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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute

•	 Identifies the highest-priority areas for health effects research

•	 Competitively funds and oversees research projects

•	 Provides intensive independent review of HEI-supported studies and related research

•	 Integrates HEI’s research results with those of other institutions into broader evaluations

•	 Communicates the results of HEI’s research and analyses to public and private decision 
makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 340 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 
260 comprehensive reports published by HEI, as well as in more than 2,500 articles in the peer-
reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. For this study, a special panel — HEI’s Low-Exposure Epidemiology Studies 
Oversight Panel — worked with the Research Committee in project selection and oversight. The 
Review Committee, which has no role in selecting or overseeing studies, typically works with staff 
to evaluate and interpret the results of funded studies and related research. For this study, a special 
review panel — HEI’s Low-Exposure Epidemiology Studies Review Panel — fulfilled this role.

All project results and accompanying comments by HEI’s Low-Exposure Epidemiology Studies 
Review Panel are widely disseminated through HEI’s website (www.healtheffects.org), reports, 
newsletters and other publications, annual conferences, and presentations to legislative bodies and 
public agencies.

http://www.healtheffects.org
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A B O U T  T H I S  R E P O RT

Research Report 212, Mortality–Air Pollution Associations in Low Exposure Environments (MAPLE): 
Phase 2, presents a research project funded by the Health Effects Institute and conducted 
by Dr. Michael Brauer of The University of British Columbia, Vancouver, BC, Canada, and his 
colleagues. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Low-Exposure Epidemiology Studies Review Panel’s 
comments on the study.

The Investigators’ Report, prepared by Brauer and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Low-Exposure Epidemiology Studies 
Review Panel with the assistance of HEI staff, places the study in a broader scientific context, 
points out its strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of an independent 
Panel of distinguished scientists who are not involved in selecting or overseeing HEI studies. During 
the review process, the investigators have an opportunity to exchange comments with the Panel 
and, as necessary, to revise their report. The Commentary reflects the information provided in the 
final version of the report.
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HEI’s Program to Assess Adverse Health Effects of Long-
Term Exposure to Low Levels of Ambient Air Pollution

INTRODUCTION

Levels of ambient air pollution have declined signifi-
cantly over the last few decades in North America, Eu-
rope, and in other developed regions. Despite the 
decreasing levels of air pollution, several large epidemi-
ological studies published in the early 2010s reported 
associations between adverse health effects and 
exposure to air pollution. These studies found associa-
tions between exposure to fine particulate matter 
(PM2.5*) and mortality at levels below the then-curent 
ambient air quality standards (e.g., Beelen et al. 2014a, 
b; Crouse et al. 2012; Hales et al. 2012; Preface Figure 
1). In order to inform future risk assessment and 
regulation, it is important to confirm whether 
associations with adverse health effects continue to be 
observed as levels of air pollution decline still further. It 
is also important to better understand the shape of 
the exposure–response function at those low levels. 
Both issues remain major uncertainties in setting air 
quality standards.

The growing scientific evidence for effects at pollu-
tion levels below current air quality standards, the large 
overall estimates of the burden of disease attributable to 
air pollution, as well as the interest in reducing 
greenhouse gases, suggest that more stringent air quality 
standards and guidelines may be considered in the 
future. For these reasons, there was a need for addi-
tional investigation to improve our understanding of 
exposure–response function(s) for mortality and 
morbidity at low levels of PM2.5, ozone (O3), and other 
ambient air pollutants. Such studies would inform risk

assessors and policy makers regarding exposure–
response functions at levels of ambient air pollution
currently prevalent in North America, Western Eu-
rope, and other high-income regions of the world.

In 2014, HEI issued RFA 14-3, Assessing Health Ef-
fects of Long-Term Exposure to Low Levels of Ambient Air
Pollution, to solicit studies to address these important
questions. The main goals of the RFA were to (1) fund
studies to assess health effects of long-term exposure
to low levels of ambient air pollution, including all-cause
and cause-specific mortality and morbidity. Such stud-
ies should analyze and evaluate exposure–response
function(s) for PM2.5 and other pollutants at levels cur-
rently prevalent in North America, Western Europe,
and other high-income regions and may also address
related questions about health effects at low levels of
ambient air pollution; and (2) develop statistical and
other methodology required for, and specifically suited
to, conducting such research including, but not limited
to, evaluation and correction of exposure measure-
ment error.

Investigators were asked to pay particular attention
to having sufficiently large cohorts and statistical power
to detect associations should they exist; having the abil-
ity to test various potential confounders of any associ-
ations; and to developing exposure assessment
approaches and statistical methodology to enable a ro-
bust examination of the associations. 

Specifically, investigators were asked to propose
studies to: 

1. Compare and contrast alternative analytic
models and their uncertainty. For example, com-
pare threshold against nonthreshold models,
linear against nonlinear models, and parametric
against nonparametric models, to characterize

* A list of abbreviations and other terms appears at the end of this
volume.
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the exposure–response function(s) at low levels
of ambient air pollution.

2. Explore possible variability in estimates of risk at
low levels among populations and identify pos-
sible contributing factors. Such factors could
include age, smoking, socio-economic position,
health status, and access to medical care, as well
as differences in air pollution sources and time–
activity patterns.

3. Develop and evaluate exposure assessment
methods suitable to estimate exposure to low
levels of air pollution at various spatial and tem-
poral scales in large study populations, including
people who reside in areas not covered by rou-
tine ground-level monitoring.

4. Develop, evaluate, and apply statistical methods
to quantify and correct for exposure measure-
ment error in risk estimates and in characteriza-
tion of exposure–response relationships.

5. Develop and validate approaches to assess the
effects of co-occurring pollutants on any health
effect associations at low ambient concentrations.

6. Develop and validate indirect approaches to cor-
rect risk estimates for the effects of important

potential confounding variables, such as smoking,
in the absence of such data at the individual level.

7. Improve techniques for record linkage and
methods for disclosure protection for optimal use
of large administrative databases in air pollution
and health research.

STUDY SELECTION 

HEI established an independent Low Exposure Epi-
demiology Oversight Panel — consisting of outside ex-
perts and HEI Research Committee members — to
prepare RFA 14-3 and review all applications submit-
ted in response (see Contributors’ page). Members of
HEI’s Research Committees with any conflict of inter-
est were recused from all discussions and from the
decision-making process. The HEI Research Commit-
tee reviewed the Panel’s recommendations and rec-
ommended three studies for funding to HEI’s Board of
Directors, which approved funding in 2015. 

This Preface summarizes the three studies, HEI’s
oversight process, and the review process for the
Phase 1 reports.

Preface Figure 1. Shape of concentration–response function for mortality associated with fine particulate matter in a Canadian cohort.
(Adapted from Crouse et al. 2012, courtesy R. Burnett.) 
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Preface Figure 1. Shape of concentration–response function for mortality associated with fine particulate matter in a Canadian cohort.  
(Adapted from Crouse et al. 2012, courtesy R. Burnett.)
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OVERVIEW OF THE LOW EXPOSURE 
EPIDEMIOLOGY STUDIES

After a rigorous selection process, HEI funded three
teams — led by Michael Brauer at the University of
British Columbia, Canada; Francesca Dominici at the
Harvard T.H. Chan School of Public Health, United
States; and Bert Brunekreef at the University of
Utrecht, the Netherlands — to investigate the health
effects of exposure to low levels of air pollution in very
large populations in Canada, the United States, and Eu-
rope, respectively (see Preface Table and Preface Figure
1). The studies included large population cohorts (with
detailed individual information about potential con-
founders on all or a subset of the cohort) as well as
large administrative databases with greater statistical
power (albeit with less individual covariate informa-
tion). Additionally, the three teams employed satellite
data and ground-level exposure measurements, used
high-quality exposure assessment models at high spatial
resolutions, and set out to develop and apply novel sta-
tistical methods.

The three studies were expected to inform the sci-
entific community and risk assessors and policy makers
regarding exposure–response functions at levels of

ambient air pollution currently prevalent in North
America, Western Europe, and other developed re-
gions. The full sets of analyses were expected to be
completed in 2021 (see below). 

CANADIAN STUDY (MICHAEL BRAUER ET AL.)

Brauer and colleagues proposed to assess the rela-
tionship between nonaccidental mortality and long-
term exposure to low concentrations of PM2.5 in four
large population-based cohorts, including a careful
characterization of the shape of the exposure–re-
sponse function. The investigators used Canadian cen-
sus data and had access to a nationally representative
population of approximately 8.5 million Canadians
(ages 25–90 yr) (Preface Figure 2). The Canadian team
proposed developing hybrid models using primarily sat-
ellite data, as well as chemical transport models, land
use variables, and routinely collected monitoring data
for PM2.5, as well as estimating exposures for NO2 and
O3 for Canada and the United States during the period
1981–2016. Additionally, they planned to validate satel-
lite data against ground-based monitors in Canada as
part of the SPARTAN network (Snider et al. 2015).

Preface Table. HEI’s Research Program to Assess Adverse Effects of Long-Term Exposure to Low Levels of 
Ambient Air Pollution

Investigator
(institution)

Study Title
Phase 1
Report

Final Report
Published

Brauer, Michael
(University of British
Columbia, Canada)

Mortality–Air Pollution Associations in Low
Exposure Environments (MAPLE)

HEI Research 
Report 213 
(2019)

Early 2022 (in
review)

Brunekreef, Bert
(Utrecht University,
the Netherlands)

Mortality and Morbidity Effects of Long-Term
Exposure to Low-Level PM2.5, BC, NO2, and

O3: An Analysis of European Cohorts in the

ELAPSE Project

None September
2021 (HEI
Research
Report 208)

Dominici, Francesca
(Harvard T.H. Chan
School of Public
Health, USA)

Assessing Adverse Health Effects of Long-
Term Exposure to Low Levels of Ambient 
Pollution

HEI Research 
Report 200 
(2019)

Late 2021
(in review)

Preface Table. HEI’s Research Program to Assess Adverse Effects of Long-Term Exposure to Low Levels of 
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Investigator (institution) Study Title Phase 1 Report
Final Report 

Published

Brauer, Michael (University of 
British Columbia, Canada)

Mortality–Air Pollution Associations in Low Exposure 
Environments (MAPLE)

HEI Research 
Report 203 (2019)

HEI Research 
Report 212 
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Brunekreef, Bert  (Utrecht 
University, the Netherlands)

Mortality and Morbidity Effects of Long-Term Expo-
sure to Low-Level PM2.5, BC, NO2, and O3: An Analy-
sis of European Cohorts in the ELAPSE Project
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Dominici, Francesca (Harvard 
T.H. Chan School of Public 
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The exposure models were to be applied to esti-
mate effects of air pollution exposure on all-cause and
cause-specific mortality in four Canadian cohorts: 

1. About 2.6 million subjects who completed the
1991 census long-form of the Canadian Census
Health and Environment Cohorts (CanCHEC),

2. About 3.5 million subjects who completed the
1996 CanCHEC census long-form,

3. About 3.5 million subjects who completed the
2001 CanCHEC census long-form, and

4. About 540,000 subjects who participated in the
Canadian Community Health Survey (CCHS)
between 2001 and 2012, and reported individual-
level risk factors, including smoking.

EUROPEAN STUDY (BERT BRUNEKREEF ET AL.)

Brunekreef and colleagues based their study on the Eu-
ropean Study of Cohorts for Air Pollution Effects
(ESCAPE), which started about a decade ago; its results
have been published widely (e.g., Beelen et al. 2014a, b;
Cesaroni et al. 2014; Eeftens et al. 2012a, b). In the

current HEI-funded study, the investigators proposed to
analyze pooled data from 10 ESCAPE cohorts (instead
of the cohort-specific approach they used previously).
In addition, they planned to use data from six large ad-
ministrative cohorts to yield a total study population of
approximately 28 million Europeans (Preface Figure
2). They proposed developing hybrid Europewide
and location-specific exposure models that would uti-
lize land use information, dispersion modeling, satellite
data, ESCAPE monitoring data, and routinely collected
monitoring data for PM2.5, NO2, O3, and black carbon
at high spatial resolution (residential address level; such
detailed information is very difficult to obtain in the
United States). 

Brunekreef and colleagues proposed to investigate
the following health outcomes: all-cause and cause-
specific mortality, incidence of coronary and cerebro-
vascular events, and lung cancer incidence. The incor-
poration of ESCAPE cohorts with individual covariate
information as well as very large administrative cohorts
(albeit with less detailed information) will provide new
insights into the merits of both approaches. 

Preface Figure 2. Geographical areas and populations covered by HEI’s Research Program to assess adverse effects of long-term exposure to low levels of
ambient air pollution.

Average PM 2.5 levels:
15 µg/m3 (Europe)
11 µg/m3 (US)
7 µg/m3 (Canada)

Preface Figure 2. Geographical areas and populations covered by HEI’s Research Program to assess adverse effects of long-term exposure to low 
levels of ambient air pollution.
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UNITED STATES STUDY (FRANCESCA 
DOMINICI ET AL.)

Dominici and colleagues proposed to evaluate Medi-
care and Medicaid data for a study population of ap-
proximately 60 million Americans (Preface Figure 2).
They planned to develop hybrid exposure models that
incorporate satellite data, chemical transport models,
land use, and weather variables, and routinely collected
monitoring data for PM2.5 and its components, NO2,
and O3, at high spatial resolution (1-km2 grid) for the
continental United States during the period 2000–
2014. Exposure models were to be applied to estimate
adverse health effects of air pollution in three cohorts: 

1. Medicare enrollees (28.6 million elderly enrollees
per year, 2000–2014);

2. Medicaid enrollees (28 million enrollees per year,
2010–2014); and

3. Medicare Current Beneficiary Survey enrollees
(nationally representative sample of approximately
15,000 enrollees per year with rich individual-level
risk factor information, including smoking).

Dominici and colleagues planned to analyze the fol-
lowing health outcomes: time to hospitalization by
cause, disease progression (time to rehospitalization),
and time to death. They proposed developing and
applying new causal inference methods to estimate
exposure–response functions to adjust for confounding
and exposure measurement error. Additionally, they
proposed developing tools for reproducible research
including approaches for data sharing, record linkage,
and statistical software. 

STUDY OVERSIGHT 

HEI’s independent Low Exposure Epidemiology
Oversight Panel provided advice and feedback on the
study designs, analytical plans, and study progress
throughout the duration of the research program (see
Contributors’ page). 

Given the substantial challenges in conducting a sys-
tematic analysis to assess health effects of long-term ex-
posure to low levels of ambient air pollution, HEI
worked actively with the study teams to coordinate
their efforts and ensure the maximum degree of

comparable epidemiological results at the end of this re-
search effort. To this end, HEI regularly held investigator 
workshops and site visits, among other activities. In ad-
dition, the studies were subject to HEI’s special quality 
assurance procedures that included an audit by an 
independent audit team (see www.healtheffects.org/
research/quality-assurance). 

