (5.11)

Di = ℓ* 2

t* Di, (5.12)

∇ = 1
ℓ* ∇, (5.13)

Δ = 1
l* 2Δ, (5.14)

ρ0 = qc*ρ0 . (5.15)

Equations (5.1)–(5.3) then become

∂ci
∂t + ∇ ⋅ fi = 0, (5.16)

fi = − Di ∇ci + zi(∇ϕ)ci , (5.17)

−β2Δϕ = ∑
i = 1

n
zici + ρ0(x), (5.18)

in which

−β2 = kBTϵw
ℓ* 2q2c*

(5.19)

so that

β = ℓD
ℓ* (5.20)

in which

ℓD = kBTϵW
q2c*

(5.21)

is called the Debye length. The significance of the Debye length will become clear later,

when we study the structure of the space charge layers that arise near membranes.
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Typical values of the quantities that appear in the formula for ℓD are ϵw = 80 × 8.85 × 10−12

C/(V m), kBT/q = 0.025 V, q = 1.6 × 10−19 C, and c* = 0.12 M = 7.22 × 1025/m3, with the

result that ℓD = 1.2 × 10−9 m. This is actually 8 times smaller than the thickness of the cell

membrane, so it is certainly very small in comparison to any cellular dimension ℓ* that may

be of interest. The diameter of a red blood cell, for example, is about 10−5 m.

It follows from these quantitative considerations that β = ℓD/ℓ* is a small parameter of our

problem. If we let β → 0 without any rescaling in (5.18), we get

∑
i = 1

n
zici + ρ0(x) = 0, (5.22)

which is a statement of electroneutrality.

An important remark (that should be obvious) is that we cannot now substitute (5.22) back

into (5.18) and conclude that Δϕ = 0. Since (5.22) holds only to the extent that β is small, the

correct conclusion is that Δϕ cannot be determined from equation (5.18) in the limit β → 0.

We shall now show, however, that a different elliptic equation for ϕ that holds in the limit β
→ 0 can indeed be derived from equations (5.16)–(5.17) by making use of equation (5.22).

To do so, we proceed as follows:

In equations (5.16) and (5.17), multiply both sides of each equation by zi and then sum over

i. The resulting equations can be combined to yield the equation of charge conservation in

the form

∂ρ
∂t + ∇ ⋅ J = 0 (5.23)

where

ρ(x, t ) = ∑
i = 1

n
zici(x, t ) + ρ0(x), (5.24)

J(x, t ) = ∑
i = 1

n
zifi(x, t ),

= − ∑
i = 1

n
ziDi ∇ci + (∇ϕ)ci

= − ∇ ∑
i = 1

n
ziDici − ∑

i = 1

n
Dizi2ci ∇ϕ .

(5.25)

Here ρ(x, t ) is the (dimensionless) net charge density. (Note that equation (5.23) is correct

with or without the inclusion of the term ρ0(x) in the definition of ρ(x, t ), since ρ0(x) is
independent of t .) Equation (5.25) gives the total dimensionless current density J, including

drift and diffusion of all mobile ions.
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In the electroneutral limit, β → 0, we have ρ = 0 and therefore ∇ ⋅ J = 0. This gives the

promised elliptic equation for ϕ:

− ∇ ⋅ ∑
i = 1

n
Dizi2ci ∇ϕ = Δ ∑

i = 1

n
ziDici . (5.26)

In the original (dimensional) variables, (5.26) reads:

− ∇ ⋅ ∑
i = 1

n
Di

qzi
2ci

kBT ∇ϕ = Δ ∑
i = 1

n
qziDici . (5.27)

This is the equation that ϕ must satisfy in order to maintain electroneutrality. Even though,

as mentioned above, Δϕ is in general nonzero in the electroneutral limit, equation (5.27)

does reduce to Δϕ = 0 in the special case that all of the ion concentrations are spatially

uniform.

Within a Debye length of a membrane surface, electroneutrality is substantially violated,

and a space charge layer forms. One can analyze this phenomenon by rescaling the distance

variable normal to the membrane before taking the limit β → 0. To simplify the presentation

of this analysis, we consider only the special case in which the membrane lies in the plane

x = 0 and in which all quantities are independent of y and z. The results we derive in this

way actually hold more generally, as we discuss briefly later. In this special case, equations

(5.16)–(5.18) reduce to

∂ci
∂t + ∂fi

∂x = 0, (5.28)

fi = − Di
∂ci
∂x + zi

∂ϕ
∂x ci , (5.29)

−β2∂2ϕ
∂x2 = ∑

i = 1

n
zici + ρ0(x), (5.30)

in which x and fi are now scalars, since our analysis is one-dimensional.

Now make the change of variables

x = βx, (5.31)

t = βt , (5.32)

ci(x, t ) = ci(βx, βt ), (5.33)
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fi(x, t ) = fi(βx, βt ), (5.34)

ϕ(x, t ) = ϕ(βx, βt ), (5.35)

so that our equations become

∂ci
∂t

+ ∂fi
∂x = 0, (5.36)

βfi = − Di
∂ci
∂x + zi

∂ϕ
∂x ci , (5.37)

− ∂2ϕ
∂x2 = ∑

i = 1

n
zici + ρ0(βx) . (5.38)

Now letting β → 0, equations (5.37)–(5.38) become

0 = ∂ci
∂x + zi

∂ϕ
∂x ci, (5.39)

− ∂2ϕ
∂x2 = ∑

i = 1

n
zici + ρ0(0) . (5.40)

Note that (5.39) is the same equation that would hold in the absence of any fluxes, that is,

at thermodynamic equilibrium. Thus, to lowest order in β, the ionic concentrations near the

membrane adjust themselves to the electrostatic potential as if they were at equilibrium, even

in the presence of nonzero fluxes.

Equations (5.39)–(5.40) are the one-dimensional Poisson-Boltzmann equations for the

structure of the space charge layer. Even though we derived these equations in a very

special case (membrane in the plane x = 0 and all quantities independent of y and z),

they are correct to lowest order in β even when these assumptions are violated, with the

reinterpretation that x measures distance normal to the membrane provided that the principal

curvatures of the membrane are O(1), and that the derivatives of all quantities in directions

parallel to the membrane (i.e., with x constant) are also O(1).

