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KEY POINTS
� Hospital-acquired pressure injury risk assessment is vital for
prevention, but current risk assessment instruments such
as the Braden Scale lack specificity in critical-care patients.

� The current study shows good discrimination for predicting
hospital-acquired pressure injuries in critical-care patients
using machine learning algorithms combined into an en-
semble SuperLearner.

� Explainable artificial intelligence was used to create trans-
parent machine learning models at the global and single-
patient levels.

� The most important variables in the top-performing model
were hemoglobin, fragile skin, and serum albumin.
H ospital-acquired pressure injuries (HAPrIs) are areas
of injury to the skin due to prolonged pressure or pres-
sure in combination with shear. These injuries occur

in 6% to 8% of critical-care patients and result in human
suffering.1–3 Most HAPrIs are preventable. Still, prevention
may be better served with a more precise risk stratification
approach and associated preventive interventions, given that
every patient does not require the same level of care, nursing
resources are limited and constrained by competing priori-
ties (consider the COVID-19 pandemic), and cost-saving
measures are further impacting care delivery. Risk stratifica-
tion is essential in the ICU, but current risk assessment in-
struments, such as thewidely usedBraden Scale,4 lack specificity
and end up classifying most ICU patients as “high risk” and
therefore hinder nurses from differentiating HAPrI risk among
patients.5–9 Moreover, special subgroups and conditions within
the ICU population may have unique HAPrI risk profiles. For
example, ICUpatientswithCOVID-19 experience high severity
of illness in the context of a unique constellation ofHAPrI risk
factors, including hypoxemia, altered perfusion, and care-related
factors such as prone positioning.10,11 Yet, little is known re-
garding HAPrI risk in COVID-19–positive ICU patients.

The National Pressure Injury Advisory Panel's (NPIAP's)
2019 Clinical Practice Guidelines call for research using ar-
tificial intelligence (AI) and machine learning (ML) to im-
prove the accuracy of HAPrI risk assessment accuracy in
the ICU.3 Readily available electronic health record (EHR)
data are used in modeling developed through ML methods,
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thus reducing documentation time and increasing the amount
of nursing time available for patient care. Machine learning
approaches are particularly relevant in the ICU setting be-
cause of the dynamic physiologic nature of critical-care pa-
tient conditions.12 Unlike traditional prognostic instruments
such as the Braden Scale,4 anML approach can incorporate
nonlinear, complex interactions among variables and cap-
ture multiscale time dependencies, allowing for findings of
new trends over time, thus producing a synergistic influence
on HAPrI risk assessment and therefore prevention.12,13

The downside of ML algorithms is their “black box”
nature—clinicians are unable to determine how the algorithm
made the decision and are thus understandably unwilling to
trust the algorithm for patient care decisions. Thus, theNPIAP's
call for ML algorithms to predict HAPrI includes the specifica-
tion that models must be transparent and interpretable.3 Inter-
pretability is defined as the ability of a human to understand the
relationship between the features in an ML model and the
model's prediction.14 Explainable AI methods including the
SHAP (SHapley Additive exPlanations) value are a way to in-
crease transparency and interpretability.15 The SHAP value as-
signs each feature (variable) in the model an importance value
for a particular prediction by averaging the marginal contribu-
tion of a feature across all possible permutations (sets of fea-
tures).15 SHAP plots can be generated for global MLmodel in-
terpretability (the collective SHAP values across a data set) and
local interpretability (the SHAP values for one observation).
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Table 1. Characteristics of the Sample

All Patients With COVID
(N = 407)

Patients With HAPrI
(n = 74 [18%]) No HAPrI (n = 333 [82%]) P

Missing
Data

Demographic and discharge information
Age, mean (SD), y 59 (15) 63 (16) 58 (14) <.001 0%
Sex, male, n (%) 256 (63) 47 (64) 209 (63) 1.0 0%
Race, n (%) Native American or

Alaska native: 22 (5%)
Asian: 11 (3%)
Black: 10 (2%)
Native Hawaiian or Other
Pacific Islander: 19 (5%)
White: 229 (56%)
Other, Unknown, or
choose not to disclose:
116 (29%)