REVIEW OF PHASE 1 AND FINAL (PHASE 2) 
REPORTS

To inform the ongoing review of the U.S. National
Ambient Air Quality Standards (NAAQS) for PM2.5 and
O3 during 2019–2020, HEI requested Phase 1 reports
based on the research completed during the first two
years of the Canadian and U.S. studies. Thus, the Phase
1 reports by Drs. Brauer and Dominici provided sum-
maries of results to date, including those published in
journal articles, with accompanying Commentaries by
an independent Special Review Panel. These Phase 1
reports provided an opportunity to review the results
to date and evaluate their strengths and weaknesses, a
process normally performed after a study has been
completed. 

As is common for major research programs, HEI
convened a Special Review Panel to independently re-
view the Phase 1 reports by Drs. Brauer and Dominici.
The Panel consists of seven experts in epidemiology,
exposure assessment, and biostatistics (see Contribu-
tors’ page). The Panel also reviewed the final (Phase 2)
reports of the three studies.

The three studies commenced in Spring 2016 and
were completed at different times in 2020, with final
reports published during 2021. In addition, further anal-
yses, for example to compare approaches among the
three teams, are ongoing and are expected to be com-
pleted at the end of 2021.
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H E I  S TAT E M E N T
Synopsis of Research Report 212, Phase 2

Mortality–Air Pollution Associations in  
Low-Exposure Environments (MAPLE): Phase 2
BACKGROUND

Growing scientific evidence indicates that 
effects of air pollution on health are observed 
at concentrations below current air quality 
standards. Combined with the large burden of 
disease attributed to air pollution exposure, 
this is resulting in consideration of more 
stringent air quality standards and guidelines. 
To improve our understanding of exposure–
response functions for mortality and morbidity 
at low concentrations of fine particulate matter 
(PM2.5), nitrogen dioxide, ozone, and other 
ambient air pollutants, HEI issued RFA 14-3, 
Assessing Health Effects of Long-Term Exposure 
to Low Levels of Ambient Air Pollution. Three 
studies based in the United States, Canada, and 
Europe were funded. The studies used state-
of-the-art exposure assessment methods with 
large cohorts in high-income countries where 
ambient concentrations are generally lower than 
current air quality guidelines and standards for 
Europe and the United States. HEI convened 
an independent Low-Exposure Epidemiology 
Studies Review Panel to evaluate the studies’ 
strengths and weaknesses. This Statement high-
lights results from the study in Canada.

APPROACH

The Mortality–Air Pollution Associations in 
Low-Exposure Environments (MAPLE) study 
by Brauer and colleagues aimed to characterize 
the association between long-term exposure to 
outdoor PM2.5 and death in a nationally rep-
resentative sample of Canadian adults, with a 
focus on PM2.5 concentrations below current air 
quality standards. They created PM2.5 exposure 
estimates across North America from 1981 to 
2016 that incorporated satellite, ground moni-
tor, and atmospheric modeling data. The study 
had the following objectives:

1.	 To evaluate the association between long-
term outdoor PM2.5 exposure and total 

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Michael 
Brauer at The University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada, and colleagues. 
Research Report 212 contains both the detailed Investigators’ Report and a Commentary on the study prepared by the Institute’s 
Low-Exposure Epidemiology Studies Review Panel.

and cause-specific nonaccidental death, including 
assessments among people with exposures below 
the current U.S. air quality standard

2.	 To evaluate these associations across regions of 
Canada with different atmospheric conditions 
while accounting for exposure to the co-occurring 
pollutant ozone

3.	 To examine whether the association between PM2.5 
exposure and death changed over different expo-
sure ranges

4.	 To identify the PM2.5 concentration below which 
there was no association with increased risk of death.

What This Study Adds
•	 The MAPLE study evaluated whether exposure to 

fine particulate matter (PM2.5) at concentrations 
below current air quality standards was associated 
with an increased risk of nonaccidental death 
among 7.1 million Canadian adults.

•	 Combining satellite data, air monitor sampling, and 
atmospheric modeling, the investigators estimated 
outdoor PM2.5 exposures across Canada from 1981 
to 2016.

•	 They applied comprehensive epidemiological anal-
yses in a large representative sample of Canadian 
adults to evaluate the risk of death at different 
PM2.5 exposure ranges and to identify the lowest 
concentration at which associations with health 
effects could be detected.

•	 Long-term outdoor PM2.5 exposures as low as 
2.5 μg /m3 were associated with increased risk of 
death, with variation across different geographical 
regions and with smaller effects when adjusted for 
ozone concentrations.

•	 This study identified associations with health 
effects at PM2.5 concentrations below the current 
U.S. ambient air quality standard of 12 μg/m3, 
suggesting that lowering the standard could yield 
further health benefits.
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The investigators assembled a census-based cohort 
that combined three cycles of the Canadian Census 
Health and Environment Cohort. It comprised 7.1 mil-
lion people and recorded 1.3 million deaths over the 
25-year study period (1991–2016). They estimated out-
door PM2.5 concentrations averaged over 10 years at a 
1×1 km resolution and then assigned exposure for each 
participant based on home postal codes and accounted 
for address changes. They used Cox hazards regression 
to assess the overall average association of the assigned 
PM2.5 exposure with death. In addition, they used the 
Shape Constrained Health Impact Function model 
to examine the shape of the association over the full 
range of exposures as well as whether the association 
changed over different exposure ranges. The analyses 
were adjusted for the region of Canada, census year, 
and many individual- and community-level socio-
demographic factors. The specific causes of death 
evaluated were death from cardiovascular disease, 
cerebrovascular disease, ischemic heart disease, heart 
failure, diabetes, nonmalignant respiratory disease, 
chronic obstructive pulmonary disease (COPD), pneu-
monia, lung cancer, and kidney failure.

KEY RESULTS

Long-term outdoor PM2.5 exposure was associated 
with increased total nonaccidental death (hazard 
ratio per 4.16 µg/m3 = 1.034; 95% confidence inter-
val = 1.030–1.039). In other words, an interquartile 
range increase in PM2.5 exposure from the 25th to 
75th percentile was associated with 32 more deaths 

for every 100,000 people each year when compared 
with the average annual death rate over the 25-year 
study period. Given Canada’s population in 2016, 
this rate equates to 7,848 more deaths every year. 
In cause-specific analyses, higher PM2.5 exposure 
was also associated with increased risk of death due 
to cardiovascular disease, ischemic heart disease, 
cerebrovascular disease, diabetes, pneumonia, respi-
ratory disease, and COPD.

The shape of the association between PM2.5 and 
death was nonlinear; this means that the association 
varied for different concentrations of PM2.5 exposure 
(Statement Figure). The relative risk of death increased 
rapidly from the minimum PM2.5 concentrations of 
2.5 µg/m3. At PM2.5 concentrations of 5 µg/m3 and 
above, the relative risk of death increased linearly at 
a shallower slope. The investigators did not detect a 
definitive PM2.5 concentration below which no health 
effects were observed; they observed positive associa-
tions with risk of death near the lowest PM2.5 exposure 
in this study, 2.5 µg/m3.

Results were similar when limiting the analysis to 
people with PM2.5 exposure below 12 µg/m3, the cur-
rent U.S. air quality standard. In contrast, there was no 
association when limiting the analysis to people with 
PM2.5 exposure below the former Canadian standard of 
10 µg/m3. Brauer and colleagues suggested that higher 
exposures were influential in deriving the statistical 
estimates of the association between PM2.5 and death. 
However, they noted that limiting the exposure concen-
tration to 10 µg/m3 resulted in a sample group of people 

 
Research Report 212

1.15

1.10

1.05

R
el

at
iv

e 
R

is
k 

of
 D

ea
th

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PM2.5 (µg/m3) Exposure

Statement Figure. Shape of the association between outdoor PM2.5 exposure and nonaccidental death. This plot shows how 
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who were demographically different from the original 
nationally representative sample. Therefore, the results 
from the restricted sample might not apply to the pop-
ulation of Canada as a whole. Furthermore, the asso-
ciation was smaller when adjusting for co-occurring 
pollutant ozone, and different results were observed for 
the different regions of Canada. The results were simi-
lar after adjusting for lifestyle factors and for regional 
differences in population characteristics and healthcare 
access. That suggests that co-occurring pollutants and 
atmospheric conditions are important determinants of 
the association between PM2.5 and death.

INTERPRETATION AND CONCLUSIONS

This study found that low-level PM2.5 exposure 
was associated with increased risk of total and cause-
specific deaths. The results also found that the risk of 
death is not the same across all PM2.5 concentrations. 
The largest change in the increased risk of death 
occurred among people with the lowest PM2.5 exposure 
concentrations. The results were largely in agreement 
with prior studies that have shown increased risk of 
death for total, respiratory, and cardiovascular-related 
mortality. This study adds to the growing number of 
studies that suggest the shape of the association is 
steepest at lower PM2.5 concentrations.

In its independent review of the study, HEI’s 
Low-Exposure Epidemiology Studies Review Panel 

commended the investigators for assembling such 
comprehensive data, creating state-of-the-art PM2.5 
exposure estimates and thorough statistical analyses. 
However, the Panel noted that some results were diffi-
cult to interpret. For example, the Shape Constrained 
Health Impact Function showed that the shape of the 
association was largest at lower PM2.5 concentrations 
but limiting the Cox hazards analysis to people with 
PM2.5 exposures below 10 µg/m3 showed no associ-
ation. There were also different results for specific 
regions of Canada that could not be attributed to 
measured demographic differences but which might 
reflect differences in the mixture of air pollutants. 
Because the study had a large sample size and good 
statistical power, the Panel concluded that the effects 
of bias more so than random error could have influ-
enced the results. Sources of bias might include con-
founding factors that the investigators were unable 
to control for, such as other copollutants. Exposure 
measurement error could have also differed across 
the urban versus rural regions of Canada.

In conclusion, the Panel agreed that this study 
found evidence of associations between PM2.5 and 
health effects at concentrations well below 12 µg/m3, 
the current U.S. ambient air quality standard. Future 
work is needed to investigate the influence of other 
copollutants and atmospheric conditions.
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ABSTRACT

INTRODUCTION

Mortality is associated with long-term exposure to fine 
particulate matter (particulate matter ≤2.5 μm in aerodynamic 
diameter; PM2.5*), although the magnitude and form of these 
associations remain poorly understood at lower concentra-
tions. Knowledge gaps include the shape of concentration–
response curves and the lowest levels of exposure at which 
increased risks are evident and the occurrence and extent of 
associations with specific causes of death. Here, we applied 
improved estimates of exposure to ambient PM2.5 to national 
population-based cohorts in Canada, including a stacked 
cohort of 7.1 million people who responded to census year 
1991, 1996, or 2001. The characterization of the shape of 
the concentration–response relationship for nonaccidental 
mortality and several specific causes of death at low levels of 
exposure was the focus of the Mortality–Air Pollution Asso-
ciations in Low Exposure Environments (MAPLE) Phase  1 
report. In the Phase 1 report we reported that associations 
between outdoor PM2.5 concentrations and nonaccidental 

mortality were attenuated with the addition of ozone (O3) or 
a measure of gaseous pollutant oxidant capacity (Ox), which 
was estimated from O3 and nitrogen dioxide (NO2) concentra-
tions. This was motivated by our interests in understanding 
both the effects air pollutant mixtures may have on mortality 
and also the role of O3 as a copollutant that shares common 
sources and precursor emissions with those of PM2.5. In this 
Phase 2 report, we further explore the sensitivity of these 
associations with O3 and Ox, evaluate sensitivity to other 
factors, such as regional variation, and present ambient PM2.5 
concentration–response relationships for specific causes of 
death.

METHODS

PM2.5 concentrations were estimated at 1 km2 spatial reso-
lution across North America using remote sensing of aerosol 
optical depth (AOD) combined with chemical transport 
model (GEOS-Chem) simulations of the AOD:surface PM2.5 
mass concentration relationship, land use information, and 
ground monitoring. These estimates were informed and 
further refined with collocated measurements of PM2.5 and 
AOD, including targeted measurements in areas of low PM2.5 
concentrations collected at five locations across Canada. 
Ground measurements of PM2.5 and total suspended partic-
ulate matter (TSP) mass concentrations from 1981 to 1999 
were used to backcast remote-sensing-based estimates over 
that same time period, resulting in modeled annual surfaces 
from 1981 to 2016.

Annual exposures to PM2.5 were then estimated for sub-
jects in several national population-based Canadian cohorts 
using residential histories derived from annual postal code 
entries in income tax files. These cohorts included three 
census-based cohorts: the 1991 Canadian Census Health and 
Environment Cohort (CanCHEC; 2.5 million respondents), the 
1996 CanCHEC (3 million respondents), the 2001 CanCHEC 

mailto:michael.brauer@ubc.ca
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[WHO] guideline, and current WHO Interim Target-4). Finally, 
differences in the shapes of PM2.5–mortality associations were 
assessed across broad geographic regions (airsheds) within 
Canada.

RESULTS

The refined PM2.5 exposure estimates demonstrated 
improved performance relative to estimates applied previ-
ously and in the MAPLE Phase 1 report, with slightly reduced 
errors, including at lower ranges of concentrations (e.g., for 
PM2.5 <10 μg/m3).

Positive associations between outdoor PM2.5 concentra-
tions and nonaccidental mortality were consistently observed 
in all cohorts. In the Stacked CanCHEC analyses (1.3 million 
deaths), each 10-μg/m3 increase in outdoor PM2.5 concentra-
tion corresponded to an HR of 1.084 (95% confidence interval 
[CI]: 1.073 to 1.096) for nonaccidental mortality. For an inter-
quartile range (IQR) increase in PM2.5 mass concentration of 
4.16 μg/m3 and for a mean annual nonaccidental death rate of 
92.8 per 10,000 persons (over the 1991–2016 period for cohort 
participants ages 25–90), this HR corresponds to an additional 
31.62 deaths per 100,000 people, which is equivalent to an 
additional 7,848 deaths per year in Canada, based on the 2016 
population. In RCS models, mean HR predictions increased 
from the minimum concentration of 2.5 μg/m3 to 4.5 μg/
m3, flattened from 4.5 μg/m3 to 8.0 μg/m3, then increased for 
concentrations above 8.0 μg/m3. The threshold model results 
reflected this pattern with −2 log-likelihood values being 
equal at 2.5 μg/m3 and 8.0 μg/m3. However, mean threshold 
model predictions monotonically increased over the con-
centration range with the lower 95% CI equal to one from 2.5 
μg/m3 to 8.0 μg/m3. The RCS model was a superior predictor 
compared with any of the threshold models, including the 
linear model.