In the original dimensional variables, equations (5.39)–(5.40) read as follows:

0 = ∂ci
∂x + qzici

kBT
∂ϕ
∂x , (5.41)
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− ∂2ϕ
∂x2 = 1

ϵw
∑
i = 1

n
qzici + ρ0 . (5.42)

Here x measures distance normal to the cell membrane, with x = 0 at the face of the

membrane and x = ∞ in the bulk solution. Note that ρ0 in (5.42) is independent of x.

Equation (5.41) is easily solved for ci(x) in terms of ϕ(x):

ci(x) = ci∞exp − qzi(ϕ(x) − ϕ(∞))
kBT (5.43)

in which ci∞ denotes the concentration of the ith species of ion at x = ∞. As usual in

lowest-order boundary layer theory, this is set equal to the value of ci in the bulk solution

at the membrane itself, or to put it more physically, by the value of ci just outside the space

charge layer. (Note that the thickness of the space charge layer approaches 0 in the limit

under consideration here.) The quantities ci∞ satisfy electroneutrality:

∑
i = 1

n
qzici∞ + ρ0 = 0. (5.44)

If

qzi(ϕ(x) − ϕ(∞))
kBT ≪ 1, (5.45)

which we now assume, then (5.43) can be approximated by

ci(x) = ci∞ 1 − qzi(ϕ(x) − ϕ(∞))
kBT . (5.46)

Substituting (5.46) into (5.45) and making use of (5.44) gives

− ∂2ϕ
∂x2 = 1

ϵW
∑
i = 1

n
−

qzi
2ci∞

kBT (ϕ(x) − ϕ(∞)) (5.47)

or

∂2ϕ
∂x2 = 1

ℓD
2 (ϕ(x) − ϕ(∞)) (5.48)

where ℓD is given by

ℓD = kBTϵw
∑i = 1

n qzi
2ci∞

. (5.49)
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Comparison of this with (5.21) gives an explicit formula for the “typical concentration” c*,

namely

c* = ∑
i = 1

n
zi2ci∞ . (5.50)

Note that in this formula for c*, the bulk concentration of each ion species is weighted by

the square of its charge number.

The solutions of (5.48) that are bounded as x → ∞ are of the form

ϕ(x) − ϕ(∞) = (ϕ(0) − ϕ(∞))exp − x
ℓD

. (5.51)

The determination of ϕ(0) will be discussed below. Substituting (5.51) into (5.46), we get a

formula for the profile of the ith species of ion within the space charge layer:

ci(x) = ci∞ 1 − qzi(ϕ(0) − ϕ(∞))
kBT exp − x

ℓD
. (5.52)

The significance of the Debye length ℓD as a space constant for the decay of disturbances is

now clear.

The charge density within the space charge layer is given by

ρ(x) = ∑
i = 1

n
qzici(x) + ρ0

= − ϕ(0) − ϕ(∞)
kBT ∑

i = 1

n
qzi

2ci∞exp − x
ℓD

.
(5.53)

Here, we have made use of the electroneutrality of the bulk solution to eliminate the terms

∑i = 1
n qzici∞ + ρ0.

The total charge per unit area in the space charge layer, denoted σ, can now be found as

follows:

σ = ∫
0

∞
ρ(x)dx

= − ϕ(0) − ϕ(∞)
kBT ∑

i = 1

n
qzi

2ci∞ ℓD ,
(5.54)

and this result can be simplified by making use of equation (5.49) to obtain

σ = − (ϕ(0) − ϕ(∞)) ϵw
ℓD

. (5.55)
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To find ϕ(0), we have to consider the membrane itself, as well as the space charge layer

on the other side of the membrane, and also the composition of the bulk solution with

which that space charge layer makes contact. Accordingly, we expand our point of view to

encompass the domain (−∞, ∞), and we assume that the subdomain (−dm, 0) is occupied by

membrane, which we model as an insulator, with dielectric constant ϵm. We use the symbol

“+” to denote quantities defined on the side of the membrane where x is positive, and “−” to

denote the side of the membrane where x is negative. Thus (5.55) becomes

σ+ = − (ϕ(0) − ϕ(∞)) ϵw
ℓD

+ , (5.56)

and we similarly have

σ− = + ϕ −dm − ϕ( − ∞) ϵw
ℓD

− . (5.57)

Within the membrane itself, the electric field is constant, and is given by

Em = ϕ −dm − ϕ(0)
dm

. (5.58)

Immediately adjacent to the membrane on its “+” face we have, from equation (5.51),

E 0+ = − ∂ϕ
∂x 0+ = ϕ(0) − ϕ(∞)

ℓD
+ (5.59)

and similarly, on the “−” face of the membrane

E dm
− = − ϕ −dm − ϕ( − ∞)

ℓD
− . (5.60)

The reason for the minus sign in (5.60) is that the electric field is considered positive if it

points in the direction of increasing x, which is out of the membrane at x = 0 but into the

membrane at x = −dm.

We now invoke the boundary condition from electrostatics of material media that ϵE is

continuous across each face of the membrane. This gives the pair of equations

ϵwE dm
− = ϵmEm = ϵwE 0+ (5.61)

or

ϵw
ℓD

− ϕ( − ∞) − ϕ −dm = ϵm
dm

ϕ −dm − ϕ(0) = ϵw
ℓD

+ (ϕ(0) − ϕ(∞)) . (5.62)

We can think of (5.62) as a pair of linear equations in the two unknowns ϕ(−∞) − ϕ(−dm)

and ϕ(0) − ϕ(∞). The solution to this pair of linear equations is
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ϕ( − ∞) − ϕ −dm = ℓD
− /ϵw (ϕ( − ∞) − ϕ(∞))

ℓD
− /ϵw + dm/ϵm + ℓD

+ /ϵw
, (5.63)

ϕ(0) − ϕ(∞) = ℓD
+ /ϵw (ϕ( − ∞) − ϕ(∞))

