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Background. Biological sex and the estrogen receptor alpha (ESR1) modulate human immunodeficiency virus (HIV) activity. 
Few women have enrolled in clinical trials of latency reversal agents (LRAs); their effectiveness in women is unknown. We hypothe-
sized that ESR1 antagonism would augment induction of HIV expression by the LRA vorinostat.

Methods. AIDS Clinical Trials Group A5366 enrolled 31 virologically suppressed, postmenopausal women on antiretroviral 
therapy. Participants were randomized 2:1 to receive tamoxifen (arm A, TAMOX/VOR) or observation (arm B, VOR) for 5 weeks 
followed by 2 doses of vorinostat. Primary end points were safety and the difference between arms in HIV RNA induction after 
vorinostat. Secondary analyses included histone 4 acetylation, HIV DNA, and plasma viremia by single copy assay (SCA).

Results. No significant adverse events were attributed to study treatments. Tamoxifen did not enhance vorinostat-induced HIV 
transcription (between-arm ratio, 0.8; 95% confidence interval [CI], .2–2.4). Vorinostat-induced HIV transcription was higher in 
participants with increases in H4Ac (fold increase, 2.78; 95% CI, 1.34–5.79) vs those 9 who did not (fold increase, 1.04; 95% CI, 
.25–4.29). HIV DNA and SCA plasma viremia did not substantially change.

Conclusions. Tamoxifen did not augment vorinostat-induced HIV RNA expression in postmenopausal women. The modest 
latency reversal activity of vorinostat, postmenopausal status, and low level of HIV RNA expression near the limits of quantification 
limited assessment of the impact of tamoxifen. This study is the first HIV cure trial done exclusively in women and establishes both 
the feasibility and necessity of investigating novel HIV cure strategies in women living with HIV. 
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To achieve the goal of human immunodeficiency virus (HIV) 
cure, latently infected cells that carry replication-competent 
virus must be eliminated. Inducing virus expression in this la-
tent reservoir, which leads to the production of HIV RNA and 
proteins, is the foundation of the shock and kill strategy [1]. 
Proof of concept for latency reversal agents (LRAs) was first 
demonstrated with the histone deacetylase inhibitor (HDACi) 

vorinostat [2], and multiple trials evaluating a range of HDACi 
and other classes of LRAs have followed [3]. In vitro studies 
indicate that uninduced, replication-competent proviruses 
remain even after vigorous stimulation [4], highlighting the 
importance of identifying new strategies to augment HIV ex-
pression from all reservoir cells that harbor infectious HIV with 
in vivo treatments.

There has also been substantial heterogeneity in partici-
pants’ responses to LRAs across trials. Variable time to rebound 
in analytic treatment interruptions [5] and levels of virus in-
duction following LRA treatment [6] or administration of 
immunomodulating agents such as anti-PD1 therapy [7] have 
been consistently observed. Notably, this diversity of response is 
present despite a relative homogeneity of trial participants, most 
of whom are male [8, 9]. Identifying sources of heterogeneity 
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has value for both predicting probability of response to treat-
ments in development and potentially for probing mechanistic 
pathways of latency maintenance and immune clearance.

Abundant evidence indicates that HIV expression is less 
robust in women compared with men [10]. In untreated in-
fection, women have an approximately 0.35 log10 lower viral 
load (VL) early in disease [11], lower per cell production of 
HIV RNA in lymph nodes [12], and higher levels of T-cell 
activation for a given VL [13, 14]. This difference in VL ex-
cluded women at risk for progression to AIDS from treatment 
in early guidelines [15], underscoring the clinical implications 
of ignoring biological sex. In treated HIV, women have lower 
levels of detectable cell-associated HIV RNA [16, 17], lower 
levels of residual viremia [17, 18], and lower levels of inducible 
RNA [17] and lower levels of replication-competent virus in 
some but not all studies [19, 20].

The basis of these sex differences is still being defined [10], 
but data suggest that sex hormones play a role [10]. In vitro 
models of active infection reported inhibition of HIV expres-
sion by 17β-estradiol mediated through the estrogen receptor 
alpha (ESR1) [21], and studies of acute infection support an in-
fluence of estradiol on HIV VL in untreated disease [13]. ESR1 
has also been implicated in HIV latency control. In an unbi-
ased small hairpin RNA (shRNA) screen in an in vitro HIV la-
tency model, ESR1 was a dominant regulator of HIV latency 
reversal [22]. In complementary studies, 17β-estradiol treat-
ment blunted HIV transcription induced by T-cell activation 
in ex vivo assays in CD4+ T cells from women on suppressive 
antiretroviral therapy (ART). The selective estrogen receptor 
modulator tamoxifen enhanced HIV transcriptional activation 
by vorinostat [22]. Taken together, these data point to a role for 
17β-estradiol and ESR1 in HIV transcriptional control during 
both active infection and latency reversal.

