Table 4.
Performance analysis of test data using proposed technique (Technique 4).
Base Models | Meta-learner | Accuracy | Precision | Recall | Specificity | F1-score | Time (s) | |
---|---|---|---|---|---|---|---|---|
Feature Extraction | LR | Random Forest | 0.9844 | 0.98 | 0.98 | 0.97 | 0.98 | 0.09 |
with CNN | SVM | XGBoost | 0.9989 | 0.99 | 1.00 | 1.00 | 0.99 | 0.05 |
& Classification | DT | AdaBoost | 0.9959 | 0.99 | 0.98 | 0.99 | 0.99 | 1.07 |
with Stacking | KNN | GradBoost | 0.9922 | 0.99 | 1.00 | 0.99 | 0.99 | 0.09 |
Ensemble Model | NB | CATBoost | 0.9958 | 1.0 | 0.99 | 0.99 | 1.0 | 1.12 |