ℓD
− /ϵw + dm/ϵm + ℓD

+ /ϵw
. (5.64)

Now substituting (5.64) into (5.56) and (5.63) into (5.57), we see that

−σ− = σ+ = Cm(ϕ( − ∞) − ϕ(∞)), (5.65)

in which ϕ(−∞) − ϕ(∞) is the potential difference across the complex formed by the

membrane together with its space charge layers, and in which the effective membrane

capacitance per unit area, denoted Cm, is therefore given by

1
Cm

= ℓD
−

ϵw
+ dm

ϵm
+ ℓD

+

ϵw
. (5.66)

Note that the value of Cm as given by (5.66) is precisely the capacitance per unit area of a

three-layer structure made up of a slab of material with dielectric constant ϵw and thickness

ℓD
−, another slab with dielectric constant ϵm and thickness dm, and finally a third slab with

dielectric constant ϵw and thickness ℓD
+. Because ℓD

− and ℓD
+ are considerably smaller than

dm, and also because ϵw/ϵm is about 40, the term dm/ϵm dominates the right-hand side of

(5.66), and the effective membrane capacitance is only slightly smaller than the capacitance

of the bare membrane. For precisely these same reasons, the effective membrane capacitance

is insensitive to the ionic concentrations on the two sides of the membrane (which appear in

(5.66) through ℓD
±). For practical purposes, then, Cm is a constant. This constant happens to

be approximately equal to 1 μF/cm2 for all biological cell membranes.

To formulate boundary conditions for the electroneutral equations that hold outside of the

space charge layers, we need to consider not only the total amount of charge that is stored in

the space charge layers but also the amount of each ion that is stored there. The key to this is

equation (5.52), which describes the concentration profile of each ion.

From (5.52), with the help of (5.55) and (5.49), we derive

∫
0

∞
ci(x) − ci∞ dx = −

qzici∞

kBT ℓD (ϕ(0) − ϕ(∞))

= qzici∞ ℓD
2 kBTϵw

=
qzici∞

∑j = 1
n qzj

2cj∞
σ .

(5.67)

Multiplying both sides of the foregoing equation by qzi, we get
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σi = θiσ (5.68)

in which

σi = qzi∫
0

∞
ci(x) − ci∞ dx, (5.69)

θi =
zi2ci∞

∑j = 1
n zj2cj∞

. (5.70)

Equations (5.67)–(5.70) show that the contribution σi of the ith species of ion to the surface

charge density σ of a space charge layer is proportional to the nearby bulk concentration

ci∞ of that ion species weighted by the square of its charge number zi. Thus, positive and

negative ions both make contributions of the same sign to any particular space charge layer,

that sign being the same as that of the total space charge density σ. The reason for this

somewhat surprising fact is that a space charge layer with σ > 0, for example, contains an

excess of each positive ion (in comparison to its bulk concentration) and a deficit of each

negative ion, both of which contribute positively to the overall positive charge of the layer,

and similarly (with positive and negative interchanged) for a space charge layer with σ < 0.

5.3 An Issue of Ill-Posedness and Its Resolution

The reason that we can subtract ci∞ in the definition of σi, equation (5.69), is that the

bulk solution is electrically neutral; see equation (5.44). Thus, in the computation of excess

charge, we can safely ignore the contributions of the bulk ion concentrations and consider

only the deviations ci(x) − ci∞. This is no longer true when we consider the amount of

each species of ion in the space charge layer. Here the bulk ion concentration makes a

contribution, which unfortunately is infinite if we calculate it as ∫0
∞ci∞dx.

We circumvent the above difficulty by making the following definition of the surface

concentration of the ith species of ion in the space charge layer:

bi = ci∞ ℓ0 + σi
qzi

. (5.71)

This definition includes all of the ions that account for the excess charge, σi, as defined

above in equation (5.69), and also, in addition to those, the number of ions of species i per

unit area that would occupy a layer of thickness ℓ0 at concentration ci∞.

The constant ℓ0 is chosen to be greater than any of the Debye lengths that occur in our

problem, and yet smaller than any of the lengths that we want to resolve. The existence

of such an ℓ0 is required for the validity of the electroneutral limit. If we want to resolve

distances on the scale of the Debye length, then we should be using the original Poisson-
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Nernst-Planck system, equations (5.1)–(5.3), instead of the electroneutral model. A suitable

choice of ℓ0 for cellular physiology would be 10 nm, which is approximately equal to the

membrane thickness, and about 8 times greater than a typical Debye length. Of course, one

should check that the results of any computation are insensitive to ℓ0 within the range defined

by the above criteria.

Omission of the term ci∞ ℓ0 in the above definition leads to an ill-posed formulation of

the boundary value problem for the electroneutral limit [53]. The reason for this is that σi,

having the same sign as σ, always has opposite signs on the two sides of any membrane.

On one side or the other, then, the sign of σi differs from that of zi. On that side of the

membrane σi/(qzi) < 0, and this means that an increase in the bulk concentration ci∞ on that

side of the membrane leads to a decrease in σi/(qzi), that is, to a decrease in the amount of

the ith species of ion that is stored in the space charge layer. This requires a flux out of the

space charge layer and into the bulk, and the effect of this flux is to reinforce the increase in

bulk concentration. This positive feedback mechanism is the root of the ill-posedness.

Inclusion of the term ci∞ ℓ0 in (5.71) overcomes this difficulty. In the situation we are

considering here, in which (5.45) holds and the linearized space charge layer equations are

therefore valid, the term ci∞ ℓ0 is always greater in magnitude than σi/(qzi), with the result

that an increase in the bulk concentration of any ion on either side of the membrane leads

to an increase in the amount of that ion in the adjacent space charge layer. For analysis that

supports this qualitative discussion, see Stinchcombe, Mori, and Peskin [83]. An alternative

but somewhat less intuitive way of making the electroneutral model well-posed has been

described by Mori [53].