In the mCCHS cohort analyses inclusion of behavioral 
covariates did not substantially change the results for both 
linear and nonlinear models. We examined the sensitivity of 
the shape of the nonaccidental mortality–PM2.5 association 
to removal of person-years at or above the current U.S. and 
Canadian standards of 12 μg/m3 and 10 μg/m3, respectively. In 
the full cohort and in both restricted cohorts, a steep increase 
was observed from the minimum concentration of 2.5 μg/m3 
to 5 μg/m3. For the full cohort and the <12 μg/m3 cohort the 
relationship flattened over the 5 to 9 μg/m3 range and then 
increased above 9 μg/m3. A similar increase was observed 
for the <10 μg/m3 cohort followed by a clear decline in the 
magnitude of predictions over the 5 to 9 μg/m3 range and an 
increase above 9 μg/m3. Together these results suggest that a 
positive association exists for concentrations >9 μg/m3 with 
indications of adverse effects on mortality at concentrations 
as low as 2.5 μg/m3.

Among the other causes of death examined, PM2.5 expo-
sures were consistently associated with an increased hazard 

(3 million respondents), and a Stacked CanCHEC where 
duplicate records of respondents were excluded (Stacked 
CanCHEC; 7.1 million respondents). The Canadian Com-
munity Health Survey (CCHS) mortality cohort (mCCHS), 
derived from several pooled cycles of the CCHS (540,900 
respondents), included additional individual information 
about health behaviors. Follow-up periods were completed 
to the end of 2016 for all cohorts. Cox proportional hazard 
ratios (HRs) were estimated for nonaccidental and other major 
causes of death using a 10-year moving average exposure and 
1-year lag. All models were stratified by age, sex, immigrant 
status, and where appropriate, census year or survey cycle. 
Models were further adjusted for income adequacy quintile, 
visible minority status, Indigenous identity, educational 
attainment, labor-force status, marital status, occupation, and 
ecological covariates of community size, airshed, urban form, 
and four dimensions of the Canadian Marginalization Index 
(Can-Marg; instability, deprivation, dependency, and ethnic 
concentration). The mCCHS analyses were also adjusted for 
individual-level measures of smoking, alcohol consumption, 
fruit and vegetable consumption, body mass index (BMI), and 
exercise behavior.

In addition to linear models, the shape of the concentration–
response function was investigated using restricted cubic 
splines (RCS). The number of knots were selected by 
minimizing the Bayesian Information Criterion (BIC). Two 
additional models were used to examine the association 
between nonaccidental mortality and PM2.5. The first is the 
standard threshold model defined by a transformation of 
concentration equaling zero if the concentration was less 
than a specific threshold value and concentration minus 
the threshold value for concentrations above the threshold. 
The second additional model was an extension of the Shape 
Constrained Health Impact Function (SCHIF), the eSCHIF, 
which converts RCS predictions into functions potentially 
more suitable for use in health impact assessments. Given 
the RCS parameter estimates and their covariance matrix, 
1,000 realizations of the RCS were simulated at concentra-
tions from the minimum to the maximum concentration, by 
increments of 0.1 μg/m3. An eSCHIF was then fit to each of 
these RCS realizations. Thus, 1,000 eSCHIF predictions and 
uncertainty intervals were determined at each concentration 
within the total range.

Sensitivity analyses were conducted to examine associa-
tions between PM2.5 and mortality when in the presence of, 
or stratified by tertile of, O3 or Ox. Additionally, associations 
between PM2.5 and mortality were assessed for sensitivity to 
lower concentration thresholds, where person-years below 
a threshold value were assigned the mean exposure within 
that group. We also examined the sensitivity of the shape of 
the nonaccidental mortality–PM2.5 association to removal of 
person-years at or above 12 μg/m3 (the current U.S. National 
Ambient Air Quality Standard) and 10 μg/m3 (the current 
Canadian and former [2005] World Health Organization 
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For example, building on prior analyses of cohorts in Canada 
(Crouse et  al. 2012, 2015; Nasari et  al. 2016; Pinault et  al. 
2016a, 2017; Weichenthal et  al. 2017), the MAPLE Phase 1 
report and related publications reported an increased risk of 
nonaccidental mortality (HR = 1.053; 95% CI: 1.041 to 1.065 
per 10-μg/m3 increase) using pooled CanCHEC results and a 
somewhat higher risk of nonaccidental mortality in a cohort 
of mCCHS respondents (HR = 1.110; 1.040 to 1.180). Under-
standing the shapes of the concentration–response relation-
ships in areas with low PM2.5 concentrations is of particular 
interest, as many global regions are approaching these lower 
levels of exposure (Apte et al. 2015). Canada provides an ideal 
setting to study the shapes of these relationships given the 
availability of large national cohorts with sufficient sample 
sizes, detailed information on outdoor air pollution concen-
trations, and importantly, nearly all Canadians live in areas 
with relatively low PM2.5 concentrations. Specifically, PM2.5 
median concentrations for the three cycles of CanCHEC in the 
MAPLE Phase 1 report were 6.4 (2001 CanCHEC), 6.7 (1996 
CanCHEC), and 7.4 (1991 CanCHEC) μg/m3, and 5.5 μg/m3 in 
the mCCHS cohort, across all person-years. These levels are 
below the 2005 World Health Organization Guideline and the 
current (2021) World Health Organization Interim Target-4 
(10 μg/m3 annual average) and are below the U.S. National 
Ambient Air Quality Standard (12 μg/m3) and the Canadian 
Ambient Air Quality Standard (8.8 μg/m3) for PM2.5. Median 
concentration of the 2001 CanCHEC are close to the 2021 
World Health Organization Air Quality Guideline of 5 μg/m3 
annual average.

In Canada, we previously reported that associations 
between outdoor PM2.5 mass concentrations and cardiovas-
cular, respiratory, and nonaccidental mortality varied across 
tertiles of outdoor Ox concentrations suggesting that copol-
lutants may influence the shape of concentration–response 
curves for PM2.5 (Weichenthal et  al. 2017). As few cohort 
studies have specifically evaluated interactions between 
PM2.5 and Ox, it isn’t clear if this effect modification is 
caused by a direct effect of Ox on the lungs (e.g., depletion of 
antioxidants, increased permeability of the lung epithelium 
barrier) or if Ox is simply a reasonable surrogate for a certain 
type of air pollution mixture (e.g., a more highly oxidized 
or aged aerosol) that is more relevant to health (Blomberg 
et al. 2003; Broeckaert et al. 2000; Ciencewicki et al. 2008; 
Croberddu et al. 2017; Georas and Rezaee 2014; Kienast et al. 
1994; Lakey et  al. 2016; Rattanavaraha et  al. 2011; Safari 
et al. 2014). Possible interactions between Ox and PM2.5 are 
of interest for two reasons. First, if Ox directly modifies the 
health effects of PM2.5 (i.e., if PM2.5 is more harmful when 
Ox is higher) this opens up additional regulatory options for 
reducing the health effects of PM2.5 because reductions in 
Ox would decrease the health effects of PM2.5 even if mass 
concentrations did not change. Alternatively, if Ox is simply 
a good marker for air pollution mixtures most relevant to 
health, these areas can be identified and prioritized for 

of mortality due to ischemic heart disease, respiratory disease, 
cardiovascular disease, and diabetes across all cohorts. Asso-
ciations were observed in the Stacked CanCHEC but not in 
all other cohorts for cerebrovascular disease, pneumonia, and 
chronic obstructive pulmonary disease (COPD) mortality. No 
significant associations were observed between mortality and 
exposure to PM2.5 for heart failure, lung cancer, and kidney 
failure.

In sensitivity analyses, the addition of O3 and Ox attenuated 
associations between PM2.5 and mortality. When analyses were 
stratified by tertiles of copollutants, associations between PM2.5 
and mortality were only observed in the highest tertile of O3 
or Ox. Across broad regions of Canada, linear HR estimates 
and the shape of the eSCHIF varied substantially, possibly 
reflecting underlying differences in air pollutant mixtures not 
characterized by PM2.5 mass concentrations or the included 
gaseous pollutants. Sensitivity analyses to assess regional 
variation in population characteristics and access to healthcare 
indicated that the observed regional differences in concentra-
tion–mortality relationships, specifically the flattening of the 
concentration–mortality relationship over the 5 to 9  μg/m3 
range, was not likely related to variation in the makeup of 
the cohort or its access to healthcare, lending support to the 
potential role of spatially varying air pollutant mixtures not 
sufficiently characterized by PM2.5 mass concentrations.

CONCLUSIONS

In several large, national Canadian cohorts, including a 
cohort of 7.1 million unique census respondents, associations 
were observed between exposure to PM2.5 with nonaccidental 
mortality and several specific causes of death. Associations 
with nonaccidental mortality were observed using the 
eSCHIF methodology at concentrations as low as 2.5 μg/m3, 
and there was no clear evidence in the observed data of a 
lower threshold, below which PM2.5 was not associated with 
nonaccidental mortality.

INTRODUCTION

Exposure to fine particulate matter (PM2.5) is generally 
accepted as a causal risk factor for mortality and was esti-
mated to be responsible for 4.1 million deaths and 118 million 
disability-adjusted life years in 2019 (Global Burden of Dis-
ease [GBD] 2019 Risk Factors Collaborators 2020). Multiple 
large epidemiological cohort studies have linked long-term 
exposure to PM2.5 with an increased risk for nonaccidental 
mortality and chronic diseases such as lung cancer, heart 
disease, and stroke (Beelen et  al. 2014; Burnett et  al. 2018; 
Crouse et al. 2015; Di et al. 2017; Li et al. 2018; Pope et al. 
2002; Pun et al. 2017; Yin et al. 2017).

Positive associations between outdoor PM2.5 mass con-
centrations and mortality have also been repeatedly demon-
strated in populations living in areas with low PM2.5 levels. 
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3.	 Year-Adjusted Exposure Estimates — As in Crouse et al. 
2015, MAPLE used time-varying exposures based on 
year-adjusted estimates from 1981 onward. In the case of 
MAPLE, a new more sophisticated backcasting approach 
was used in estimating historical exposures (Meng et al. 
2019).

4.	 Behavioral Covariates — Parallel analyses were con-
ducted in a new, larger mCCHS cohort, and indirect 
adjustment for missing behavioral risk factors was also 
evaluated for application to the CanCHEC cohorts (Chris-
tidis et al. 2019; Erickson et al. 2019).

5.	 Immigrants — Most prior analyses excluded all immi-
grants outright or limited their inclusion based on their 
time in Canada (e.g., minimum 20 years). In MAPLE we 
included all immigrant respondents who have been in 
Canada for at least 10 years prior to the cohort index year. 
Immigrants who have been in Canada for fewer than 10 
years have an unknown prior exposure history (Erickson 
et al. 2020).

In the Phase 1 report, we focused on examining associa-
tions with nonaccidental mortality, and reported a pooled HR 
of 1.053 (95% CI: 1.041 to 1.065) among the three CanCHECs, 
and a HR of 1.130 (1.060 to 1.210) in the mCCHS cohort. The 
shape of the concentration–response curve using the SCHIF 
indicated a supralinear association in all cohorts. Associ-
ations between outdoor PM2.5 concentrations and nonacci-
dental mortality were attenuated with the addition of O3 or 
a weighted measure of oxidant gases, Ox. We also found that 
associations were strengthened with the use of longer moving 
averages to assign exposures, and smaller spatial scales of 
exposure estimates. Indirect adjustment for missing behav-
ioral covariates (e.g., smoking and BMI) had very little effect 
on these associations. The strength of the observed associa-
tion between outdoor PM2.5 and nonaccidental mortality was 
similar between immigrants and nonimmigrants in Canada.

In this Phase 2 report, we focus on developing a more 
detailed understanding of these relationships, including 
analysis of cause-specific mortality, analysis examining the 
sensitivity of PM2.5 associations to the inclusion of O3 or Ox in 
the models, and other factors such as regional variation. We 
present results for both the mCCHS cohort, where behavioral 
risk factors were measured, and for three separate CanCHEC 
cohorts. An important update from Phase 1 is the use of a 
Stacked CanCHEC cohort, where all participants from the three 
CanCHEC cycles were included together, and participants in 
repeated, subsequent cycles were excluded. The stacked cohort 
represented 7.1 million respondents followed over 128 million 
person-years, or about 20.2% of the population of Canada as 
of the 2016 census. We also updated our analyses using longer 
moving average exposures, as sensitivity analyses in Phase 1 
indicated that a longer moving average (i.e., 10 years) provided 
stronger associations with mortality (Crouse et al. 2020). The 
PM2.5 models were further refined from the Phase 1 report by 

future interventions. In this report we explored this question 
further by using multiple cohorts as part of Phase 2 of the 
MAPLE project. As levels of Ox may vary regionally, we 
additionally evaluated regional population variation and its 
potential effects on regional variation in the PM2.5–mortality 
relationship as alternative explanations for the observed 
oxidant effect modification.

STUDY RATIONALE

The aim of this ongoing project, MAPLE, is to provide 
updated analyses on associations between outdoor fine par-
ticulate air pollution and mortality outcomes, using larger 
and more recent epidemiological cohorts than the 1991 
CanCHEC. This project includes the 1991, 1996, and 2001 
CanCHEC cohorts and the cohort of CCHS respondents from 
2001–2012 (mCCHS), with follow-up to 2016 for all cohorts. 
A stacked cohort of the three cycles of CanCHECs was also 
created, where recurring participants were excluded if they 
were sampled in more than one CanCHEC cycle. For each 
of these cohorts, we deterministically linked participants to 
mortality records using individual identifiers (social insur-
ance number), whereas prior analyses used a combination 
of deterministic and probabilistic linkage, which introduces 
greater uncertainty.

In the MAPLE Phase 1 report, we assessed associations 
between outdoor air pollution concentrations and non-
accidental mortality using the three separate CanCHEC 
cycles (Pappin et  al. 2019) and mCCHS (Christidis et  al. 
2019). A  pooled HR estimate was also determined for the 
three CanCHEC cycles. Similarly, a pooled concentration–
response function was also estimated from the shapes of 
corresponding functions in the three separate CanCHEC 
cycles. Note that this pooling of HRs from analyses of the 
three CanCHEC cohorts differs from the approach used in 
this Phase 2 report, in which individuals were merged into 
a single stacked cohort. Our Phase 1 analyses incorporated 
minimally adjusted models, a model informed by a directed 
acyclic graph to help inform causal relationships, and a fully 
adjusted model including all individual and contextual 
available for linkage.

In addition, we evaluated the following during Phase 1:

1.	 Refining Spatial Resolution — MAPLE assigned expo-
sures based on a fine-scale PM2.5 model of ~1 km × 1 km 
resolution that incorporated both remote sensing-based 
estimates and ground-level observations (Crouse et  al. 
2020; Pinault et al. 2017).