Although mounting evidence demonstrates sex-specific fea-
tures of HIV latency, sparse data are available on the therapeutic 
strategies for HIV cure in women. Despite the fact that women 

whelming enrolled male participants, and the efficacy of LRAs 
in women is not known. In this study, we sought to determine 
whether antagonism of the estrogen receptor in vivo would 
augment HIV latency reversal by vorinostat in women. We hy-
pothesized that combined tamoxifen and vorinostat would be 
safe and would lead to greater induction of HIV RNA compared 
with vorinostat alone.

METHODS

Study Design and Participants

The AIDS Clinical Trials Group (ACTG) study A5366 
(MOXIE: tamoxifen for enhancement of latency reversal) is a 
randomized, open-label, proof-of-concept study that enrolled 

who were virologically suppressed on ART for  >1 year at 15 
sites. Postmenopausal women were enrolled due to potential 
genotoxicity of vorinostat [23] and symptoms from tamox-
ifen in premenopausal women. Participants had CD4+ T-cell 
counts >300 cells/μL and were on continuous ART for >1 year. 
Participants were randomized 2:1 to receive either tamoxifen at 
20 mg daily for 38 days (arm A, TAMOX/VOR) or observation 
arm B (VOR) and then all received 2 doses of 400 mg vorinostat 
on days 35 and 38 (Figure 1). The study was approved by the 
local institutional review boards. Detailed methods are in the 
Supplementary Materials.

The primary end points were safety of tamoxifen and 
vorinostat and change from baseline in HIV type 1 (HIV-1) 
cell-associated RNA (caRNA) in CD4+ T cells following treat-
ment with vorinostat and tamoxifen compared with vorinostat 
alone. Secondary analyses included change in proviral HIV 
DNA levels, proportion with low level viremia by single copy 
assay, and H4Ac levels.

Virologic, Hormonal, and Pharmacologic Assays

Baseline blood samples were obtained at the preentry and entry. 
Clinical HIV-1 RNA assays at entry and day 28 confirmed sup-
pression prior to vorinostat dosing. The primary end point 
was 5 hours post the second dose of vorinostat based on prior 
studies that suggested this would yield maximal HIV RNA ex-
pression [2].

CD4+T cells were isolated by negative immunoselection 
from cryopreserved peripheral blood mononuclear cells 
(PBMCs); genomic DNA and total RNA (AllPrep, Qiagen) 
were isolated from approximately 5 ×  106 total CD4+T cells. 
Total HIV-1 DNA and unspliced caRNA levels were quantified 
in triplicate using real-time polymerase chain reaction (PCR) 
with primers targeting the gag region [24]. Approximately 
500 ng of genomic DNA were assessed per well, with cell input 
quantification by CCR5 gene DNA copy number and a limit of 
quantification of 1 copy per reaction [24]. HIV-1 caRNA was 
quantified with the same primers, and RNA integrity was con-
firmed by quantitative PCR (qPCR) of the human reference 
gene IPO8. The limit of quantification of the caRNA assay was 
3 copies per reaction.

Quantification of spliced envelope RNA transcripts was per-
formed using the EDITS assay [22]. CD4+T cells were isolated 
from cryopreserved PBMCs by immunoselection and RNA 
isolated (RNeasy Kit, Qiagen). The total input (approximately 
1.25 × 106 CD4+cells/sample) was then used in a nested PCR 
with primers spanning the spliced region of Env and thereby 
excluding proviral amplification based on product length [22]. 
The sample was taken into library preparation and sequencing 
on the Ion Torrent platform. Mapped reads were quantified as 
the frequency of cells spontaneously producing spliced envelope 
RNA using a standard curve spanning a range of 1 to 300 pri-
mary memory CD4+cells infected with replication-competent 
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GFP-tagged HIV-1 NL4-3 in a total pool of 1.25 ×  106 unin-
fected cells [22].

Residual HIV-1 plasma viremia was quantified by a single 
copy assay using 4.5 mL of plasma. The assay uses primers spe-
cific for the integrase region of the pol gene and was performed 
as previously described; the limit of quantification was 0.38 
copies/mL [25].