A further remark of importance in relation to equation (5.71) is that the term ci∞ ℓ0 is

automatically included in a seamless way when a finite-volume scheme is used to discretize

the equations of the electroneutral limit, as has been done by Mori and Peskin [57]. To

explain this, we consider a computational cell of volume V with part of the surface of

this cell being along a membrane and having area A. (The rest of the surface of the

computational cell is simply adjacent to other computational cells, with no physical barrier,

and hence no space charge layer along these nonmembrane boundaries.) Now let Xi be the

number of ions of type i within the computational cell, including both those in the bulk

solution and also those in the space charge layer adjacent to the membrane. Then

Xi = Abi + V − ℓ0 A ci∞

= Aci∞ ℓ0 + Aσi
qzi

+ V ci∞ − Aci∞ ℓ0

= Aσi
qzi

+ V ci∞ .

(5.72)

Here we have assigned a volume ℓ0A to the space charge layer, and a volume V − ℓ0A to

the bulk solution within the computational cell. This may seem somewhat arbitrary, but the

arbitrariness disappears in the end because of the cancellation of the terms involving ℓ0. If the

computational cell is large enough to contain the space charge layer (when we think of the
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space charge layer as having thickness ℓ0), then the term V ci∞ dominates the right-hand side

of (5.72), and there is no dependence at all of the discretized equations on the parameter ℓ0.

5.4 Internal Boundary Conditions in the Electroneutral Limit

We are now ready to state the internal boundary conditions that hold across membranes

in the electroneutral limit. Consider in particular a membrane that separates region k from

region l. We use superscripts to denote the boundary values within the bulk solution, i.e., just

outside the space charge layers. Thus ϕk is the potential on side k, and ϕl is the potential

on side l of the membrane, and similarly for cik and cil. We use bulk values rather than

values at the surface of the bare membrane because the bulk values are measurable, and the

transmembrane fluxes are empirically determined functions of these measurable quantities.

We use the following notation for these transmembrane fluxes. Let

fi
kl ϕk − ϕl, ck, cl, wkl, wlk, x (5.73)

be the flux (number of ions per unit area per unit time) across membrane (k, l), in the

vicinity of the point x on this membrane, with flux in the direction k → l considered

positive. Note that we allow the flux of the ith species of ion to depend on the entire

vector of solute concentrations on the two sides of the membrane, ck and cl. This allows

for cotransport or antitransport of ions, and also for ion-gated or neurotransmitter-gated

channels (the neurotransmitter being included as one of the species whose concentrations

are contained in the vector c). For further discussion of the transmembrane fluxes, including

discussion of the gating variables w (and why we need two sets of those gating variables,

one for kl and one for lk); see Section 5.5,

The conservation of the ith species of ion requires that, on face k of the membrane kl, at

location x,

∂bi
k

∂t = fi
k(x, t) ⋅ nkl(x) − fi

kl ϕk − ϕl, ck, cl, wkl, wlk, x (5.74)

with (see equation (5.71))

bi(x, t) = cik(x, t) ℓ0 +
σik(x, t)

qzi
. (5.75)

The notation here is that cik(x, t) denotes the concentration of the ith species of ion in the bulk

solution, just outside the space charge layer, on side k of the membrane, near membrane

location x at time t. In equation (5.74), nkl (x) is the unit normal to the membrane at

location x pointing from side k to side l of the membrane, and fi
k is given by equation

(5.2) with the remark that the quantities that appear on the right-hand side of (5.2) are

to be evaluated in the bulk solution, just outside the space charge layer, on side k of the

membrane, near membrane point x. Finally, fi
kl is the transmembrane flux defined above and

further discussed in the appendix.
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We can derive an electrical boundary condition from equations (5.74)–(5.75) by multiplying

both sides of each of these equations by qzi, summing over i, and then adding ρ0
k ℓ0. With

these manipulations, equation (5.75) gives

∑
i = 1

n
qzibi

k(x, t) + ρ0
k ℓ0 = ∑

i = 1

n
σik(x, t) = σk(x, t), (5.76)

in which we have made use of the electroneutrality of the bulk solution, which tells us that

∑i = 1
n qzicik + ρ0

k = 0. With the help of (5.76), since ρ0
k and ℓ0 are independent of time, we see

that (5.74) implies

∂σk

∂t = Jk(x, t) ⋅ nkl − Jkl ϕk − ϕl, ck, cl, wkl, wlk, x , (5.77)

in which

Jk(x, t) = ∑
i = 1

n
qzifi

k(x, t) (5.78)

and

Jkl ϕk − ϕl, ck, cl, wkl, wlk, x = qzifi
kl ϕk − ϕl, ck, cl, wkl, wlk, x . (5.79)

Thus, Jk(x, t) is the current density in the bulk solution, just outside the space charge layer,

on side k of the membrane, near the membrane point x at time t, and Jkl(x, t) is the current

density through the membrane itself at location x at time t.

Now (5.77) becomes an evolution equation for the voltage difference across the membrane

when we recall that σk = Cm(ϕk − ϕl). If we introduce the notation

ϕkl = ϕk − ϕl (5.80)

and recall the approximation that the membrane capacitance per unit area, Cm, is constant,

then

Cm
∂ϕkl

∂t (x, t) = Jk(x, t) ⋅ nkl(x) − Jkl ϕkl(x, t), ck(x, t), cl(x, t),
wkl(x, t), wlk(x, t), x .

(5.81)

Returning now to equation (5.75) and recalling equation (5.64), we see that the amount of

the ith species of ion per unit area in the space charge layer on face k of the membrane is

given by

bi
k(x, t) = cik(x, t) ℓ0 +

zi2cik(x, t)
∑j = 1

n zj2cj(x, t)
Cmϕkl

qzi
. (5.82)
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Note that equation (5.82) gives the ionic content of the space charge layer in terms of nearby

bulk quantities only.

We can now summarize the electroneutral model. The state variables of the model are the

bulk concentrations ci, the transmembrane potential differences ϕkl, and the gating variables

wkl. The model will be fully specified when we say how to determine the rate of change of

the state variables in terms of the values of the state variables at any given time.