2.	 Residential Mobility at Follow-Up — MAPLE used a 
complete annual residential history generated for all 
cohort members based on a linkage to postal codes from 
tax records (as in Crouse et  al. 2015). Missing postal 
codes in residential histories were imputed with a proba-
bilistic algorithm (adapted from Finès et al. 2017).
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•	 evaluated PM2.5 estimates using insight gained from com-
parisons of collocated measurements of PM2.5 and AOD 
with GEOS-Chem simulations of that relationship

•	 employed a combination of geophysical and statistical 
methods, together with land use information, to further 
refine the PM2.5 estimates

•	 used available PM2.5 and TSP monitoring data in Canada 
from 1981–1999, to scale the 1 km × 1 km surface back in 
time annually over the 1981 to 1999 period, maintaining 
the 1 km × 1 km grid detail over the 1981–2016 period

•	 made the refined PM2.5 estimates available to other HEI-
funded studies that cover Canada and the United States 
for incorporation into their analyses https://sites.wustl.
edu/acag/datasets/surface-pm2-5/.

Epidemiological Analysis

We examined the shape of the association between long-
term exposure to ambient concentrations of PM2.5 and mor-
tality in four large, population-based Canadian cohorts, and a 
stacked census-based cohort. Specifically, we

•	 linked the following long form census data cohorts to mor-
tality, vital statistics, and tax records up to December 31, 
2016:

1991 CanCHEC (2.5 million participants); 1996 CanCHEC 
(3 million participants); 2001 CanCHEC (3 million 
participants); Stacked CanCHEC (7.1 million unique  
participants — data came from the 1991, 1996, and 2001 
CanCHEC cohorts. Individuals who completed more than 
one long-form census (i.e., <20% in the next census year) 
were excluded from subsequent CanCHEC cohorts, ensur-
ing that individuals were not counted more than once; 
mCCHS (540,900 participants who completed the 2001, 
2003, 2005, 2007, 2008, 2009, 2010, 2011, or 2012 CCHS 
survey panels).

•	 examined the shape of the association between long-
term exposure to ambient concentrations of PM2.5 and 
mortality in all five cohorts using RCS and an extended 
version of the SCHIF that was first introduced in our 
Phase 1 report. This new eSCHIF methodology allows 
us to directly evaluate thresholds, to identify the lowest 
concentration for which there is evidence of a positive 
association with mortality and provides functions that 
are more suitable for benefits analyses.

METHODS

HUMAN STUDIES APPROVAL

The Research Ethics Board of The University of British 
Columbia determined this study in humans was exempt from 
ethical review.

incorporating an improved representation of aerosol mass 
scattering efficiency (MSE) for organic and secondary inorganic 
aerosol. This was based on MAPLE measurements at five sites 
in Canada of colocated PM2.5 mass and chemical composition 
with AOD. These refined exposure models (V4.NA.02.MAPLE) 
demonstrated improved performance compared with those 
used in the MAPLE Phase 1 report (V4.NA.01). For example, 
at collocated ground-based stations in long-term mean compar-
isons across the range of observed PM2.5, the root mean square 
difference (RMSD) was reduced from 1.9 to 1.5 μg/m3, and for 
the low concentrations directly relevant to this study (e.g., 
for observed PM2.5 <10 μg/m3 at Canadian sites), RMSD was 
reduced from 1.7 to 1.4 μg/m3.

STUDY AIMS

The primary aim of MAPLE is to provide a detailed charac-
terization of the relationship between mortality and exposure 
to low concentrations of PM2.5 in Canada. This work addresses 
many limitations of prior studies and extends the analyses 
presented in the Phase 1 report in a number of important ways.

The relationship between PM2.5 exposure and nonacci-
dental mortality was described in our previous report using 
the three CanCHEC cohorts independently, and then pooled 
together. Our pooled estimate from three CanCHEC cycles for 
the association between nonaccidental mortality and PM2.5 
was HR = 1.053 (95% CI: 1.041 to 1.065 per 10-μg/m3 increase). 
In the current report, we remove duplicate respondents who 
occur in more than one CanCHEC cycle, and determine a new 
HR based on the combined, or stacked cohort.

Our previous report also described sensitivity analyses of 
the PM2.5 exposure–mortality relationship to different expo-
sure metrics and the effects of including different immigrant 
groups. In this report, in addition to analyses of nonaccidental 
mortality we focus specifically on analyses of the relationship 
between PM2.5 exposure and major causes of mortality, using 
the Stacked CanCHEC cohort. We then provide additional 
sensitivity analyses of the association between PM2.5, O3 
and a weighted oxidative potential (i.e., Ox) for the gaseous 
pollutants O3 and NO2 as well as regional analyses to further 
investigate the shape of the PM2.5–mortality relationship.

Exposure Assignment

As in the MAPLE Phase 1 report, we applied satellite-based 
PM2.5 exposure estimates at a 1 km × 1 km spatial resolution 
across North America for each year from 1981–2016. These 
annual estimates are based on a combination of remote-
sensing-based AOD, the GEOS-Chem, land use information, 
and ground-monitoring data (Latimer and Martin 2019; van 
Donkelaar et  al. 2019). Estimates have been further refined 
since the Phase 1 report. Specifically, we

•	 developed and applied annual average satellite-based 
estimates of PM2.5 across North America at 1 km × 1 km 
spatial resolution

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
http://V4.NA
http://V4.NA
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using GEOS-Chem simulations and PM2.5, PM10, and TSP 
measurements to produce estimates for the 1981–1999 period 
as described later in the report and in more detail by Meng 
and colleagues (2019). A cross-cutting activity illustrated in 
the bottom-left of Figure 1 indicates that targeted colocated 
measurements of PM2.5 and AOD were conducted at five 
measurement sites in Canada and applied to evaluate and 
refine the simulation of AOD-to-PM2.5 as discussed in the next 
section.

Collection of Measurements

We expanded the Surface PARTiculate mAtter Network 
(SPARTAN) (Snider et al. 2015) to routinely collect colocated 
measurements of PM2.5, aerosol scatter, and AOD at five sites 
across Canada. This collection allows us to evaluate and poten-
tially improve simulations of the PM2.5 to AOD ratio in regions 
of low PM2.5 mass concentrations. A key source of uncertainty 
in this relationship is the MSE, the relation between particle 

EXPOSURE ASSESSMENT

Overview

Several steps are involved in the development of satellite-
derived PM2.5 estimates for MAPLE as shown in Figure  1. 
The development process combines daily satellite retrievals 
of AOD at 1 km × 1 km resolution with simulations of the 
daily AOD to PM2.5 relationship (h) using the GEOS-Chem at 
0.5° × 0.67° resolution to produce geophysical PM2.5 estimates 
following the methods described in van Donkelaar and col-
leagues (2015, 2016). The GEOS-Chem simulation accounts 
for the relationship between available daily satellite obser-
vations and monthly mean concentrations. The next step 
in Figure  1 shows that geographically weighted regression 
is applied to statistically fuse monthly mean measurements 
from PM2.5 monitors with the geophysical PM2.5 estimates to 
produce refined hybrid PM2.5 estimates. The right panel of 
Figure  1 shows that these hybrid estimates are backcasted 

Figure 1. Schematic of the exposure development process for PM2.5. GWR = geographically weighted regression.

Satellite AOD

GEOS-Chem η (PM2.5/AOD)

Measurements η (PM2.5/AOD)

PM2.5 AOD

PM2.5monitoring network

evaluation

GWR

Backcast with GEOS-Chem and
historical PM2.5, PM10, & TSP

Initial PM2.5

(Geophysical)
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volume required to provide PM2.5 concentrations in μg/m3. 
Black carbon content was estimated from triplicate measure-
ments of surface reflectance using a smoke stain reflectometer 
(Davy et al. 2017). Filters were subsequently analyzed for trace 
elements, including dust components (e.g., aluminum, iron, 
magnesium), via inductively coupled plasma-mass spectrom-
etry and x-ray fluorescence spectrometry and then extracted 
in methanol and water and analyzed for water-soluble ions 
(e.g., sulfate, nitrate, ammonium) through ion chromatogra-
phy. Trace element measurements are described in McNeille 
and colleagues (2020). As described in Snider and colleagues 
(2016), the residual matter component, estimated by subtract-
ing the dry inorganic mass and particle-bound water from total 
PM2.5 mass, is treated as predominately organic.

The Downsview MAPLE site was collocated with a 
National Air Pollution Surveillance (NAPS) site run by 
Environment and Climate Change Canada that included two 
sampling stations whose measurements are compared with 
MAPLE measurements. Comparison of daily PM2.5 mass 
concentration is completed using estimated daily PM2.5 from 
MAPLE versus the NAPS reference method sampler (Parti-
sol). For speciation comparison, NAPS data from the SASS 
sampler (Met One) are sampled coincidently with the MAPLE 
integrated filter sample; for example, if a MAPLE filter was 
sampled August 8–16, 2018, any daily NAPS filter sample(s) 
from the corresponding time period (e.g., August 9, 12, and 
15, 2018) are used to create a mean value.

Creating Refined PM2.5 Exposure Estimates

We made further refinements with new information 
obtained from the ground-based monitoring samples and 
particle composition analyses. The variance in inferred MSE 
is smallest for organic and secondary inorganic components, 
reflecting their dominant contributions to PM2.5 mass. The 
MSE for these two components is also consistent with a com-
pilation of prior measurements by Hand and Malm (2007). We 
focus on these two components for MAPLE.

scatter and PM2.5 mass. MSE is fundamental to the measure-
ment of AOD and influences the accuracy of PM2.5 estimates 
as GEOS-Chem simulates the columnar AOD to surface PM2.5 
relationship. The MSE generally varies smoothly across large 
distances (Latimer and Martin 2019). Thus, only a moderate 
number of measurement locations across Canada are needed 
to evaluate the simulated MSE. As no routinely collected 
measurements for MSE were available in populated regions of 
Canada, these targeted ground-based measurements offer the 
potential to evaluate and improve these estimates.

Measurements include an impaction filter sampler for the 
analysis of mass and composition, as well as a nephelometer 
that provides a high temporal resolution for relating observa-
tions made during cloud-free conditions at satellite overpass 
time to the 24-hour averages. The combination of scatter and 
mass measurements allows for an assessment of the relation-
ship between satellite measurements of backscattered sunlight 
and the PM2.5 mass concentrations. These measurements are 
compared with GEOS-Chem simulations of the AOD to PM2.5 
relationship to better understand the geophysical processes 
affecting the relationship, and in turn to improve the ability of 
chemical transport models to predict this quantity.

Specifically, we added PM2.5 monitors to five ongoing and 
diverse Canadian sites participating in the global Aerosol 
Robotic Network (AERONET; http://aeronet.gsfc.nasa.gov/) 
that routinely measure AOD. Figure 2 shows the locations of 
the collocated PM2.5 and AOD measurement sites in Halifax, 
Nova Scotia; Sherbrooke, Quebec; Downsview, Ontario; Leth-
bridge, Alberta; and Kelowna, British Columbia.

A detailed explanation of SPARTAN chemical analysis 
methodology and the filter-based hygroscopicity parameter, 
κ, are provided by Snider and colleagues (2016). Briefly, all 
gravimetric analyses were performed in a cleanroom facility 
with a controlled temperature between 20 to 23°C and a rela-
tive humidity of 35 ± 5%, as per U.S. Environmental Protection 
Agency (U.S. EPA) protocols. Flow rates at ambient pressure 
and temperature at site locations determine the sampled air 

Figure 2. Location of collocated ground-based measurements of PM2.5 and AOD. The background shows satellite-based estimates of PM2.5 from 
(A) van Donkelaar et al. (2016) and (B) population density.
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http://aeronet.gsfc.nasa.gov/
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assigned an exposure estimate based on residential location, 
defined by postal codes for each year from 1981 through 2016, 
from the closest 1 km × 1 km grid cell of the PM2.5 surface 
described earlier. Postal codes were geocoded using the 
Statistic Canada Postal Code Conversion File Plus (PCCF+) 
containing the June 2017 postal code release with additional 
postal codes from the May 2011 and August 2015 releases 
(Statistics Canada 2017a). The PCCF+ contains representative 
coordinates for current and retired postal codes based on the 
centroid of a block face, dissemination block, or dissemi-
nation area. In Canadian urban areas, postal code locations 
typically represent one side of a street in a given block or the 
center of an apartment building and have positional accuracy 
within ~150 m; there is greater locational uncertainty for rural 
postal codes (i.e., typically accurate within about 1–5 km) 
(Khan et al. 2018). Missing postal codes were imputed based 
on those reported in adjacent years, using a method where 
the probability of imputation varies depending on the number 
of adjacent years missing (Finès et  al. 2017). However, we 
refined the assignment of exposure to imputed postal codes 
implemented in previous publications (e.g., Crouse et al. 2015; 
Pinault et al. 2017), and for the present analyses required that 
postal codes available prior to and after a missing code had to 
have least two digits in common. Exposure was then assigned 
based on a population-weighted average of the various postal 
codes covered by these two digits. Previously, in cases where 
this criterion was not met, we had assigned exposure based 
on the national population-weighted average for that year.

Older versions of PM2.5 data (V4.NA.01) were retained 
on the analytical files to allow us to conduct a sensitivity 
analysis comparing the older and newer (V4.NA.02-MAPLE) 
versions of the PM2.5 datasets in epidemiological models, as 
presented in Appendix Tables A.6 and A.7, available on the 
HEI website.

Adjustment for NO2, O3, and Ox

We estimated ambient NO2 concentrations at each postal 
code location based on a national land use regression model 
that predicted ground-monitoring concentrations for the 
year 2006 using 10-km2 gridded remote sensing-derived 
NO2 estimates and highly resolved land use data (Hystad 
et  al. 2011). This model has a spatial resolution of 100 m2. 
The daily maximum of eight-hour average concentrations of 
O3 were estimated based on chemical transport modeling of 
surface observations in the warm season from 2002 to 2015 
(i.e., the average of maximum values within the same 8-hour 
period each day during the warm season (Environment 
Canada 2013). From 2002 to 2009 the spatial resolution of the 
O3 model was 21 km2 and was subsequently improved to 10 
km2. Hourly O3 model output was fused with ground monitor 
data (Robichaud and Menard 2014; Robichaud et al. 2016) as 
part of the routine Canadian air quality forecast modeling sys-
tem. These hourly data were then processed into warm season 
(May–September) 8-hour daily maximum concentrations and 

Utilizing the wavelength sensitivity of MSE and Mie 
calculations, an algorithm was developed and applied that 
inverts the wavelength-dependent measurements of aerosol 
scatter for aerosol size-distribution properties (Bissonnette 
2019). The dry geometric mean diameter (Dpg) of organics and 
secondary inorganics is found to be 0.56 and 0.62 μm with 
correspondent geometric mean variance (σg) of 1.45 and 1.30 
(unitless), respectively. These values are broadly consistent 
with the upper end of the few PM2.5 size distribution mea-
surements and estimates available for North America (e.g., 
Bissonnette 2019; Cabada et  al. 2004). These revised repre-
sentations of organic and secondary inorganic aerosol MSE 
and size are applied to refine the satellite-based estimates of 
PM2.5, together with additional algorithmic developments as 
described later.