Histone acetylation was assessed using an H4K5/8/12/16 
enzyme-linked immunosorbent assay on PBMC lysates as pre-
viously described [26, 27]. Estradiol levels were measured using 
a standard clinical liquid chromatography-mass spectrom-
etry (LC-MS) assay. Tamoxifen concentration was measured 
from plasma samples using ultraperformance LC-MS (Waters, 
Milford, MA). Vorinostat concentrations were measured from 
serum using LC-MS/MS (SCIEX, Framingham, MA).

Statistical Analyses

Arms were compared using t tests of log-transformed virology 
measures, imputing half an analytic lower limit for results 
below limit (prespecified primary analysis, anticipating 10% of 
caRNA results would be below the assay lower limit). Sensitivity 
analyses used longitudinal censored-data methods [28] using 

result-specific lower limits in a mixed model with random in-
tercept. For the initial approach, a lower limit was set for all 
study participants using a cutoff of the participant with the 
highest lower limit (eg, if linear range ended at 50 copies for 
participant X, measured values of 38 and 42 in participant Y 
would not be included but would be imputed at half the ana-
lytic lower limit; in this example, imputed at 25 copies). Using 
the result-specific lower limits, we included all values measured 
in the linear range for each participant and only imputed those 
without a measured value. Additional sensitivity analyses in-
cluded negative binomial regression applied to the well-specific 
replicates [29].

RESULTS

Between June 2018 and September of 2018, 31 women with a 
median age of 57 years and a median CD4 count of 688 cells/
mm3 enrolled in A5366; 58% were African American (Table 1). 
The median time since ART initiation was 7.5 years (first quartile 
[25th percentile], 2.9 years; third quartile [75th percentile], 13.9 
years) with the majority (27 of 31) currently receiving regimens 
that included integrase inhibitors (Supplementary Table 1). Of 
these 31 women, 27 constituted the efficacy population; these 

Figure 1. Trial profile.
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women received intended doses of both study medications, 
maintained plasma viral load <75 copies/mL prior to study inter-
ventions, and had samples available for evaluation. Four women 
were not included in the efficacy population because they with-
drew or were lost to follow-up (n = 2), did not have the primary 
end point blood sample drawn (n = 1), or had detectable viremia 
prior to the study interventions (n = 1). Participant-level data are 
provided in the Supplementary Materials.

The primary end points of the study were safety and the dif-
ference in HIV RNA induction between the study arms. With 

respect to safety, the intervention was well tolerated and there 
were no serious adverse events attributed to the study medi-
cations. Only 2 participants had adverse events of any grade 
(Supplementary Table 2). Study withdrawal or loss to follow-up 
occurred in 1 participant in each arm.

HIV caRNA induction was quantified using 2 approaches: 
qPCR measurement of unspliced HIV (usHIV) gag RNA tran-
scripts in total CD4+T cells and the EDITS assay, a measure 
of spliced envelope transcripts from resting memory CD4+T 
cells (Figure 2, Supplementary Figures 1 and 2). The overall 

Table 1. Characteristics of the Study Population 

Characteristic Overall Arm A (Vorinostat  +  Tamoxifen) Arm B (Vorinostat ) 

Sex, number (%), female 31 (100) 21 (100) 10 (100)

Age, median (Q1, Q3), years 57 (53–60) 57 (54–61) 55 (51–59)

Race, number (%)

  American Indian or Alaskan Native 1 (3) 1 (5) 0 (0)

  Black or African American 18 (58) 11 (52) 7 (70)

  White 12 (39) 8 (38) 3 (30)

Ethnicity, number (%)

  Hispanic/Latino 6 (19) 4 (19) 2 (20)

  Not Hispanic/Latino 25 (81) 17 (81) 8 (80)

Years since antiretroviral therapy start, median Q1, Q3) 7.5 (2.9–13.9) 6.1 (2.4–13.9) 9.4 (5.9–12.2)

Nadir CD4+ T-cell count, median (Q1, Q3), cells/mm3 232 (46–363) 232 (10–363) 261 (80–402)

Screening CD4+ T-cell count, median (Q1, Q3), cells/mm3 688 (536–854) 688 (536–773) 722 (566–1106)

Antiretroviral regimen, number (%)

  Integrase inhibitor + NRTIs 24 (77%) 18 (86%) 6 (60%)

  NNRTI + NRTIs 3 (10%) 1 (5%) 2 (20%)

  Protease inhibitor + NRTIs 1 (3%) 1 (5%) 0 (0%)

  Other combination 3 (10%) 1 (5%) 2 (20%)

Abbreviations: NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; Q1, first quartile (25th percentile); Q3, third quartile (75th percentile).