The evolution equation for the gating variables is given in the Appendix; see equations

(5.88)–(5.89). The evolution equations for the concentrations ci and for the transmembrane

potential differences ϕkl both involve the potential field ϕ(x, t), so we discuss now how this

field is determined from the state variables at any given time. This is done by solving the

elliptic equation (5.27), which we rewrite here in the following way:

∇ ⋅ (A(x, t)∇ϕ + ∇B(x, t)) = 0, (5.83)

in which

A(x, t) = ∑
i = 1

n
Di

qzi
2ci(x, t)

kBT > 0, (5.84)

B(x, t) = ∑
i = 1

n
qziDici(x, t) . (5.85)

Note that A(x, t) and B(x, t) are determined by the ci(x, t). Thus, they are known functions of

x at a given time t if the state of the system (as defined above) is known at that time.

The boundary conditions for equation (5.83) are that the jump in ϕ is known across each

membrane (since ϕkl is part of the specification of the state of the system), and also that

nkl ⋅ (A(x, t)∇ϕ + ∇B(x, t))k − (A(x, t)∇ϕ + ∇B(x, t))l = 0. (5.86)

Equation (5.86) asserts that the normal component of the bulk current density is the same on

the two sides of any membrane at any membrane location. This follows from conservation

of charge, since we have seen above that in the electroneutral limit the space charge layers

on the two sides of the membrane have surface charge densities that are equal in magnitude

but opposite in sign. Thus there is no net charge stored on any membrane, so the current

density onto one face has to equal the current density off of the other one. A more formal

way to derive (5.86) is to start from equation (5.81), interchange k and l, and add the result

to equation (5.81), taking into account such symmetries as ϕkl = −ϕlk. The result of these

manipulations is nkl · (Jk − Jl) = 0, which is equivalent to (5.86).

In summary, at any given time t, ϕ(·, t) is determined by solving (5.83) subject to the given

values of ϕkl and also subject to the jump condition (5.86) at each internal membrane.
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With ϕ known at a given time, ∂ci/∂t is determined by equations (5.1)–(5.2). These equations

need boundary conditions, however, which we obtain from equations (5.74)–(5.75) and write

as follows:

fi
k ⋅ nkl = fi

kl ϕkl, ck, cl, wkl, wlk, x + ∂
∂t cik ℓ0 +

σik

qzi

= fi
kl ϕkl, ck, cl, wkl, wlk, x + ∂

∂t cik ℓ0 +
zi2cik

∑j = 1
n zj2cjk

Cmϕkl

qzi
.

(5.87)

As discussed above (see equation (5.72) and the surrounding text), the term involving ℓ0 is

needed to make the electroneutral model well-posed, but the parameter ℓ0 actually cancels

out and disappears in a finite-volume discretization of the electroneutral model provided that

the computational elements are not too small.

For an application of the electroneutral model of electrodiffusion to cardiac conduction

with reduced gap junctional connectivity, see the work of Mori, Fishman, and Peskin [55].

Note in particular that this investigation considers not only voltage changes in the narrow

cleft between the ends of cardiac myocytes, but also the concentration changes that may

occur there as a result of transmembrane currents, which can cause significant concentration

changes when such currents flow into or out of a restricted (in this case, extracellular) space.

In this work, the geometry of the cleft was very much simplified, and it would be interesting

to see how the results would change if more realistic microscopic anatomy were used. More

generally, it would be of great interest to study the influence on electrophysiology of the

detailed architecture of electrically active cells, including the spatial arrangement of their

organelles.

We expect that future investigations involving the electroneutral model will similarly focus

on subcellular phenomena in which ion transport is important and in which the microscopic

anatomy provides enough resistance to current flow that significant voltage differences

can occur without crossing a membrane, or provides partially restricted spaces in which

significant ion concentration changes can build up over time as a result of electrical activity.

Considering the intricate extracellular and intracellular microanatomy of real tissues, we

believe that the scope for such investigations is vast.

5.5 Transmembrane Fluxes

In this subsection, we discuss in more detail the functions fi
kl that describe the

transmembrane flux of the ith species of ion. The arguments wkl and wlk of fi
kl are vectors

of all possible gating variables (like m, h, and n in the Hodgkin-Huxley equations for the

squid giant axon). We need two sets of gating variables because ion channels are typically

asymmetrical, so the dependence of any particular gating variable on membrane potential

will depend on which way the ion channel to which it refers is “installed” in the membrane.

The components of the vectors wkl and wlk obey differential equations of the following

form:
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∂wjkl

∂t = αj ϕk − ϕl 1 − wjkl − βj ϕk − ϕl wjkl, (5.88)

∂wjlk

∂t = αj ϕl − ϕk 1 − wjlk − βj ϕl − ϕk wjlk, (5.89)

in which (5.89) is obtained from (5.88) merely by interchanging the indices k and l. Here

the index j runs over all of the different types of gates that may be present in the system,

whether or not the ion channels containing those gates happen to be present within the

membrane kl. Note that there is no simple correspondence between the ion type i and the

gate type j. First, a specific ion channel may contain more than one type of gate (an example

being the m and h gates of the Hodgkin-Huxley Na+ channel). Also, a given ion channel

may not be completely specific; that is, it may be used by more than one type of ion.

Finally, a given ion type may flow through more than one type of channel and therefore

be influenced by several different gating variables. Our formalism allows for all of these

possibilities.

Note that the functions αj and βj, which give the opening and closing rates for a gate of type

j as a function of the transmembrane potential difference, do not depend on the indices k, l
or on the specific spatial location x on the membrane. This is because we assume that the

response of a gate of a given type to transmembrane voltage is the same regardless of where

the channel containing that gate may happen to be located. As mentioned above, however,

the response to membrane voltage does depend on the orientation of the channel within the

membrane.

Thus, in the equation for ∂wjkl/ ∂t, the functions αj and βj are evaluated at ϕk −ϕl, whereas

in the equation for ∂wjlk/ ∂t, they are evaluated at ϕl −ϕk. Since the functions αj and βj

typically have no particular symmetry with respect to a change of sign of their argument,

this means that there is no simple relationship between the values of wjkl and wjlk at any

given time, which is why we need to keep track of both of them, since, at the level of a

general formalism such as the one we are constructing here, we do not know which way a

particular channel type will be oriented in a particular membrane.