The revised exposure dataset for MAPLE (V4.NA.02.
MAPLE) builds on specific components of the framework 
of van Donkelaar and colleagues (2015, 2016) used to create 
the V4.NA.01 dataset used by the MAPLE project, and the 
work described earlier. AOD in V4.NA.02.MAPLE is from an 
ensemble of satellite observations inversely weighted by their 
error characteristics versus AERONET measurements (van 
Donkelaar et al. 2019) rather than from a single retrieval as in 
van Donkelaar and colleagues (2015, 2016). The representa-
tion of aerosol hygroscopicity used to relate AOD at ambient 
relative humidity with PM2.5 at controlled relative humidity 
is informed by a comparison of collocated measurements 
of aerosol scatter and PM2.5 mass conducted for MAPLE as 
described by Latimer and Martin (2019). The representation 
of aerosol MSE used to relate aerosol scatter to mass for 
organic and secondary inorganic aerosol is refined based on 
an interpretation of MAPLE measurements across Canada 
(Bissonnette 2019) as summarized in the Results section. The 
geographic weighted regression used to fuse the satellite-
based estimates with ground-based PM2.5 mass observations 
separates the topographic and land-type predictors used in 
V4.NA.02 (van Donkelaar et al. 2019).

The revised exposure estimates were evaluated with 
ground-based monitors including RMSD, line of best fit, and 
coefficient of variation. The RMSD was calculated as

∑
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where xe,i and xm,i are the estimated and measured PM2.5 con-
centrations for monitor i.

Assigning Exposure Estimates to Cohorts

We applied the revised PM2.5 estimates (dataset version 
V4.NA.02-MAPLE; Dalhousie University Atmospheric Com-
position Analysis Group) to all epidemiological analyses 
described in this report. All respondents in each cohort were 

http://V4.NA
http://V4.NA
http://V4.NA
http://V4.NA
http://V4.NA
http://V4.NA
http://V4.NA


 13

M. Brauer et al.

2.	 1996 CanCHEC — 3 million subjects (after exclusions) 
over the age of 25 years who completed the 1996 long-
form census linked to vital statistics, tax records, and 
cause of death from census day (May 14, 1996) to 
December 31, 2016 (Christidis and colleagues 2018).

3.	 2001 CanCHEC — 3 million subjects (after exclusions) 
over the age of 25 years who completed the 2001 long-
form census linked to vital statistics, tax records, and 
cause of death from census day (May 15, 2001) to 
December 31, 2016 (Pinault et al. 2017).

4.	 Stacked CanCHEC — 7.1 million subjects (after exclu-
sions) over the age of 25 years who completed one of 
the three census long-form questionnaires. If the same 
respondents were included in more than one census year, 
later census year data were excluded to eliminate dupli-
cation of respondents in the sample. Duplicate respon-
dents across census years were identified using records 
from the Statistics Canada’s Derived Record Depository, 
which compiles individual data on Canadians within a 
secure computing environment.

5.	 CCHS and mCCHS — 540,900 subjects over the age of 
25 years who completed one of the CCHS panels (2001, 
2003, 2005, 2007, 2008, 2009, 2010, 2011, or 2012), 
which are linked to vital statistics, tax records, and cause 
of death from day of survey completion to December 31, 
2016 (Sanmartin et  al. 2016). The CCHS is an annual 
nationally representative interview survey (Statistics 
Canada 2005). In addition to basic sociodemographic 
content, the CCHS also includes individual-level infor-
mation on self-reported health status, such as BMI, and 
health behaviors, including diet, physical activity, smok-
ing, and alcohol consumption.

Noninstitutionalized respondents to the long form ques-
tionnaire who lived in Canada were considered in scope for 
linkage (Pinault et  al. 2016b). To create the cohorts, respon-
dents were linked to death records and residential history 
through the Statistics Canada Social Data Linkage Environment 
(Statistics Canada 2017b), which creates linked population 
data files for social analysis. CCHS respondents were asked 
at the time of survey if they agreed to record linkage and 
data sharing, and 95.2% of respondents agreed. Linkage was 
approved by Statistics Canada and is governed by the Directive 
on Microdata Linkage. The process begins with linkage to the 
Derived Record Depository, a highly secure linkage environ-
ment comprised of a national dynamic relational database 
of basic personal identifiers. Survey and administrative data 
are linked to the Derived Record Depository using G-Link, a 
SAS-based generalized record linkage software that supports 
deterministic- and probabilistic-linkage techniques developed 
at Statistics Canada (Fellegi and Sunter 1969). A list of linked 
unique individuals was created through linkages that were 
either deterministic (matching records based on unique iden-
tifiers) or probabilistic (matching records based on nonunique 

interpolated to Canadian six-character postal codes by the 
Canadian Urban Environmental Health Research Consortium 
(see Pappin et al. 2019).

We applied spatiotemporal adjustments to estimate NO2 for 
years prior to 2006 and for O3 prior to 2002 by first developing 
an annual time series of both NO2 and O3 in 24 of Canada’s 
largest cities, based on available ground-monitoring data for 
the 1981 to 2016 time period. Among these 24 cities, only cities 
with data for at least 75% and 40.5% of the days for NO2 and O3, 
respectively, within a given year (i.e., 292 days) were included. 
For each year, typically 18–24 cities satisfied the criteria. Val-
ues were interpolated from adjacent years when data were not 
available. We then estimated yearly adjustment factors equal to 
the ratio of the observed concentration in the desired year to 
the average concentration in the reference year(s) (i.e., 2006 for 
NO2 and 2002–2015 for O3) for each of the 24 cities separately. 
We scaled the NO2 concentration estimates per postal code in 
2006 over the 1981–2016 period using the annual adjustment 
factors based on the city most proximate to that postal code 
location (Weichenthal et al. 2017). A similar time scaling was 
applied to the 2002–2015 O3 surface. Although associations 
between mortality and NO2 were not examined directly, NO2 
was used to calculate Ox. As in the Phase 1 report and prior 
publications (Crouse et al. 2020; Weichenthal et al. 2017), Ox 
was defined using the following equation to approximate redox 
potentials (Bratsch 1989), calculated at the person-year level 
based on year-adjusted NO2 and O3 estimates:

O
((1.07 NO ) (2.075 O ))

3.145
x

2 3=
× + ×

EPIDEMIOLOGICAL ANALYSIS

Cohort Creation

As noted earlier, MAPLE incorporates four longitudinal 
cohorts and one stacked longitudinal cohort that combines 
three cycles of the CanCHEC. The CanCHEC cycles used 
individual data from the long form census questionnaire, 
which includes variables on socioeconomic status such edu-
cation, income, marital status, ethnicity, immigration status, 
and employment status. Although some of these variables 
were measured differently during different census years, all 
variables were standardized to allow all CanCHEC cohorts 
to be stacked and the CanCHEC and mCCHS cohorts to be 
comparable.

1.	 1991 CanCHEC — 2.5 million subjects (after exclu-
sions) over the age of 25 years who completed the 1991 
long-form census linked to vital statistics, tax records, 
and cause of death from census day (June 4, 1991) to 
December 31, 2016, using methodology previously 
described in Wilkins and colleagues (2008) and Peters 
and colleagues (2013).
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36 years of residential history occurring both before and after 
the survey date. This was transposed to a file of person-years 
from entry data to end of follow-up (n = 5,902,100). Of these, 
a number of person-years were excluded for various reasons 
(note that totals will exceed number of deleted person-years, 
given that more than one exclusion criteria may apply to a 
single person-year), as follows: immigrated to Canada less 
than 10 years before survey date (n = 541,600 person-years); 
age during follow-up period exceeded 89 years (n = 161,000); 
had no postal code (n = 5,009,900); could not be linked to air 
pollution values (n = 5,711,600); could not be linked to Can-
MARG values (n = 7,668,000); could not be linked to census 
metropolitan area (CMA) or census agglomeration (CA) size 
(n = 4,800,600); could not be linked to airshed (n = 3,500); the 
10-year moving average was informed by fewer than 7 years 
of exposure (n = 39,843); the person-year occurred after the 
subject death (n = 343,600). The total available person-years 
for analyses was 4,404,957 after all exclusions.

Description of Covariates

As described in detail in the Phase 1 report, we employed 
a defined strategy for covariate inclusion and focused our 
core analyses on two primary models (directed acyclic graph-
informed and fully adjusted). In this report we focus on the 
fully adjusted models. All models were stratified by age (5-year 
age group), sex, and immigrant status. Respondents who immi-
grated to Canada 10 or fewer years prior to the index census 
year were excluded from the analyses, as they had spent most 
of their lives outside of Canada with unknown exposure. Mod-
els for the CCHS and the Stacked CanCHEC cohort also were 
stratified by the CCHS cycle or census year, respectively.

Subject-Level Risk Factors  Available subject-level covari-
ates included income, educational attainment, marital status, 
Indigenous identity, employment status, occupational class, 
and visible minority status. Income quintiles were derived 
by summing total pretax income from all sources for all 
economic family members or unattached individuals for the 
year prior to the census and then calculating the ratio of this 
total income to the Statistics Canada low-income cut-off for 
the applicable family size, community size group, and year. 
Weighted quintiles were derived based on this ratio for each 
CMA, CA area, or provincial residual for each cohort (Statistics 
Canada 2016). Employment status was defined as employed, 
unemployed, or not in the labor force (i.e., persons who left 
on disability, had retired, or had never worked) in the week 
prior to census day (Statistics Canada 2003). Visible minority 
status was defined in the Employment Equity Act as “persons, 
other than Indigenous persons, who were not white in race 
or color” (Statistics Canada 2003). Furthermore, the CCHS 
analyses included an additional level of model adjustment, 
using covariates describing fruit and vegetable consumption, 
leisure exercise frequency, alcohol consumption behavior, 
smoking behavior, and BMI categories.

identifiers such as names, sex, date of birth, and postal code and 
estimating the likelihood that records are referring to the same 
entity). Through this linkage, we obtained each respondent’s 
annual mailing address postal code (to account for residential 
mobility in analysis) from tax records. Respondents with no 
postal code history were excluded from the analysis because 
we were unable to assign air pollution estimates or neighbor-
hood covariates. Team members received security clearance to 
conduct all data linkages and analyses at secure Research Data 
Centers operated by Statistics Canada. Data were anonymized 
and person-years were rounded to the nearest 100 to prevent 
individual identification.

Postal code history was not available for each person in 
every year of follow-up, either because they did not file a tax 
return or because there were gaps in administrative data. We 
imputed 2.1% of person-years of missing postal codes if they 
shared the first two characters (Finès et al. 2017; Pinault et al. 
2017), for a total of 89.9% of person-years with a valid postal 
code after imputation. Person-years were then excluded if 
they did not have an assigned postal code.

Additional person-years were excluded if respondents 
immigrated to Canada less than 10 years prior to the survey 
date (9,364,400 excluded), age during the follow-up period 
exceeded 89 years (7,357,200 excluded), or postal codes could 
not be matched to an air pollution estimate (17,814,400), a 
Can-Marg value (25,613,100), or airshed (25,545,500). Note 
that these exclusion numbers overlap for many person-years. 
Finally, the air pollution exposures were based on a 10-year 
moving average with a one-year lag. Person-years were 
excluded if the air pollution estimate in a given year was 
based on fewer than 7 out of 10 years of data (21,751,800).

In stacking three cycles of the CanCHEC, a total of 
149,301,100 person-years was available. Finally, to create 
the Stacked CanCHEC, repeated CanCHEC respondents 
were excluded, leading to a final number of 128,371,800 
person-years for analyses. Person-years excluded because 
of missing data were associated with persons who: died 
during follow-up, were age 80–89 years at baseline, reported 
being a visible minority, reported Indigenous identity, were 
unemployed, lived in Northern communities, or lived in rural 
communities.

For the CCHS/mCCHS cohort, response rates varied by cycle 
(2000/2001 [Cycle 1.1], 84.7%; 2003 [Cycle 2.1], 80.7%; 2005 
[Cycle 3.1], 78.9%; 2007–2008, 76.4%; 2009–2010, 72.3%; 
2011–2012, 68.4%), as did the numbers of respondents who 
agreed to data linkage (2000–2001 [Cycle 1.1], n = 117,800 
respondents; 2003 [Cycle 2.1], n = 112,900 respondents; 
2005 [Cycle 3.1], n = 113,900 respondents; 2007–2008, n = 
112,700 respondents; 2009–2010, n = 104,700 respondents; 
2011–2012, n = 104,100 respondents). Of those who agreed 
to linkage, 95.2% were successfully linked to the Social Data 
Linkage Environment, with 99.8% of relevant deaths linked. 
There were 540,900 respondents in the cohort with up to 



 15

M. Brauer et al.

Analysis Approach

Linear Modeling  Our primary statistical model relating 
exposure to mortality was the Cox proportional hazards model. 
Participants were at least 25 years of age at the beginning of 
each cohort, and the time axis was the year of follow-up until 
2016. Person-years before census year and after a subject’s 
death year were excluded from the analysis. Events were deter-
mined by year of death for nonaccidental and cause-specific 
mortality, using International Classification of Disease, 10th 
edition (ICD–10) codes. These include cardiovascular mortality 
(ICD-10 codes I10 to I69), cerebrovascular mortality (ICD-10 
codes I60–I69), heart failure (ICD-10 codes I50.0, I50.1, I50.9), 
ischemic heart disease (ICD-10 codes I20–I25), diabetes (ICD-
10 codes E10–E14), nonmalignant respiratory disease (ICD-10 
codes J00–J99), COPD and associated conditions (ICD-10 codes  
J19–J46), pneumonia (ICD-10 codes J10–J18), lung cancer (ICD-10  
codes C33–C34), and kidney failure (ICD-10 codes N18). The 
Cox model baseline hazard function was stratified by age (5-year 
groups), sex, and immigrant status. The Stacked CanCHEC and 
mCCHS were further stratified by census year or survey cycle. 
In this report we focus on the fully adjusted models introduced 
in the Phase 1 report. Specifically, models were adjusted for 
income adequacy quintile, visible minority status, Indigenous 
identity, educational attainment, labor-force status, marital 
status, occupation, and ecological covariates of community 
size, airshed, urban form, and four dimensions of Can-Marg 
(instability, deprivation, dependency, and ethnic concentra-
tion). Subject data were censored at 89 years of age, either at the 
beginning of each cohort or during follow-up, due to evidence 
from the 2011 Household Survey of an increased mismatch with 
increasing age between home address and tax return mailing 
address (Bérard-Chagnon 2017). We postulate that relatives of 
elderly people may have been completing their tax returns using 
a different address. Each of the three CanCHEC cohorts (1991, 
1996, and 2001) were examined separately and then stacked 
to form a single cohort, which formed the basis of the majority 
of our analyses. Individuals who completed the subsequent 
long-form census questionnaires were removed, retaining only 
the first mention of the individual. Individuals who recurred in 
repeat CanCHEC cycles were identified using a key produced by 
the Derived Record Depository within Statistics Canada.