Figure 2. Human immunodeficiency virus (HIV) RNA changes over time. A, Cell-associated unspliced HIV RNA measured in total CD4 cells at baseline (average of 2 meas-
urements), at day 28 after either 4 weeks of tamoxifen (arm A) or observation (arm B), and 5 hours after the second dose of vorinostat (day 38). B, Spliced HIV RNA as meas-
ured with the EDITS assay in resting memory CD4 cells at the same time points. Symbols indicate geometric mean, bars Q1 (first quartile [25th percentile]), Q3 (third quartile 
[75th percentile]). Open symbols in (A) indicate geometric mean when using participant-specific lower levels of quantification. There was no significant difference between 
the study arms in the induction of HIV RNA by either assay. Abbreviations: caRNA, cell-associated RNA; TAMOX, tamoxifen; VOR, vorinostat.
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mean fold change for all participants for usHIV RNA was 1.2 
(95% confidence interval [CI], .7–2.1); for spliced transcripts 
by EDITS, it was 2.0 (95% CI, 1.0–3.8). In the analysis by 
study arm, the mean fold change in usHIV RNA transcripts 
at 5 hours post the second dose of vorinostat was 1.2 (95% CI, 
.6–2.3) for arm A (VOR  +  TAMOX) vs 1.5 (95% CI, .7–3.2) 
for arm B (VOR; P  =  .6; Figure 2A, Table 2). Similar results 
were obtained when spliced envelope transcripts were analyzed 
using the EDITS assay, with a mean fold change of 1.5 (95% CI, 
.7–3.2) for arm A and 4.3 (95% CI, 1.2–15.0) for arm B (P = .12; 
Figure 2B). Tamoxifen treatment did not augment induced ex-
pression of HIV caRNA in the study population in either assay.

This usHIV RNA analysis was performed using a single lower 
limit of quantification (LLQ) of 49 copies per million total 
CD4+T cells across all samples. Thirty percent of the usHIV 
RNA values fell below this LLQ, and values were imputed. To 
assess the impact of imputation for values below the limit of 
detection, we performed planned secondary analyses of the 
usHIV RNA values using censored-data methods and result-
specific LLQ (see Methods section) and using negative bino-
mial regression including all measured values scaled to input 
[28, 29]. The majority of the imputed data points were in arm 
A participants; using a result-specific LLQ, this led to a lower 
baseline usHIV RNA estimate in arm A (Figure 2A, open circle 
at baseline). This alternative analysis correspondingly increased 
the estimate in arm A of usHIV RNA induction after vorinostat 
administration (Table 2).

To assess the usHIV RNA findings more comprehensively, 
we performed a negative binomial regression analysis. This 
approach allowed us to consider the values of each of the trip-
licate qPCR wells individually and permitted the inclusion of 
values below the LLQ without imputation and capturing the 
variability in replicate measurements as an additional measure 
of the uncertainty of the observations. When compared with 
the initial analysis, this method shifted the estimates of usHIV 
RNA induction. This effect was observed predominantly in 
arm A, which included the majority of the very low value ob-
servations (Table 2). Despite these shifts in estimates of induc-
tion, we again observed no augmentation of HIV caRNA by 
combined tamoxifen  +  vorinostat compared with vorinostat 
alone.

To assess the impact of vorinostat administration on histone 
4 acetylation in PBMCs, we compared the level of acetylation 
prior to vorinostat exposure (day 28 specimen) with acetyla-
tion levels after the second vorinostat dose at the primary end 
point time point (day 38 post vorinostat specimen). Among the 
27 women in the trial, 18 had evidence of an increase in his-
tone acetylation consistent with the predicted biological effect 
of vorinostat, and 9 women demonstrated a decrease in his-
tone acetylation (Table 3, Supplementary Figure 3). The median 
vorinostat concentration at day 38 was the same (75 ng/mL) for 
both of the histone acetylation groups (P = .5, Wilcoxon signed 
rank test; Supplementary Table 3). When stratified by change 
in histone acetylation, the women with evidence of increased 
histone acetylation showed a mean fold change of 2.78 (95% 
CI, 1.34–5.79 in spliced HIV transcripts by the EDITS assay), 
whereas those with decreased histone acetylation had a fold 
change in spliced HIV transcripts of 1.04 (95% CI, .25–4.29; 
Figure 3, Table 3, Supplementary Figure 4).