The functions fi
kl have the following important antisymmetry:

fi
kl ϕk − ϕl, ck, cl, wkl, wlk, x = − fi

lk ϕl − ϕk, cl, ck, wlk, wkl, x . (5.90)

This is because fi
kl on the left-hand side of (5.90) is the transmembrane flux of the ith ion

species with the direction k → l considered positive, whereas fi
lk on the right-hand side is

the same flux but with the direction l → k considered positive. The interchange of k and l
in the argument lists on the two sides of the equation is so that both will refer to the same
physical situation viewed, so to speak, from opposite sides of the membrane.
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Note that equation (5.90) does not imply that membrane channels are symmetrical. To

illustrate this, we consider the following simple example. Suppose fi
kl depends only on ϕk −

ϕl and is given by

fi
kl ϕk − ϕl = f0 exp

q ϕk − ϕl

kBT − 1 (5.91)

which describes a physical rectifier. Then, according to (5.90),

fi
lk ϕl − ϕk = − fi

kl ϕk − ϕl

= − f0 exp
q ϕk − ϕl

kBT − 1

= f0 1 − exp −
q ϕl − ϕk

kBT .

(5.92)

Thus fi
lk is not at all the same function as fi

kl.

It is possible, however, for a membrane channel to be fundamentally symmetrical and for

asymmetry in its behavior to be a consequence of asymmetrical conditions on the two sides

of the membrane. Consider, for example, the ion flux through a “constant-field” channel, as

given by the Goldman-Hodgkin-Katz formula [34]:

fi
kl ϕk − ϕl, ck, cl = D

L
q ϕk − ϕl

kBT
ckexp q ϕk − ϕl /kBT − cl

exp q ϕk − ϕl /kBT − 1
. (5.93)

We leave it as an exercise for the reader to show that in this case the combination of (5.93)

and (5.90) implies that

fi
lk ϕl − ϕk, cl, ck = fi

kl ϕl − ϕk, cl, ck . (5.94)

In contrast to (5.90), we here have the same sign on both sides of the equation, and the

indices k and l are only interchanged in the labels of the two functions, not in their argument

lists. Thus, equation (5.94) asserts that fi
kl and fi

lk are the same function, which means that

the membrane channel they describe is symmetrical.

Although the formalism described here for the transmembrane fluxes is very general, it

is not by any means completely general, and would no doubt need further elaboration in

particular applications. We have assumed, for example, that the different types of gates

behave independently of each other, with each gate having only two states. In reality,

as discussed above, channel gating may in some cases be described more completely by

Markov chains with multiple states. Another limitation of the present formalism is that

any influence of a concentration on a transmembrane flux is assumed to be instantaneous.

In reality, the binding of ligands to channels, and the subsequent opening and closing of

gates, may proceed by finite-rate kinetics. Also, the numbers of channels of any particular
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type may change as a result of altered gene expression, or other regulatory mechanisms,

in response to signals that a cell may receive, or as a result of the cell’s own pattern of

activity. Although such effects require more complicated expressions for fi
kl, they do not

fundamentally alter the role that fi
kl plays in the rest of our formulation.

6 Conclusions

The spatial dimension in electrophysiology is important. This was evident already in the

pioneering work of Hodgkin and Huxley, whose great triumph, once they had developed

the ordinary differential equations describing the transmembrane current, was to embed

these ODEs in a system of partial differential equations, and to show that this system has

traveling wave solutions with a propagation speed that agrees well with the experimental

propagation speed of an action potential along the squid giant axon. Although not covered

in this review, the sometimes linear and sometimes nonlinear but generally dissipative wave

propagation that occurs in the elaborate dendritic trees of neurons [72] is, if anything, even

more important for neuronal information processing than the highly stereotyped propagation

of the action potential that occurs in axons. Broadly speaking, axons report the results of

subtle computations that occur in dendrites [40].

Neglect of the spatial dimension in cardiac electrophysiology is dangerous. Cardiac ectopy

—the spontaneous formation of an action potential outside of the pace-making regions of

the heart—is a risk factor for developing potentially fatal arrhythmias. Ectopic beats can

be triggered by delayed afterdepolarizations (DADs) or early afterdepolarizations (EADs).

In either case, the sodium current reactivates prematurely, drawing inward current that

can cause propagating action potential waves. The Cardiac Arrhythmia Suppression Trial

(CAST) was a multicenter, placebo-controlled clinical trial of antiarrhythmic medications

intended to suppress such premature depolarizations by sodium-channel-blocking drugs that

act to reduce the strength of the sodium current and thereby reduce or eliminate premature

contractions. Patient enrollment was planned for June 1987–June 1990; however, the trial

was halted in 1989: patients receiving the drug were found to be approximately three times

as likely to suffer from sudden cardiac death than those receiving placebo [5, 15]. Because

the drugs were sodium channel blockers, they acted not only to suppress ectopic beats, but

also to lower cardiac conduction velocity. One presumably unintended consequence of such

drugs is that they increase the effective electrical size of the chambers, thereby facilitating

the formation of reentrant waves that otherwise could not have formed. Thus, a class of

drugs that looked promising from an ODE point of view actually proved harmful, and the

mechanism by which they caused harm could only be understood by thinking about cardiac

electrical activity as occurring in space as well as time, and therefore as described by a

system of PDEs.

Besides being three-dimensional (or four-dimensional if time is included in the dimension

count), cardiac electrophysiology has an important multiscale aspect. This is because the

length of an individual cardiac myocyte is not that much smaller than the width of the

action potential wavefront, especially in pathological conditions that slow wave propagation.

This suggests that continuum models might give incorrect results, and indeed we have seen
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examples in which they do. An extremely expensive way to overcome this difficulty is

to abandon macroscale continuum modeling and to resolve every cell of the myocardium,

each as its own microcontinuum. We have seen, however, in a one-dimensional model

problem, that this expense can be avoided, without loss of accuracy, by a multiscale

method that resolves individual cells near the action potential wavefront only and employs

a macroscale continuum model elsewhere. The three-dimensional implementation of this

multiscale method remains a challenge for the future.