The primary exposure time window was a 10-year moving 
average assigned to the year prior to a given person-year, to 
ensure that exposures preceded the outcome event. Annual 
exposures were assigned by converting postal codes to geo-
graphic locations (i.e., latitudes and longitudes). However, 
some postal codes were missing, as not all subjects filed a 
tax return in each year. These missing postal codes were 
imputed based on available postal codes prior to and after 
missing years. Some postal codes could not be imputed with 
any accuracy and were set to missing. To estimate exposures, 
7 years out of each 10-year period must have had available 
postal codes that were matched to air pollution estimates. We 

Area-Level Contextual Risk Factors  We used the CAN-Marg 
index (Matheson et al. 2012) to describe socioeconomic char-
acteristics of an individual’s home community. CAN-Marg 
is based on census data and geography; it is used to describe 
differences in marginalization among areas and to charac-
terize inequalities in various predictors of health and social 
wellbeing. Derived from principal component analysis, 
it contains four dimensions of marginalization: material 
deprivation (e.g., proportion of population with low edu-
cation, low income), residential instability (e.g., proportion 
of dwellings that are not owned, proportion of multiunit 
housing), dependency (e.g., ratio of seniors and youth to 
working aged population), and ethnic concentration (e.g., 
proportion of recent immigrants and self-reported visible 
minorities). We defined CAN-Marg based on census tracts 
(i.e., neighborhoods) in cities and census subdivisions (i.e., 
municipalities) outside of larger metropolitan areas. All 
person-years missing CAN-Marg values were removed from 
the analysis.

Geographic Identifiers  This category includes covariates 
such as community size, urban form, and airshed. Urban form 
is a further designation for communities with a population 
size over 100,000 based on a combination of population 
density and mode of transit (Gordon and Janzen 2013). We 
designated communities as one of the following:

•	 Active Urban Core — Active transportation modes used 
to commute to work at greater than 150% of the metro 
average and greater than 50% of the national average

•	 Transit-Reliant Suburb — Transit use to commute to 
work greater than 150% of the metro average and greater 
than 50% of the national average, active transit use less 
than 150% of the metro average

•	 Car-Reliant Suburb — Gross population density greater 
than 150 people per square kilometer and transit use and 
active transportation use less than 150% of the metro 
average

•	 Exurban — Gross population density less than 150 peo-
ple per square kilometer and more than 50% of workers 
commuting into the metropolitan area.

Airshed was defined by the Canadian Air Quality Manage-
ment System on the basis of similar air-quality characteristics 
or dispersion patterns (Crouse et al. 2016). It subdivides the 
country into six large geographic areas (Figure 3) and adjusts 
for broad-scale spatial variation in mortality rates not cap-
tured by other risk factors.

All missing person-years for geographic identifiers were 
removed from the analysis. Further, person-years were 
excluded from the analysis if postal code information was 
inadequate and could not be linked to air pollution and 
ecological covariates, or if the air pollution and ecological 
covariate file did not match with a postal code record.
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HRs to immigration status and time since immigration. HRs 
for the association with cardiovascular and cerebrovascular 
mortality with PM2.5 were slightly but not significantly higher 
for immigrants relative to nonimmigrants in Canada, while 
no other differences were observed for other causes of death 
(Erickson et al. 2020). The implication from this work is that 
excluding recent immigrants was unlikely to introduce direc-
tional bias in our risk estimates.

Although several known and important risk factors for 
mortality were reported on the long-form census, many risk 

flagged missing person-years in the analytical file based on this 
requirement, and missing person-years were removed from 
the analysis. We required subjects to have filed tax returns 
10 years prior to the cohort starting year (i.e., 1981 for the 
1991 cohort, 1986 for the 1996 cohort, and 1991 for the 2001 
cohort). An implication of this exposure-assignment protocol 
is that subjects must have been living in Canada 10 years 
prior to the beginning of their respective cohort’s follow-up 
period. We thus excluded all subjects who immigrated to 
Canada during the 10 years prior to their cohort enrollment. 
In earlier work, we evaluated the sensitivity of cause-specific 

Figure 3. Map of the 6 airsheds in Canada across the provinces and territories, with locations of large cities (black circles) and MAPLE PM2.5 
monitoring sites (red Xs).
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health and economic benefits of proposed strategies to improve 
outdoor air quality. Cohort studies, such as those included 
in MAPLE are often used to determine this relationship. In 
such studies, information on major mortality risk factors 
such as age, sex, race, smoking, diet, exercise, and obesity are 
often included for each participant. Participants are assigned 
estimates of multiyear averages of outdoor concentrations of 
PM2.5 at or near their homes. These concentrations are then 
related to mortality using proportional hazard models adjust-
ing for available information on other risk factors (Cox 1972) 
and HRs were reported with Wald CIs.

To assess the shape of air pollution–mortality relationships, 
we typically relate the concentration of PM2.5 to the logarithm 
of the hazard function, or instantaneous probability of death 
during follow-up, with a slope denoted by β. The hazard 
model (h) then has the form: logh(PM2.5) = β(PM2.5). This 
form of model has previously been used to estimate excess 
deaths from exposure to outdoor PM2.5 concentrations (U.S. 
EPA 2012). Some simple extensions of this linear model have 
been suggested, including logh(PM2.5) = βlog(PM2.5), where the 
logarithm of concentration is used (Crouse et al. 2012; Krewski 
et al. 2009). Nonlinear models have been extended to include 
nonparametric representations of the association using natural 
(Thurston et al. 2016) or restricted (Crouse et al. 2015) cubic 
splines. More complex extensions have included smoothing 
splines (Di et al. 2017). In these cases, several spline variables 
{sl (z), l = 1, .  .  ., L} are used to characterize the association: 

h s zlog (PM ) ( ),l ll

L
2.5 1∑= β

=
for any concentration z, with the 

parameters {βl, l = 1, .  .  ., L} determining the magnitude. The 
spline variables take different shapes over different intervals of 
concentration. This local smoothing property allows for highly 
complex shapes to be modeled.

We have selected RCS to flexibly model the association 
between outdoor concentrations of PM2.5 and mortality (Harrell 
2015). These regression-based splines require fewer computing 
resources compared with smoothing splines, a restriction that 
is necessary within the computing environment at Statistics 
Canada. The RCS has the form
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factors were not recorded, such as smoking habits, BMI, or 
diet. We addressed the influence of these risk factors on air 
pollution risk estimates using data from the CCHS. We pooled 
several cycles of the CCHS (mCCHS cohort) for simultaneous 
analysis of the shape of the concentration–response associa-
tion between PM2.5 and nonaccidental mortality. The mCCHS 
analyses were stratified by CCHS cycle. We also examined 
several other causes of death, including cardiovascular mor-
tality, cerebrovascular mortality, heart failure, ischemic heart 
disease, diabetes, nonmalignant respiratory disease, COPD 
and associated conditions, pneumonia, lung cancer, and 
kidney failure (ICD-10 codes described earlier).

We reported in the Phase 1 report a flattening of the 
all-cause mortality PM2.5 relationship at intermediate con-
centration ranges. Although concentration distributions 
overlap across airsheds, we utilized a newly available 
healthcare access measure to evaluate its potential relevance 
to the shape of the concentration–response relationship. The 
proximity to healthcare variable measures the closeness of 
a person’s home to local healthcare facilities: doctors and 
mental health specialists, dentists, offices of other health 
practitioners, outpatient care centers, and hospitals within 
a 3-kilometer network distance by car (Statistics Canada 
2020). Proximity is measured by distance between the 
centroids of dissemination blocks which are an urban block 
or areas bounded by roads in a rural area. A simple gravity 
model weighs the number of nearby dissemination blocks 
containing healthcare facilities and the size of the services, 
by employment or revenue generation, and produces a nor-
malized value from 0 to 1.

We attached this measure to the stacked cohort file through 
a postal code-dissemination block correspondence file pro-
duced by PCCF+. In cases where a postal code was not linked 
to a dissemination block, or if a dissemination block did not 
have a proximity estimate, we imputed the postal code prox-
imity to healthcare value based on the mean values of similar, 
full postal codes, or more complete partial postal codes. After 
attaching the variable to the stacked cohort, we categorized 
all person-years according to quintile, and this five-category 
proximity variable was included in a restricted cubic spline 
analysis of nonaccidental death with 9-knots.

We split those who reside outside of a CMA–CA into those 
who live in rural (i.e., sparsely populated areas, 22,267,800 
person-years) and nonrural areas (i.e., villages, small towns, 
7,593,900 person-years), which can be assumed based on 
the second digit of a person’s postal code. We ran a 9-knot 
restricted cubic spline for nonaccidental death using our 
regular covariates and this slightly altered community size 
variable. The RCS curve did not change in a meaningful way.

Shape of the Association Between PM2.5 Exposure and 
Mortality  A quantitative characterization of the shape of the 
concentration–response relationship between outdoor PM2.5 
concentrations and mortality can be useful for evaluating the 
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We report the model predictions and 95% CIs in addition to 
two measures of fit: Akaike (AIC) and BIC, to examine the 
sensitivity of the shape of the PM2.5–mortality association to 
the number of knots.

Because of computing time limitations, for all other anal-
yses we developed a supervised search routine to reduce 
the number of RCS models that were fit. Initially we fit RCS 
models with 5, 8, 11, and 14 knots and identified the number 
of knots with the lowest BIC value. Suppose this value is 
11  knots. Then we fit another four models with 9, 10, 12, 
and 13 knots, toggling the number of knots above and below 
11. We then identify the number of knots with the lowest 
BIC value among the 8 models run and select this as our 
final model, unless the best model is 16 knots (first selecting 
14  knots) and then running 12, 13, 15, and 16 knots. In 
that case we run another four models with 17, 18, 19, and 
20 knots. If the lowest BCI is in this range then we stop, if 
not we run multiple sets of four models until we reach a 
minimum BIC value. We used the log likelihood ratio test to 
compare the fit of the RCS vs the linear model.

Incorporation of Counterfactual Concentration  Natural 
cubic or smoothing splines are often used to describe the 
association between concentration and mortality. These 
splines are characterized by CIs increasing in width as con-
centrations deviate from the mean. RCS do not necessarily 

for K knot concentrations (λ1, .  .  ., λK). The RCS is linear 
below λ1 and above λK with continuous second derivatives 
at the K knots. The K−1 unknown parameters (β0, .  .  ., βK−2) 
are estimated within the Cox survival model framework by 
including (z,s1(z), . . ., sK(z)) as K−1 variables in the survival 
model. The analyst must specify the number and location 
of the knots. Knot locations are based on percentiles of the 
PM2.5 person-year distribution (Table 1). These are based on 
the recommendation given in the SAS macro lgtphcurv9 that 
we use to create the RCS variables and fit them with the Cox 
survival model (Li et al. 2011).

Let 0 2
ˆ ˆ ˆ( , . . ., )K −= β β ′β be a K−1 by 1 vector of parameter 

estimates with corresponding covariance matrix V and let 
s(z)  =  (z, s1(z), .  .  ., sK−2(z))′. The estimate of the lnRCS(z) 
prediction is given by

RCS z s z z s zln ( ) ˆ ( ) ˆ ˆ ( ),l l
l

K

0
1

2
 ∑= ′β = β + β

=

−

with uncertainty in the estimate given by z s z Vs zˆ ( ) ( ) ( ).σ = ′  
We summarize the information obtained from the fitted RCS 
model by its mean prediction at any concentration z, RCS z( ),  
and its 95% confidence interval: RCS z zexp(ln ( ) 1.96 ˆ ( )).∓� × σ

Selecting the Number of Knots  For all nonaccidental 
causes of death, we fit 16 RCS models based on 3 to 18 knots. 

Table 1. Knot Location Person-Year Percentiles

Knots Location

3 5 50 95

4 5 35 65 95

5 5 27.5 50 72.5 95

6 5 23 41 59 77 95

7 2.5 18.3 34.2 50 65.8 81.7 98

8 1 15 29 43 57 71 85 99

9 2 14 26 38 50 62 74 86 98

10 2 12.7 23.3 34 44.7 55.3 66 76.7 87.3 98

11 2 11.6 21.2 30.8 40.4 50 59.6 69.2 78.8 88.4 98

12 2 10.7 19.5 28.2 36.9 45.6 54.4 63.1 71.8 80.5 89.3 98

13 2 10 18 26 34 42 50 58 66 74 82 90 98

14 9.39 16.8 24.2 31.5 38.9 46.3 53.7 61.1 68.5 75.9 83.2 90.6 98

15 2 8.9 15.7 22.6 29.4 36.3 43.1 50 56.9 63.7 70.6 77.4 84.3 91.1 98

16 2 8.4 14.8 21.2 27.6 34 40.4 46.8 53.2 59.6 66 72.4 78.8 85.2 91.6 98

17 2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98

18 2 7.6 13.3 18.9 24.6 30.2 35.9 41.6 47.2 52.8 58.5 64.1 69.8 75.4 81.1 86.7 92.4 98
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RCS z RCS zln ( ) ln ( )F C
 − and its standard error. To do this we 

note that:

RCS z RCS z s z s zln ( ) ln ( ) ˆ ( ) ( )C F C F
  ( )− = β −

with standard error

Vz z s z s z s z s zˆ ( , ) ( ) ( ) ˆ ( ) ( ) .F C C F C F( ) ( )σ = − ′ −

Determining the difference in the log HR predictions 
between zC and zF only requires estimates of the respective 
predictions at each concentration, s zˆ ( )C′β and s zˆ ( )F′β , val-
ues that can be obtained from figures typically reported in 
publications such as those in Figures  13–19 in this report. 
However, determining z zˆ ( , )F Cσ requires estimates of each of 
the RCS variables (s0, .  .  ., sK−2) and the individual elements 

of the covariance matrix V . Thus, the standard error of  
RCS zln ( )  that could be obtained from the Figures 13–19 for 

example, is not sufficient to determine z zˆ ( , )F Cσ .