Secondary end points that were analyzed included the level 
of detectable plasma viremia by single copy assay (lower limit 
of quantification, 0.47 copies HIV RNA/mL plasma) and cell-
associated proviral HIV DNA. Neither of these values showed 
variation in response to vorinostat administration overall or 
when considered by study arm (Supplementary Tables 4 and 
5, Supplementary Figure 5). Levels of 17β-estradiol were as-
sessed in all participants at entry, day 28, day 38, and at the fol-
low-up visits; tamoxifen concentrations were in the predicted 
range (Supplementary Table 6). Minimal variation in hormone 
levels was observed; only 4 participants (all in arm A) showed 

Table 2. Change in Unspliced Human Immunodeficiency Virus RNA Expression From Baseline to Post-Vorinostat Measurement 

 
Number of  
Participants 

t Test With Imputation Below 
Overall LLQ 

Longitudinal Censored Model With 
Participant-Specific LLQ 

Negative Binomial 
Regression 

Arm A (vorinostat  +   
tamoxifen)

19 1.2 (0.6–2.3) 1.7 (1.1–2.7) 2.4 (1.3–4.6)

Arm B (vorinostat) 8 1.5 (0.7–3.2) 1.5 (0.7–2.9) 2.6 (1.0–6.8)

Ratio between arms 0.8 (0.2–2.4) 1.2 (0.5–2.7) 0.9 (0.3–2.9)

Table shows the fold change and 95% confidence intervals (CIs) of unspliced human immunodeficiency virus RNA expression by study arm, measured as the ratio between expression at 5 
hours after the second vorinostat dose compared with baseline, preintervention levels of expression (baseline = incorporates both preentry and entry visit values). The ratio in fold change 
between arms and 95% CIs are also shown. The fold change was assessed using 3 statistical approaches as detailed in the Methods and Results sections.

Abbreviation: LLQ, lower limit of quantification.

Table 3. Change in Human Immunodeficiency Virus RNA Expression 
Based on Histone Acetylation 

 Histone 4 Acetylation

Decrease N = 9 Increase N = 18 
Fold change (95%  

confidence interval)
1.04 (0.25–4.29) 2.78 (1.34–5.79)

Table shows the fold change and 95% confidence intervals of human immunodeficiency 
virus RNA expression measured in resting memory CD4 cells using the EDITS assay 5 
hours after the second vorinostat compared with a single baseline level of expression at 
entry.
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substantial variations in estradiol levels across the study period 
(Supplementary Figure 6).

DISCUSSION

ACTG A5366 (the MOXIE trial) is the first interventional trial 
to investigate potential HIV cure strategies conducted exclu-
sively in women, a group that has been underrepresented in 
trials relevant to cure [8, 9]. The trial enrolled rapidly, the in-
tervention was safe, and participants endorsed positive experi-
ences with the trial, expressing willingness to participate in 
future HIV cure research [30]. Data suggesting that some fea-
tures of the reservoir have sex specificity [16–18, 20, 31, 32] in-
dicate that cure strategies should be tested in both sexes, and the 
successful enrollment of this trial supports the feasibility of in-
cluding women in future trials of investigational cure strategies.

The trial did not demonstrate enhanced induction of HIV 
transcription by vorinostat in vivo after tamoxifen treatment. 
This is in contrast to a preclinical study that found that ex vivo 
exposure to 17β-estradiol decreases HIV transcription in re-
sponse to latency reversal [22]. The reason for this difference may 
be related to study participant selection; the most pronounced 
suppressive effect of estradiol ex vivo was observed in cells from 
women of reproductive age, with more modest effects in cell 
cultures of men and older women [22]. Our study enrolled only 
postmenopausal women due to the potential for genotoxicity of 
vorinostat and/or adverse symptomatic effects of estrogen an-
tagonism in premenopausal women [23]. In postmenopausal 
women, estrone is the dominant circulating estrogen; although 
it correlates with levels of 17β-estradiol [33], the effects on HIV 
latency and efficiency of blockade by tamoxifen are less clear. 
Our results demonstrated that only 4 of the 27 participants had 

substantial variations in 17β-estradiol levels over the course 
of the study. Low levels of circulating 17β-estradiol may have 
contributed to the lack of impact of tamoxifen in our study. 
Vorinostat had only a marginal effect on HIV transcriptional 
activity, which may also have limited the possibility of detecting 
an effect. Vorinostat was chosen based on preclinical studies of 
the combination with tamoxifen [22], safety of the combination 
(vorinostat plus tamoxifen) in women with breast cancer [34], 
and due to the high-affinity interaction of romidepsin with the 
estrogen receptor, rendering that HDACi unsuitable for a study 
of estrogen receptor antagonism [35].