Electrophysiology fundamentally involves the three-dimensional electrodiffusion of ions

within a space partitioned by membranes, where internal boundary conditions must be

applied. These boundary conditions describe the transport of ions by channels, exchangers,

and pumps, and involve equations like those first written down by Hodgkin and Huxley,

suitably generalized and modified to take into account more recent knowledge about

the different transport mechanisms [34]. Electrodiffusion has a characteristic length

scale, known as the Debye length, which is substantially less than the thickness of the

cell membrane, and therefore much smaller than typical cellular or even than typical

subcellular dimensions. Because of these size relationships, the electroneutral limit of

the electrodiffusion equations is highly relevant in electrophysiology. This limit involves

electroneutrality away from membranes, and space charge layers of equal magnitude but

opposite sign on the opposite membrane faces. We have given an expository account of the

electroneutral limit of the electrodiffusion equations in the hope that this will prove useful

as a framework for future electrophysiological investigations. One strength of this approach

is that it makes it possible to take the intricate intracellular and extracellular microanatomy

and microphysiology (i.e., the detailed spatial distribution of transport mechanisms along

membranes) of electrically active tissue as a starting point for the construction of a realistic

computer model. Another strength is that the electroneutral limit of the electrodiffusion

equations allows for the study of ion concentration changes, which may be highly localized,

and that are subject to the constraint of electroneutrality, which couples together the

dynamics of different species of ions. Models constructed in this way will be far more

detailed than those in current use and may reveal hitherto unsuspected ways in which

cellular and subcellular spatial structure is important in the function of electrically active

cells.
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Figure 1.1.
Steady-state values (top) and time constants (bottom) of the gating variables as functions

of voltage. Note that m∞ and n∞ are increasing functions of voltage, whereas h∞ is

decreasing. Also, τm is an order of magnitude smaller than either τh or τn.
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Figure 2.1.
Traveling wave solution of our model problem in the singular perturbation limit. The upper

panel shows the transmembrane potential V as a function of T = t + x/θ, where θ is the

wave speed, and where T = 0 defines the front of the wave, i.e., the trajectory x = −θt along

which the voltage goes from below threshold to above threshold. The lower panel shows the

gating variables M, H, N, also as functions of T. Parameters are the same as in Table 1.1

with the changes that gL = 15(μA/mV)/cm2 and EL = −70 mV, and the additional parameters

that are not present (or not constant) in the original Hodgkin-Huxley equations: v* = −40

mV, τh = 5 ms, and τn = 2 ms. The back of the wave occurs at about T = 7.5 ms. This

time is denoted T1 in the text, and the manner in which it is determined is illustrated in Fig.

2.2. At the front and also at the back of the wave, the voltage jumps through threshold.

Physically, it is driven to do so by large axial currents arising from steep spatial voltage

gradients in the neighborhood of the front and of the back.
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Figure 2.2.
Graphical determination of the time T1 that defines the back of the wave, and hence the

action potential duration. The value of T1 (red vertical line) is such that γ1(T1) = ω1(T1).

Note that T1 < T*, where T* is defined by γ1(T*) = 0. This means that the action potential

repolarizes before the voltage of the excited state reaches threshold; see Figure 2.1.
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Figure 3.1.
Action potential generated by a version of the Luo-Rudy ventricular cell model [19]. The

upper panel shows the transmembrane voltage, and lower panel shows the transmembrane

ionic currents. The plotted current is the total for each ion species; the different currents of

the model carried by any one ion species have been lumped together here to avoid making

the plot too complicated. Note that the (negative) peak of the Na+ current is about −500

μA/cm2, which is much too large in magnitude to appear on the scale of the plot.
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Figure 3.2.
State transition diagram for the wild-type Na+ channel model of Clancy and Rudy (adapted

from Clancy and Rudy [8]).
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Figure 3.3.
Action potential generated by a version of the Fenton-Karma ventricular cell model [21]

using parameters that have been fit to the Luo-Rudy I model [45]. The upper panel shows

the transmembrane voltage, and lower panel shows the transmembrane currents, which are

Ifi = fast inward (Na+-like) current, Isi = slow inward (Ca2+-like) current, and Iso = slow

outward (K+-like) current. The fast inward current has a (negative) peak of about −85 μA/

cm2, which is much too large in magnitude to appear on the scale of this plot.
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Figure 4.1.
By volume, cardiac muscle is primarily composed of cardiomyocytes, which are electrically

active contractile cells. Myocytes are arranged into fibers and are electrically coupled via

gap junction channels, which are preferentially localized to structures called intercalated

discs located at the ends of the myocytes. Macroscopic conduction is highly anisotropic, and

action potential waves travel more rapidly along fibers than in the cross-fiber directions. See

also Figure 4.5, which describes the microscale geometry and equivalent circuit of a model

of a linear strand of myocytes. Figure adapted with permission from www.e-heart.org.

GRIFFITH and PESKIN Page 75

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.e-heart.org/


Figure 4.2.
Results from a computer simulation of cardiac excitation propagation using a bidomain

model of a three-dimensional (1 cm × 1 cm × 1 mm) region of murine (mouse) ventricular

myocardium. To account for transmural fiber rotation in the model, the direction of strongest

conductivity rotates from endocardium to epicardium by 120°. The transmembrane voltage

difference (mV) is plotted along the surface of a three-dimensional tissue region at (A) 5 ms,

(B) 15 ms, (C) 25 ms, and (D) 35 ms following a current stimulus.
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Figure 4.3.
Results from a computer simulation of cardiac excitation propagation using a bidomain

model of a three-dimensional (1 cm × 1 cm × 1 mm) region of murine ventricular

myocardium. A. Similar to Figure 4.2C, but here viewed from above and showing the

adaptively refined computational grid. B. Similar to A, but magnified to show the grid in the

vicinity of the action potential wavefront. Ultrafine (cell-level) spatial resolution is deployed

in a localized fashion near the action potential wavefront.
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Figure 4.4.
Immersed boundary model of cardiac electrophysiology in an idealized model of the

ventricles. In this simulation, we use a novel formulation [27] of the bidomain equations

that is based on the mathematical structure of the immersed boundary method [68] to model

electrical impulse propagation in cardiac muscle. Transmembrane potential difference is

plotted on the surface of the model heart (blue = −80 mV; red = +20 mV).
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Figure 4.5.
The microscale geometry and equivalent circuit of a model of a linear strand of

cardiomyocytes. Adjacent cells are coupled by gap junctions that are modeled as linear

resistors and by a shared cleft space that is resistively coupled to the bulk extracellular space.