Native American or
Alaska native: 5 (7%)
Asian: 1 (1%)
Black: 0 (0%)
Native Hawaiian or Other
Pacific Islander: 4 (5%)
White: 58 (78%)
Other, Unknown, or
choose not to disclose:
6 (8%)

Native American or
Alaska native: 17 (5%)
Asian: 10 (3%)
Black: 10 (3%)
Native Hawaiian or Other
Pacific Islander: 15 (5%)
White: 171 (51%)
Other, Unknown, or
choose not to disclose:
110 (33%)

<.001 0%

Ethnicity, Hispanic, n (%) 98 (24) 4 (5) 94 (28) <.001 0%
Hospital length of stay,
mean (SD)

16 (16) 16 (14) 16 (16) .89 0%

Died during
hospitalization, n (%)

101 (25) 21 (28) 80 (24) .74 0%

Time in the emergency
department, mean
(SD), hours

2.7 (2.6) 2.2 (2.9) 2.9 (2.5) .10 0%

Braden Scale scores
Minimum Braden Scale
total score, mean (SD)

11.3 (3.8) 11.0 (4.2) 11.4 (3.7) .25 0%

Treatments
Ventilator days, mean
(SD)

5 (10) 5 (12) 5 (10 .26 0%

Reintubation, n (%) 46 (11) 9 (12) 37 (11) .96 0%
Dialysis, n (%) 89 (22) 21 (28) 68 (20) .18 0%
Vasopressor infusion,
n (%)

49 (12) 17 (23) 32 (10) .003 0%

Laboratory values
Maximum lactate, mean
(SD), mg/dL

3.81 (3.87) 4.37 (3.93) 3.69 (3.85) <.001 9%

Maximum serum
creatinine, mean
(SD), mg/dL

2.16 (2.22) 2.66 (2.97) 2.05 (2.01) <.001 0.01%

Maximum serum
glucose, mean (SD),
mg/dL

266 (128) 258 (125) 269 (129) .53 0.01%

Minimum hemoglobin,
mean (SD), g/dL

10.46 (3.00) 8.85 (2.85) 10.80 (2.93) <.001 0.01%

Minimum albumin, mean
(SD), mg/dL

2.68 (0.52) 2.24 (0.52) 2.74 (0.51) <.001 9%

Mean PaO2, mean (SD),
mm Hg

104 (62) 101 (62) 117 (63) .06 6%

Maximum PaCO2,
mean (SD), mm Hg

53 (21) 59 (21) 52 (21) .19 6%

Minimum pH, mean (SD) 7.44 (0.07) 7.44 (0.10) 7.44 (0.07) .44 6%

(continues)
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Table 1. Characteristics of the Sample, Continued

All Patients With COVID
(N = 407)

Patients With HAPrI
(n = 74 [18%]) No HAPrI (n = 333 [82%]) P Missing Data

Nursing skin assessments
Fragile skin: thin
epidermis with
subcutaneous tissue
loss, n (%)

198 (49) 56 (76) 142 (43) <.001 0%

Excessively moist skin,
n (%)

81 (20) 16 (21) 65 (19) .84 0%

Pitting edema, n (%) 84 (21) 18 (24) 66 (20) .48 0%
Nutrition
Unplanned weight loss
>10 lb before admission,
n (%)

32 (8) 11 (15) 21 (6) .26 0%

No intake >3 d, n (%) 28 (7) 6 (8) 22 (7) .83 0%
Comorbid conditions and severity of illness
Charleston Comorbidity
Index, mean (SD)

3.38 (3.32) 5.05 (4.06) 3.01 (3.02) <.001 0%

Maximum MEWS score,
mean (SD)

5.39 (2.01) 5.80 (2.14) 5.31 (2.14) <.001 0%

Diabetes, n (%) 222 (55) 42 (57) 180 (54) .77 0%
Spinal cord injury, n (%) 27 (7) 13 (18) 14 (4) <.001 0%
Heart failure, n (%) 95 (23) 31 (42) 64 (19) <.001 0%
Chronic obstructive
pulmonary disease, n (%)

128 (31) 32 (43) 96 (29) .21 0%
The purpose of this study was to evaluate HAPrI injury
risk in COVID-19–positive ICU patients. The specific aims
include the following: (1) develop an ML model to predict
HAPrI risk and (2) apply the SHAP explainable AI method
for global and local model interpretability.