As an example application of risk predictions for health 
benefits analysis, the Global Burden of Disease 2019 (GBD 
2020) uses a smoothing spline to characterize the magnitude, 
shape, and uncertainty in the association between air pollu-
tion concentrations and health outcomes within a Bayesian 
meta-analytic framework (GBD 2020). One thousand values 
are sampled from the posterior distribution of the spline 
coefficients. Using these values, 1,000 sets of the logarithm 
of relative-risk predictions are determined using a sequence 
of concentrations of interest. Then, 1,000 PAF values are cre-
ated based on the difference in prediction between any two 
concentrations. We apply this method within our frequentist 
approach using the RCS by generating 1,000 realizations 
from a multivariate normal distribution with mean β̂ and 
covariance matrix V , denoted by ri = (r0,i, . . ., rK−2,i)′, i = 1, . . ., 
1,000. We then construct: ri′(s(zC) – s(zF)), I = 1,  .  .  ., 1,000 
used to construct 1,000 estimates of the PAF(zC, zF) for the 
concentration contrast (zC, zF), a quantity necessary for health 
benefits analysis.

Extending the SCHIF  The best-fitting shape of the associ-
ation estimated by splines may not be entirely suitable for 
risk assessment or health benefits analysis, due to potentially 
multiple variations in shape over different segments of the 
concentration distribution. That is, the spline maybe too 
wiggly even if it is constrained to be monotonically increasing 
(Pya and Wood 2015).

Our proposed approach to this challenge is to transform 
each of the 1,000 sets of predictions ri′s(zj), j = 0, . . ., J into 
an algebraic function that we suggest is suitable for benefits 
analysis. Our algebraic function is based on an extension of 
the SCHIF first proposed by Nasari and colleagues (2016) and 

have this property. To represent the RCS predictions and 
their uncertainty in a manner similar to natural or smoothing 
splines we made the following adjustment:

RCS z z s z s z

z z s z s z

ln ( ) ˆ ( ) ( )

ˆ ( ) ˆ ( ) ( )

mean mean

mean l l l mean
l
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1
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

∑
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= β − + β −
=

−

with RCS z zln ( | ) 0.mean
 = Spline predictions are also often 

presented with the HR prediction equaling one at the low-
est observed concentration, zmin. We include this property 
by transformatting the RCS predictions in the following 
manner:

RCS z z RCS z zln ( | ) ln ( | ).mean min mean
 −

Given this characterization, the lower confidence limit on 
the RCS prediction will be less than one at zmin. We identify 
the highest concentration, C, for which the lower confidence 
limit is less than one.

Relative-Risk Functions Suitable for Health Benefits 
Analysis  We present RCS mean predictions over the 
cohort concentration range and their 95% CIs. We set the 
mean prediction at the minimum concentration to one and a 
counterfactual concentration equaling the mean, at which the 
standard error (SE) of the prediction is zero. A characteristic 
of this formulation is that the width of the CIs increases as 
concentration deviates from the mean. We further identify the 
maximum concentration for which the lower confidence limit 
is less than one. The lower confidence limit on estimates of 
excess deaths will be less than zero for concentration ranges 
where the lower confidence limit on HR predictions is less 
than one. This calculation is based on a contrast between any 
concentration above the minimum and the minimum concen-
tration, where it is assumed the HR at the minimum is one 
with zero uncertainty.

For a health benefits analysis, one is often interested in 
predicting the relative risk between any two concentrations, 
not just between a concentration above the minimum and 
the minimum itself. A benefits calculation incorporates the 
population attributable fraction (PAF), or proportion of total 
deaths attributable to any specific contrast in concentration, 
of the form:

PAF z z RCS z RCS z( , ) 1 exp ln ( ) ln ( ) ,C F C F
 { }( )= − − −

where zC is a current concentration and zF < zC is a future 
predicted concentration under a specified air quality mitiga-
tion scenario. We therefore need to determine an estimate of 
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and include these two variables in a linear regression with 
the response ri′s(zj) − ri′s(z0), j = 0, . . ., J. We then identify 
the values of (δ(n), α(n), μ(n), τ(n)) that solicit the lowest log-
likelihood value with corresponding estimates of (θi, γi) 
denoted by θ γ(ˆ , ˆ )i i . Let the corresponding values of (δ(n),
α(n), μ(n), τ(n)) that minimize the log-likelihood be denoted by 
(ˆ , ˆ , ˆ , ˆ )i i i iδ α µ τ .

Then the eSCHIF is characterized by
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for j = 0, . . ., J; i = 1, . . ., 1,000.

The uncertainty distribution of PAF(zC, zF) based on the 
eSCHIF is obtained from the 1,000 values of
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i = 1, . . ., 1,000, independent of ri′s(z0).

Incorporating Uncertainty in the Number and Location of 
RCS Knots  The shape and uncertainty of RCS predictions is 
governed, in part, by the number and placement of the knots. 
We characterize the uncertainty in number and placement of 
knots by first fitting RCS curves by a series of number of knots 
from 3 to 18. We then create an ensemble RCS estimate by first 
defining the ensemble weight ω(κ) with κ denoting the knot 
locations that define the RCS. Let Mκ denote a measure of fit 
associated with knots κ, then

∑
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then generalized as the Global Exposure Mortality Model  
(GEMM) by Burnett and colleagues (2018). It is given by
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for j = 1, . . ., J; I = 1, . . ., 1,000. We fix the model prediction 
to ri′s(z0), the lnRCS value at z = z0, in order for our model to 
closely approximate the RCS predictions at very low concen-
trations. We denote this new model as eSCHIF. The second 
eSCHIF term was proposed by Burnett and colleagues (2018). 
We have added an additional term, the first eSCHIF term, to 
extend their model to additional shapes. In particular, this 
new formulation models confidence intervals of mean pre-
dictions that increase in width as deviation in concentration 
from their mean increase.

By setting the counterfactual to the mean concentration, 
the RCS CIs widen as concentrations deviate from the mean. The 
eSCHIF is thus capable of modeling such a structure, while the 
original SCHIF or GEMM are not. The eSCHIF can model near-
linear, supralinear, sublinear, sigmoidal, and nonmonotonic 
shapes. A specific nonmonotonic shape of interest is when some 
of the RCS relative-risk predictions decline with concentration 
over lower concentrations and then increase with higher con-
centrations. This pattern results in PAF values less than zero.

eSCHIF Parameter Estimation  We use linear least squares 
to estimate the parameters (θi, γi) for specified values of (δ, α, 
μ, τ). We first generate uniform, U, sampling distributions for 
(δ, α, μ, τ) as:

δ ~ U(1, 3v)

α ~ U(1, 3v)

μ ~ U(−1, 1) × v

τ ~ U(0.05, 1) × v.

v = zj − zo, the range in concentrations to be modeled over. We 
use these sampling distributions as a method to create a mesh 
of parameter values needed for our estimation routine. These 
sampling specifications also permit a wide range in shapes of 
interest.

From these sampling distributions we generate a large 
number (1,000) of quadruples (δ(n), α(n), μ(n), τ(n)), for n = 1, . . ., 
1,000 and then create two transformations of concentration 
(T (1) and T (2)) for each n and zj as

=
−

δ
+



δ

T z
z z

( ) ln 1j
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this analysis, models were fitted by airshed, representing large 
areas of Canada (see Figure 3). This analysis was conducted 
to evaluate a flattening of the concentration–response relation-
ship that we observed at midrange PM2.5 concentrations in the 
MAPLE Phase 1 report. We hypothesized that this may have 
reflected regional variation in the composition of the air pollu-
tion mixture at these levels or unmeasured regional variation 
in mortality risk factors. We additionally evaluated whether 
any observed regional variation in concentration–mortality 
relationships could be explained by differential regional rep-
resentation of immigrants, Indigenous respondents, or healthy 
older persons who are lost to follow-up.

Further, we explored the potential effect of regional vari-
ation in access to healthcare as another factor that may have 
led to regional variation in the shape of the concentration–
mortality relationship. In these analyses we evaluated sepa-
rate models excluding immigrants, Indigenous respondents, 
and persons >80 years, 60–79 years, and >60 years, where 
immigrants and Indigenous respondents were removed, and 
where populations were restricted to specific age groups. To 
assess the sensitivity of concentration–mortality relationships 
to regional variation in access to healthcare, we included 
in models a new measure of the closeness of a census dis-
semination block to any census dissemination block with a 
healthcare facility within a driving distance of 3 kilometers. 
We further conducted analyses with 1-year age strata to assess 
potential residual confounding within the 5-year age strata in 
our main models.

Finally, we evaluated model sensitivity to using different 
versions of applying PM2.5 exposure to the models. Different 
moving averages (3- vs. 10-year moving averages) were 
applied, as well as a comparison between the older version 
of the PM2.5 data (V4.NA.01) and the new version (V4.
NA.02-MAPLE) (Appendix Tables A.6 and A.7; available on 
the HEI website).

SUMMARY OF FINDINGS

EXPOSURE ASSESSMENT

Table 2 provides an overview of the measurements made 
at each sampling site. Filter and scattering measurements 
were collected for 328 to 459 days at all locations, with 
the exception of Kelowna that collected measurements for 
134 days. The variation in sampling is due to differing logis-
tics associated with site deployment, disassembly dates, and 
instrument downtime for required maintenance. Site mean 
PM2.5 concentrations are below 7 μg/m3, varying by less than 
a factor of two across all sites, with the highest concentra-
tion observed in Downsview (6.8 μg/m3) and the lowest in 
Kelowna (3.4 μg/m3). Larger variations are observed for major 
chemical constituents.

(Buckland et  al. 1997). We then form lnRCS model pre-
dictions over the exposure range by 0.1-μg/m3 increments, 
denoted by {z1,  .  .  ., zN}, by simulating realizations propor-
tionate to 1,000 × ω(κ). That is, the values of κ that yield 
better model predictions are more often represented in the 
1,000 realizations. This approach incorporates uncertainty 
in both the number and location of the knots. To each of 
these 1,000 RCS realizations we fit the eSCHIF.

Standard Threshold Functions  In addition to the eSCHIF 
for nonaccidental mortality we fit the standard threshold HR 
function:

THRES z z( ) exp( )= βρ ρ

where zρ = max (0, z − ρ), for threshold concentrations ρ = 
2.5, 3.0, 3.5, . . ., 10.0. Let β̂ρ denote the estimate of ; ˆ ,ˆβ σρ β ρ  
its associated standard error; LLρ, the log-likelihood value; 

and LL LL LL LL( ) exp( min( )) / exp( min( )),∑ω ρ = − −ρ ρ ρ ρρ
 the  

model ensemble weight (Buckland et  al. 1997). We form 
model predictions by sampling 1,000 realizations of normal 
variates with mean β̂ρ and standard deviation ˆ ˆσβρ

with the 
sample size for each value of ρ proportionate to1,000 ( )× ω ρ . 
That is, the values of the threshold parameter ρ that represent 
better model predictions are more often represented in the 
1,000 realizations. We graphically present the mean of the 
HR predictions among the 1,000 sets in addition to the 2.5 
and 97.5 percentile values over the concentration range and 
identify the highest concentration, such that the 2.5 percen-
tile value equals one.

Sensitivity Analyses  In addition to the main analyses 
described earlier, we conducted several sensitivity analyses 
using a similar modeling approach. These analyses were 
designed to further investigate observations reported in the 
MAPLE Phase 1 report. In most cases, we evaluated both 
linear Cox proportional hazards models as well as the non-
linear shape of the association between PM2.5 and mortality, 
described earlier, using fully adjusted models. In most cases, 
we focused on using the Stacked CanCHEC for these analyses, 
unless otherwise indicated.

First, to further investigate the attenuation of PM2.5 HRs by 
O3 and Ox that we reported in the MAPLE Phase 1 report, we 
considered a series of joint two-pollutant models, incorporat-
ing both PM2.5 with O3 and PM2.5 with Ox, through linear and 
nonlinear models. Joint nonlinear models were fit using the 
number and position of knots obtained based on BIC model 
fit for each of the pollutants in the single-pollutant models. 
Similarly, we considered PM2.5 models within tertiles of O3 
and Ox in both linear and nonlinear models for nonaccidental 
mortality.

Next, we evaluated associations between nonaccidental 
mortality and PM2.5 within different regions of Canada. For 

http://V4.NA
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Table 3 shows a summary of mean coincident PM2.5 mass 
and species concentrations from MAPLE and NAPS monitors 
in Downsview. Overall, both measurement methods exhibit a 
high degree of consistency. Sulfate is most consistent across 
both methods, with mean concentrations within 6%. MAPLE 
nitrate and ammonium concentrations are lower than those 
from NAPS, as expected due to loss of these semivolatile 
components. The main compounds used for mineral dust, 
magnesium, aluminum, and iron are overall consistent across 
both methods.

Figure  4 shows the average contribution of major 
chemical components to total PM2.5 mass concentrations 
from the five measurement sites. The five major chemical 
components (secondary inorganic aerosol (SIA), residual 
matter, black carbon, sea salt, and dust) show pronounced 
heterogeneity across sampling sites. SIA (sum of sulfate, 
nitrate and ammonium) vary by an order of magnitude from 
as low as 0.2 μg/m3 in Kelowna, to moderate values in Hal-
ifax (1.0 μg/m3) and Lethbridge (1.2 μg/m3), to 2.0 μg/m3 in 
Downsview (Table 2). Differences reflect regional emission 
sources. Kelowna is a small city in the Western airshed 

Table 2. Summary of Mean Filter-Based and Nephelometer Measurements at MAPLE Sampling Locations

Downsview Halifax Kelowna Lethbridge Sherbrooke

Sampling Period (yyyy/mm) 2017/07 –  
2019/08

2017/08 –  
2019/08

2017/11 –  
2019/03

2017/08 –  
2019/08

2017/06 –  
2019/08

Sampled days 435 435 134 328 459

Sampled filters 68 62 18 39 59

Sampled seasonsa S,F,W,Sp S,F,W,Sp F,W,Sp S,F,W,Sp S,F,W,Sp

Measurements (Mean ± SE)

PM2.5 (μg/m3) 6.8 ± 0.3 4.1 ± 0.2 3.4 ± 0.8 5.7 ± 1.2 5.5 ± 0.3

Sulfate (μg/m3) 1.19 ± 0.07 0.68 ± 0.04 0.13 ± 0.05 0.66 ± 0.05 1.35 ± 0.26

Nitrate (μg/m3) 0.47 ± 0.10 0.13 ± 0.01 0.03 ± 0.01 0.32 ± 0.07 0.14 ± 0.03

Ammonium (μg/m3) 0.37 ± 0.03 0.17 ± 0.02 0.05 ± 0.02 0.23 ± 0.03 0.20 ± 0.02

SIA (μg/m3) 2.0 ± 1.3 1.0 ± 0.7 0.2 ± 0.1 1.2 ± 0.8 1.7 ± 1.4

Black carbon (μg/m3) 0.82 ± 0.06 0.36 ± 0.03 0.16 ± 0.07 0.37 ± 0.06 0.49 ± 0.04

Residual matter (μg/m3) 2.5 ± 0.2 1.7 ± 0.2 1.1 ± 0.2 4.0 ± 1.4 2.8 ± 0.3

Dust (μg/m3) 0.67 ± 0.06 0.43 ± 0.06 0.30 ± 0.07 0.46 ± 0.07 0.32 ± 0.03

Sea salt (μg/m3) 0.55 ± 0.04 0.79 ± 0.05 0.29 ± 0.03 0.39 ± 0.06 0.49 ± 0.03

PM10 (μg/m3) 15.9 ± 1.7 8.6 ± 0.6 8.6 ± 2.8 9.7 ± 3.0 11.5 ± 0.8

bsp,24hr,550nm (Mm−1)b 38.6 ± 1.3 16.5 ± 0.5 17.2 ± 1.6 26.7 ± 1.8 24.9 ± 0.7

bsp,overpass,550nm (Mm−1) 27.9 ± 1.3 12.9 ± 0.5 12.2 ± 1.1 23.3 ± 2.1 17.1 ± 0.6

AODoverpass,550nm 0.18 ± 0.01 0.13 ± 0.01 0.14 ± 0.02 0.14 ± 0.01 0.16 ± 0.02

bsp,overpass / PM2.5,24hr (MSE, m2/g) 3.12 ± 0.10 2.73 ± 0.18 n/a 2.96 ± 1.22 2.60 ± 0.09

a Sampled seasons are S = summer (June, July, August), F = fall (September, October, November), W = winter (December, January, February), and Sp = 
spring (March, April, May). bsp,24hr = total scatter over 24 hours; bsp,overpass = total scatter during satellite overpass; SIA = secondary inorganic aerosol.

b Particle light (550 nm) scattering coefficient in units of 106m−1.