In this model, the bulk extracellular space is treated as isopotential. Figure adapted from

Hand and Griffith [29].

GRIFFITH and PESKIN Page 79

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4.6.
A. Schematic depiction of a detailed model of a linear strand of myocytes. B. Particular

multiscale representation of the tissue domain shown in panel A. Here, dark lines indicate

the “unresolved” region, where the macroscale equations are employed, and the thin

broken lines indicate the “resolved” region, where the microscale equations are employed.

C. Possible discretization of the multiscale representation shown in panel B. In the

discretization depicted in this panel, the coarse macroscopic grid spacing Δxmacro is on

the order of two cell lengths, whereas the fine microscopic grid spacing Δxmicro uses five

grid points per cardiac cell. Figure from Hand and Griffith [29].
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Figure 4.7.
Conduction speed along different models of a linear strand of myocytes without ephaptic

coupling (Rc = 0) as a function of the gap-junctional coupling strength gGJ. The multiscale

model reproduces the dynamics of the underlying microscale model across the entire range

of values of gGJ surveyed. In particular, notice that the multiscale model captures the level

of gap-junctional coupling that yields propagation failure in the microscale model. By

contrast, the macroscale model predicts substantially different values of gGJ that lead to

propagation failure for different numerical grid spacings. In particular, coarse macroscale

grid spacings yield a model that predicts propagation failure at substantially higher levels of

gap-junctional coupling than the micro- and multiscale models, and fine macroscopic grid

spacings yield propagation success for substantially smaller values of gGJ. It is interesting

to note that if the macroscopic grid spacing is equal to the cell size (100 μm), then the

macroscopic model is in perfect agreement with the micro- and multiscale models. Figure

from Hand and Griffith [29].
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Figure 4.8.
Action potential wavefront along different models of a linear strand of myocytes without

ephaptic coupling (Rc = 0) at a gap-junctional coupling strength that is 1% of normal. The

waveform predicted by the multiscale model is in excellent agreement with the microscale

model, whereas the macroscale model with a coarse macroscopic grid spacing yields

artificially slow action potential wavefronts, and this model with a fine macroscopic grid

yields artificially fast action potentials. As seen in Figure 4.7, the macroscopic model results

agree with those of the micro- and multiscale models if the macroscopic grid spacing is

equal to the cell size (100 μm). Figure from Hand and Griffith [29].
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Figure 4.9.
Conduction speed along different models of a linear strand of myocytes with ephaptic

coupling as a function of the cleft-to-ground resistance Rc. In these simulations, gap-

junctional coupling strength is 1% of normal. As in the non-ephaptic case, the micro-

and multiscale models are in excellent agreement. Unlike the non-ephaptic case, however,

here the macroscale model yields neither qualitative nor quantitative agreement for any

macroscopic grid spacing over the range of values of Rc surveyed, except for high levels of

Rc where all models yield propagation failure. In particular, the macroscale model does not

reproduce the non-monotonic relationship between Rc and conduction speed observed with

the micro- and multiscale models. Figure from Hand and Griffith [29].
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Figure 4.10.
Action potential wavefront (top panel) and cleft potential (bottom panel) along different

models of a linear strand of myocytes with ephaptic coupling as a function of the cleft-

to-ground resistance Rc. In these simulations, gap-junctional coupling strength is 1% of

normal. Again, excellent agreement is observed between the microscale and multiscale

models. As shown in Figure 4.9, the macroscale model does not agree with the micro- or

multiscale models for any macroscopic grid spacing considered. Notice that the multiscale

model computes the cleft potential only within the fully resolved tissue subdomain. Figure

from Hand and Griffith [29].

GRIFFITH and PESKIN Page 84

Commun Pure Appl Math. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GRIFFITH and PESKIN Page 85

Table 1.1.

Hodgkin-Huxley model parameters.

C m 1.0 μF/cm2

gNa 120 (μA/mV)/cm2

gK 36 (μA/mV)/cm2

gL 0.3 (μA/mV)/cm2

E Na 45 mV

E K −82 mV

E L −59 mV

r 0.0238 cm

ρ 0.0354 (mV/μA)cm
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Table 1.2.

Hodgkin-Huxley gating functions.

For s = m,h,n:

s∞(v) =
αs(v)

αs(v) + βs(v) τs(v) = 1
αs(v) + βs(v)

where

αm(v) = (v + 45)/10
1 − exp( − (v + 45)/10) βm(v) = 4exp(−(v + 70)/18)

αh(v) = 0.07 exp(−(v + 70)/20) βℎ(v) = 1
1 + exp( − (v + 40)/10)

αn(v) = 0.1(v + 60)/10
1 − exp( − (v + 60)/10) βn(v) = 0.125exp(−(v + 70)/18)

with υ in mV, and α and β in ms−1
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Table 3.1.

Fenton-Karma model parametrization of the Luo-Rudy I ventricular model.

C m 1 μF/cm2

gfi 5.8 mS/cm2

τ d Cm/gfi = 0.17 ms
τ r 130 ms

τ si 127 ms

τ o 12.5 ms

τℎ
+

10 ms

τℎ1−
18.2 ms

τℎ2−
18.2 ms

τd
+

1020 ms

τd− 80 ms

u c 0.13 (dimensionless)

uh 0.13 (dimensionless)

ucsi 0.85 (dimensionless)
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