Our study is the first to assess the efficacy of HDACi in 
women. In studies that assessed the impact of the HDACi 
vorinostat [2, 36–39], panobinostat [40], and romidepsin 
[41–43], only 14 of the 206 participants were women (7%). 
HDACi including vorinostat impacts estrogen receptor ex-
pression [44], and romidepsin interacts with the estrogen 
receptor [35]. Taken together with the impact of estrogen ex-
posure during in vitro latency reversal treatments, the data 
suggest that latency reversal agents need direct assessment 
in women. Optimally, studies should enroll premenopausal 
women when safety concerns can be adequately addressed 
during informed consent. Our results are consistent with ob-
servations in prior studies that show a substantial degree of 
host variability in the response to latency reversal treatment. 
Some prior studies of HDACi have enriched for participants 
with a higher probability of response by using prescreening 
assays to identify participants with an ex vivo response to 
HDACi [2], but no clinical assay has emerged as a predictive 
correlate. In this study, stratification by H4Ac was associ-
ated with higher induction of spliced HIV RNA transcripts, 

Figure 3. Human immunodeficiency virus (HIV) RNA changes using the EDITS assay stratified by histone acetylation changes. Data from all participants were pooled and 
stratified into two groups: those with an increase in H4 acetylation between day 28 and day 38 (n = 18, panel A) and those with a decrease in H4 acetylation (n = 9, panel B). 
HIV RNA+ cells per million resting memory CD4+ T cells quantified using EDITS is shown, box plots indicate mean and Q1 (first quartile [25th percentile]), Q3 (third quartile 
[75th percentile]). Closed symbols denote arm A participants and open symbols arm B participants.
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suggesting that this may be a biomarker for responsiveness to 
HDACi response that could potentially be adapted as an ex 
vivo screening test of participants.

We observed a substantial frequency of usHIV RNA levels 
that were below the limit of detection. Data from prior studies 
[16, 18, 41] showed below-limit frequencies of 1.5% and 7.6%, 
respectively, which are substantially lower than our results. This 
finding may reflect generally lower levels of HIV transcriptional 
activity in females on suppressive ART [17], may be specific 
to the population enrolled in this trial, or could be related to 
a technical aspect of the assays we used (eg, direct measure-
ments on total CD4+  T cells rather than on PBMCs used in 
prior ACTG studies). We used 3 statistical approaches to an-
alyze the usHIV RNA dataset, as there is no consensus on the 
optimal method for analyzing data that are close to the analytic 
limits of detection [29]. All 3 approaches were consistent in 
showing no augmentation of latency reversal with tamoxifen. 
These data highlight the challenges of differentiating when a 
biological effect has been achieved and when that effect has a 
magnitude that is clinically significant. Prior studies have lev-
eraged intensive sampling and assessment of multiple replicates 
and large numbers of cells to yield robust results [2]; however, 
leukapheresis and large blood volume sampling are not always 
feasible. Ideally, assays will be sensitive enough to validate or 
disprove effects shown with in vitro assays. Our results support 
the use of methods such as the EDITS assay to achieve better 
precision at lower values and the development of new tech-
niques such as the ultrasensitive measurement of HIV proteins 
[45–47]. Improving sensitivity and precision of clinical trial end 
points will aid decisions on whether an intervention should be 
optimized or abandoned.

In conclusion, our study did not demonstrate an impact of 
estrogen antagonism on HIV latency reversal. The rapid enroll-
ment and successful completion of the first HIV cure trial done 
exclusively in women support the feasibility and importance 
of enrolling women into future studies investigating curative 
interventions. The larger than anticipated fraction of women 
with very low values of caRNA in this trial emphasizes the po-
tential for sex-based differences in HIV reservoir dynamics as 
initial predictions were based on prior studies with predomi-
nantly male participants. These findings highlight the need to 
adequately power proof-of-concept trials where a range of host 
responses are expected and underscore the need for sensitive 
and reliable assays of virologic outcomes.
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