METHODS
Design
This retrospective cohort study was conducted using EHRdata
extracted from one hospital system's enterprise data warehouse.
Extracted data were limited to the duration of the patients'
ICU stay and verified for accuracy by an informaticist and
ICU nurse with Epic EHR system expertise (Epic Systems
Corp, Madison, WI, USA). The study was approved by the
facility's institutional review board.

Sample
Adult patients who tested positive for COVID-19 and ad-
mitted to one of two medical ICUs at a single level-1 trauma
center and academic medical center between April 2020
and April 2021 were eligible for inclusion in the study. Pa-
tients with a pre-existing (community-acquired) pressure injury
were included because of the increased likelihood of developing
an additional pressure injury after hospitalization.16

Measures
The HAPrI outcome variable was defined according to the
NPIAP staging definitions (stages 2–4, unstageable, or deep
Volume 40 | Number 10

Copyright © 2022 Wolters Kluwer H
tissue injury).3 Stage 1 HAPrIs were not included because
stage 1 injuries are reversible and considered less severe.17,18

Hospital-acquired pressure injuries were deemed to be hospital-
acquired if occurring at least 48 hours after the ICU admis-
sion. All HAPrIs were verified by a certified wound nurse
and evaluated to determine whether the injury was medical
device–related. Medical device–related pressure injuries were
excluded from this analysis because those injuries have dif-
ferent risk factors.19,20

Potential predictor variables were selected based on a review
of the relevant literature and Coleman and colleagues'21 con-
ceptual framework for pressure injury etiology.1,21,22 The con-
ceptual framework classified variables based on a proposed
causal pathwaywith immobility, skin status, and poor perfusion
as direct causal factors.21 Predictor variables were only re-
corded before an HAPrI occurred so that data in the ML
models were limited to events preceding the HAPrI. Pre-
dictor variables and their operationalizations are de-
scribed in Table 1.

Analysis
All data analyses were performed using open-source R soft-
ware version 4.1.2 (RCoreTeam,Vienna, Austria).23Missing
data were quantified and assessed for patterns of missingness
using graphical clustering displays. For prediction engi-
neering, data were split into 80:20 training and testing
data sets. Random forest (single value) imputation was
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applied independently to training and testing sets to avoid
information leakage. Imputation was performed on variables
not informatively missing; variables with potential informa-
tive missingness were given an indicator for whether the value
was observed. Several competing predictive models (deep
neural nets, extreme gradient boosting [xgboost], deep ran-
dom forests, and logistic regression) were developed on the
training data set using the H2O package in R and assembled
into an ensemble (composite) SuperLearner.24,25 Model per-
formance was evaluated based on continuous performance
on the receiver operating characteristic curve in the testing
data set. Finally, the most important variables (features)
were extracted from the best-performing model based on
the mean decrease in accuracy.

Global and local (individual patient) SHAP plots were de-
veloped for the best-performing model in the ensemble algo-
rithm (Deep Neural Network). The local SHAP plot was de-
veloped for a synthetic patient because of privacy concerns.

RESULTS
Sample
The final sample consisted of 407 patients. Seven patients
were excluded from the analysis because of excessive missing
data. The sample was predominantly male (n = 256 [63%]),
and the mean age was 59 (SD, 15) years. Characteristics of
the sample are presented in Table 1.

Hospital-Acquired Pressure Injury Outcome
Hospital-acquired pressure injuries (defined as stage 2 or
worse) occurred in 18% of the sample (n = 74).
FIGURE 1. Predictive models discrimination.
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Predictor Variables
Relationships between the potential predictor variables and
HAPrI formation are outlined in Table 1.

Predictive Models
The predictive models' discrimination based on area under the
receiver operating characteristic curve is shown in Figure 1. The
best-performing model was the ensemble SuperLearner with an
area under the receiver operating characteristic curve of 0.807.

