Skip to main content
. 2022 Oct 12;12:17123. doi: 10.1038/s41598-022-21724-0

Table 1.

Performance analysis of test data using traditional machine learning technique with and without image pre-processing (Technique 1).

ML models Without image pre-processing With image pre-processing
Accu. Prec Rec. Spec F1-s Time Accu. Prec. Rec. Spec F1-s Time
Logistic regression 0.739 0.739 0.74 0.73 0.74 5.85 0.756 0.754 0.76 0.74 0.76 4.3
SVM 0.762 0.762 0.76 0.76 0.74 370.7 0.807 0.808 0.81 0.79 0.80 268.2
Decision tree 0.714 0.715 0.72 0.71 0.71 24.8 0.737 0.773 0.73 0.74 0.75 10.4
KNN 0.718 0.719 0.72 0.69 0.72 13.9 0.849 0.870 0.85 0.84 0.85 9.1
Naive Bayes 0.714 0.716 0.71 0.70 0.72 6.3 0.760 0.761 0.77 0.76 0.76 4.2
Random forest 0.778 0.779 0.77 0.74 0.77 8.2 0.883 0.883 0.88 0.87 0.88 5.8
Gradient boosting 0.791 0.792 0.80 0.79 0.82 44.3 0.855 0.856 0.86 0.86 0.85 31.8
Adaptive boosting 0.718 0.716 0.71 0.72 0.71 272.2 0.815 0.813 0.82 0.81 0.81 218.9
XG boosting 0.806 0.810 0.80 0.79 0.81 172.2 0.856 0.855 0.85 0.86 0.86 150.1
CATBoost 0.712 0.710 0.72 0.71 0.70 72.2 0.790 0.792 0.79 0.78 0.79 74.1