Explainable AI
The global SHAP plot for ensemble SuperLearner is pre-
sented in Figure 2. The most important variables in the en-
semble SuperLearner were, in descending order, hemoglobin,
the presence of fragile skin (defined as thin epidermis with loss
of subcutaneous tissue), and albumin. Note that red dots indi-
cate negative correlations, and blue dots indicate positive cor-
relations. For example, in Figure 2, low levels of hemoglobin
were associated with risk for HAPrI, whereas higher levels
were protective, and a positive value (1 = yes) for fragile skin
conferred risk, whereas a negative value was associated with
reduced risk. The local SHAP plot for a synthetic patient is
presented in Figure 3. The model predicted that the synthetic
patient would develop an HAPrI. The most important risk
factor in the synthetic patient SHAP plot was the length of
stay, followed by the presence of renal disease.

DISCUSSION
The purpose of this study was to evaluate HAPrI risk in ICU
patients with COVID-19, to develop ML model to predict
October 2022
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FIGURE 2. Global SHapley Additive exPlanations (SHAP) plot for the ensemble SuperLearner.
HAPrI risk, and apply explainable AI for model transparency
and human interpretability. The best-performing ML model,
an ensemble SuperLearner, showed good discrimination (area
under the receiver operating characteristic curve = 0.807), and
the global and local SHAP plots allow nurses to understand
how the model is using the variables. This study adds to the
body of literature showing ML approaches are useful for
assessing HAPrI risk in critical-care patients,26–29 and it is
the first study to apply explainable AI forHAPrI risk prediction.
The next step is model validation and development of associ-
ated clinical decision support.

Machine learning transparency and interpretability are
essential for model implementation because clinicians will
not—and should not—be willing to trust a model if they
do not understand how the model reached its decision.30

The global SHAP value is a human-interpretable way to vi-
sualize the relationships between the features in the ML
model and its predictions. Yet, it is also necessary to consider
that every patient is an individual with a unique constellation
Volume 40 | Number 10
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of risk factors, only some of which are represented in EHR
data. For example, the clinician may be aware of individual
contextual factors that may affect overall health and HAPrI
risk (eg, unstable housing) that are invisible to theMLmodel.
Moreover, ML models are generated on a data set that may
or may not be representative of a given patient (consider ra-
cial minorities or unique disease states)31,32; therefore, it is
necessary for the clinician to understand how the model de-
cided for the individual patient in order to decide whether
the model is trustworthy for that patient. The individual
SHAP plot is one way to allow clinicians to see how a model
decided and then choose whether to act on the risk predic-
tion generated by the model.

Study findings show that COVID-19–positive critical-care
patients have high risk for HAPrI compared with similar,
non–COVID-19–positive ICU populations. The HAPrI inci-
dence in the study sample (18%) was significantly higher than
the incidence typically reported in non–COVID-19 ICU pa-
tients in the United States (6%-8%).29,33 The high HAPrI
CIN: Computers, Informatics, Nursing 663
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FIGURE 3. Local SHapley Additive exPlanations (SHAP) plot for a synthetic patient.
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incidence is particularly striking, given that the current study
was limited to stage 2+ non–medical device–related injuries.

Themost important variables in the top-performingmodel
were hemoglobin, fragile skin, and serum albumin. Two of
those—hemoglobin and serum albumin—are further evidence
for the role of altered perfusion in HAPrI etiology.1,22,34,35 Low
levels of hemoglobin36 and serum albumin37,38 are previously
identified HAPrI risk factors thought to affect tissue perfusion
and therefore HAPrI risk through oxygen-carrying capacity
(hemoglobin) and colloid osmotic pressure (serum albumin).21

Furthermore, hemoglobin may be considered a modifiable
factor, given that low levels can be corrected with blood
transfusion; future research is needed to evaluate the effects
of so-called permissive anemia39 and blood transfusion on
risk for HAPrI formation.

LIMITATIONS
This study is limited by its relatively small sample size (N= 407)
and its single-site, retrospective design. The study was limited to
HAPrI that occurred in the ICU, and therefore any HAPrIs
664 CIN: Computers, Informatics, Nursing
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that developed immediately after the ICU stay (and thus were
formed in the ICU) were not captured.

CONCLUSIONS
Machine learning is a feasible approach for evaluating HAPrI
risk in critical-care patients with COVID-19. Explainable AI
methods such as SHAP plots are a way to ensure human in-
terpretability and foster trust.
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