Table 3. Summary of PM2.5 Mass and Chemical Species 
Concentrations from NAPS and MAPLE at the Downsview 
Sampling Site

Concentration ± SEa

Species NAPS MAPLE

PM2.5 (μg/m3)b 6.51 ± 0.35 6.97 ± 0.42

Sulfate (μg/m3) 0.95 ± 0.06 1.01 ± 0.06

Nitrate (μg/m3) 0.71 ± 0.19 0.41 ± 0.12

Ammonium (μg/m3) 0.52 ± 0.07 0.35 ± 0.04

Sodium (μg/m3) 0.05 ± 0.01 0.14 ± 0.02

Magnesium (μg/m3) 0.01 ± 0.00 0.01 ± 0.00

Aluminum (ng/m3)c 15.5 ± 2.1 13.1 ± 2.5

Iron (ng/m3)c 55.4 ± 3.4 49.0 ± 3.8

a SE = standard error.
b NAPS PM2.5 are daily coincident values from the Partisol sampler 

(NAPS reference method).
c NAPS aluminum and iron are from the near-total extraction for the 

inductively coupled plasma mass spectrometry analysis.
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Figure 4. Average contribution of five major PM2.5 chemical components to total PM2.5 mass measured at MAPLE sampling sites in Downsview, 
Ontario (East Central Airshed); Halifax, Nova Scotia (Southern Atlantic Airshed); Kelowna, British Columbia (Western Airshed); Lethbridge, 
Alberta (Prairie Airshed); and Sherbrooke, Quebec (East Central Airshed).

Downsview Halifax

Lethbridge Sherbrooke

Secondary Inorganic Aerosol
Residual Matter
Black Carbon
Sea Salt
Dust

Kelowna

surrounded by a natural environment that experiences 
limited local anthropogenic emissions of SIA precursors 
such as sulfur dioxide (SO2) from industry and nitrogen 
oxides from combustion. Downsview is located within the 
East Central airshed inside the Greater Toronto Area, a large 
metropolitan area, near major sources of SIA precursors 
such as industrial SO2 sources and nitrogen oxides from 
significant vehicular traffic. Sources of black carbon and 
organic matter may include combustion sources such as die-
sel and residential energy use. Sherbrooke is a small urban 
area, also located in the East Central airshed downwind 
of major urban and industrial emissions, that experiences 
slightly lower mean PM2.5 concentrations than Downsview 
(5.5 vs. 6.8 μg/m3), however site location and comparable 
contributions from major chemical components signify 
similar potential sources. Moderate PM2.5 concentrations in 
Lethbridge (5.7 μg/m3) within the Prairie airshed are driven 
by significant contributions from residual (organic) matter 
that could point toward forest fires as a dominant source of 

PM2.5 in this region during the sampling period. Although 
lower overall concentrations of total PM2.5 mass and chem-
ical components were measured in Halifax, contributions 
similar to other urban sampling locations were observed 
with the exception of notably higher sea salt concentrations 
for this coastal city within the Southern Atlantic airshed.

Table 2 shows the MSE at 550 nm inferred from the mea-
sured scatter at satellite overpass time and the measured PM2.5 
mass. Site-mean values range from 2.6 m2/g in Sherbrooke to 
3.1 m2/g in Downsview. As described in Bissonnette (2019), 
multiple linear regression was conducted on the relation of 
filter-dependent MSE with PM2.5 composition to derive the 
MSE values for the five chemical components.

The resulting V4.NA.02.MAPLE dataset outperformed 
V4.NA.01 at collocated ground-based stations in long-term 
mean comparisons across the range of observed PM2.5 (coef-
ficient of determination (R2) = 0.81 vs. R2 = 0.71; RMSD = 
1.5 μg/m3 vs. RMSD = 1.9 μg/m3) (Figure 5), as well as at low 

http://V4.NA
http://V4.NA
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Figure 5. Comparison of mean PM2.5 mass concentrations for 2000–2012 observed by in-situ ground-based monitors with (A) Phase 1 V4.NA.01 
and (B) Phase 2 V4.NA.02-MAPLE satellite-derived PM2.5 estimates for all North American monitor locations. Annotations include the root 
mean square difference (RMSD), line of best fit (y), coefficient of determination (R2) and the number of points (N). See Figure 6 for Canadian 
locations only.
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Figure 6. Comparison of mean PM2.5 mass concentrations for 2000–2012 observed by in-situ ground-based monitors with (A) Phase 1 V4.NA.01 
and (B) Phase 2 V4.NA.02-MAPLE satellite-derived PM2.5 estimates for Canadian monitor locations and observed concentrations below 10 
μg/m3. Annotations include the root mean square difference (RMSD), line of best fit (y), coefficient of determination (R2) and the number of 
points (N).
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concentrations at northern locations directly relevant to this 
study (e.g., for observed PM2.5 <10 μg/m3 at Canadian sites 
(V4.NA.02.MAPLE vs V4.NA.01): R2 = 0.60 vs. R2 = 0.49; 
RMSD = 1.7 μg/m3 vs. RMSD = 1.4 μg/m3) (Figure 6).

Based on the V4.NA.02-MAPLE exposure estimates, mean 
estimates of PM2.5 across Canada were relatively low in rural 
areas of the country (2–6 μg/m3) (Figure  7). In the largest 
cities, PM2.5 estimates over the 1981–2015 average ranged 
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Figure 7. Estimates of fine particulate matter (PM2.5) annual means averaged over the entire study period (1981–2015). City-level estimates for 
the largest cities are shown in the circles.
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between 8 and 16 μg/m3. When examining the change over 
time, estimates in rural and urban areas were notably higher 
during the first decade of the study (1981–1990) relative to 
later decades (Figure  8). The cities of Toronto, Hamilton, 
Quebec City and Vancouver had estimates in the highest 
range examined during the 1981–1990 period (18 μg/m3).

A map of mean O3 averaged across the entire study period 
is provided in Figure 9. In general, O3 was highest in southern 
Ontario (e.g., Toronto and Hamilton), as well as in southern 
portions of Alberta (e.g., Calgary) and Saskatchewan (e.g., 
Regina). Spatial patterns of O3 were similar across the decades 
of study (Figure 10).

The spatial distribution of Ox was similar to that of O3, in 
that Ox was greatest in areas of southern Ontario and Alberta 

(Figure  11). It was also high in the downtown portions of 
major cities such as Toronto, Hamilton, Montreal, and Van-
couver. Similar to O3, the spatial distribution of Ox did not 
vary substantially across the decades included in the study 
(Figure 12).

National estimates of PM2.5, Ox, and O3 were applied to the 
cohorts in a time-varying manner, with estimates assigned in 
each year. Table 4 provides the distribution of PM2.5, O3, and 
Ox at the level of the person-year in each of the study cohorts. 
PM2.5 estimates were overall slightly higher in increasingly 
older cohorts, likely because older cohorts include a greater 
proportion of estimates based on earlier years when concen-
trations were higher.
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Figure 10. Estimates of O3 annual means averaged over decades within the study period (1981–1990, 1991–2000, and 2001–2011).
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Figure 12. Estimates of Ox annual means averaged over decades within the study period (1981–1990, 1991–2000, and 2001–2011).
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Exposure to PM2.5 and Ox increased with educational 
attainment in all cohorts, while exposure to O3 was highest 
in those with postsecondary education without a university 
degree. Exposure to O3 and Ox increased with income. Expo-
sure to PM2.5 was highest in the 2nd income adequacy quin-
tile. Subjects employed at the time of the survey had higher 
exposures than those who were unemployed. PM2.5 exposure 
increased over the quintiles of the CAN-Marg dimensions of 
residential instability and ethnic concentration in all three 
cohorts.

Exposure to PM2.5 generally increased with community 
size in the 1991 and 2001 cohorts, with no clear trends in the 
1996 cohort. Of the six airsheds, the East Central contained 
the highest number of person-years and had the highest expo-
sures for all air pollutants across all three cohorts.

CanCHEC Stacked Analytical File

Table  5 presents descriptive statistics of the Stacked 
CanCHEC, comprised of the 1991, 1996, and 2001 CanCHEC 
analytical files, with duplicates removed.

COHORTS: DESCRIPTIVE STATISTICS

CanCHEC Analytical Files: 1991, 1996, and 2001

Appendix Tables A.1 to A.3 (available on the HEI website) 
present descriptive statistics of each of the 1991, 1996, and 
2001 CanCHEC analytical files, with Cox proportional HRs of 
nonaccidental mortality and mean exposures to PM2.5, O3, and 
Ox, among all model covariates.

Males tended to be assigned lower concentrations of all 
air pollutants than females in all three cohorts, although 
differences were very small (<0.1 μg/m3 for PM2.5). Mean 
exposure for PM2.5 and Ox was higher with age at baseline 
in all three cohorts. Mean exposure for O3 was lower for 
younger and older adults, but higher for middle-aged adults. 
Immigrants were consistently assigned higher concentrations 
than nonimmigrants. Subjects who identified themselves as 
visible minorities had higher assigned concentrations for all 
air pollutants than those who did not in the 1991 and 1996 
cohorts. Subjects who identified themselves as Indigenous 
had lower concentrations than those who did not.

Table 4. Descriptive Statistics for PM2.5, O3, and Ox in all Cohorts for All Person-Years

Cohort /  
Pollutanta Mean SD IQR Minimum 5th 25th 50th 75th 95th Maximum

Stacked CanCHEC

PM2.5 8.50 3.05 4.16 2.47 3.86 6.26 8.26 10.41 14.19 17.74

O3 36.29 7.02 9.48 6.24 26.14 31.34 35.29 40.82 48.77 65.21

Ox 28.90 5.69 9.06 5.04 20.50 24.51 28.38 33.58 38.17 56.08

1991 CanCHEC

PM2.5 9.04 3.32 4.49 2.47 4.01 6.58 8.79 11.07 15.33 17.74

O3 35.89 6.85 9.06 7.04 26.16 31.10 34.83 40.16 48.45 62.98

Ox 28.90 5.66 8.97 6.03 20.52 24.58 28.38 33.55 38.11 56.08

1996 CanCHEC

PM2.5 8.29 2.95 4.13 2.47 3.74 6.10 8.08 10.23 13.72 17.74

O3 36.21 7.19 9.65 6.24 25.84 31.25 35.18 40.89 48.86 65.21

Ox 28.73 5.82 9.12 5.72 20.12 24.35 28.20 33.47 38.19 56.08

2001 CanCHEC

PM2.5 7.72 2.59 3.88 2.47 3.58 5.78 7.64 9.66 12.02 17.73

O3 36.63 7.37 9.86 6.45 25.67 31.54 35.99 41.40 49.02 61.88

Ox 28.71 5.87 9.23 5.04 19.98 24.27 28.28 33.50 38.16 51.24

mCCHS

PM2.5 6.78 2.49 3.80 2.35 3.29 4.73 6.53 8.53 11.02 18.06

O3 35.78 7.61 9.91 7.24 25.01 30.65 34.56 40.56 49.07 61.70

Ox 27.03 5.83 8.44 6.59 18.71 22.89 26.11 31.32 37.18 54.83

SD = standard deviation.
a Units are μg/m3 for PM2.5 and ppb for O3 and Ox.
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Table 5. Descriptive Statistics of the Stacked CanCHEC Analytical File with Cox Proportional HRs for Nonaccidental 
Mortality, and Outdoor Concentrations of PM2.5, O3, and Ox (10-year moving average with 1-year lag)

PM2.5 (μg/m3) O3 (ppb) Ox (ppb)

Characteristic Person-Yearsa HRb 95% CI Mean SD Mean SD Mean SD

Total 128,371,800 — — — 8.50 3.05 36.29 7.02 28.90 5.69

Sex

Female 66,341,800 — — — 8.53 3.04 36.32 7.01 28.97 5.67

Male 62,030,100 — — — 8.47 3.07 36.26 7.03 28.83 5.71

Age (years)

24–35 34,617,500 — — — 8.36 3.04 36.15 7.10 28.71 5.75

35–44 36,046,400 — — — 8.37 3.01 36.26 7.01 28.73 5.66

45–54 26,871,100 — — — 8.44 3.02 36.42 6.98 28.92 5.66

55–64 17,222,600 — — — 8.67 3.07 36.47 6.96 29.17 5.65

65–74 10,485,100 — — — 9.02 3.12 36.37 6.99 29.42 5.67

75–89 3,129,200 — — — 9.53 3.23 35.82 6.93 29.51 5.71

Immigrant status

No (ref) 107,366,300 1.000 — — 8.26 3.02 35.97 6.91 28.35 5.56

Yes 21,005,500 0.767 0.763 0.770 9.72 2.93 37.90 7.32 31.72 5.50

Income adequacy quintile

Lowest (ref) 20,271,600 1.000 — — 8.47 3.14 35.60 7.07 28.58 5.93

2nd 23,767,200 0.796 0.792 0.800 8.58 3.08 36.14 7.03 28.93 5.76

3rd 26,855,700 0.701 0.698 0.705 8.53 3.05 36.34 6.99 28.94 5.67

4th 28,350,300 0.626 0.623 0.630 8.50 3.02 36.49 6.99 28.97 5.61

Highest 29,127,100 0.534 0.531 0.537 8.44 3.00 36.64 7.01 29.00 5.55

Visible minority status

No (ref) 119,997,100 1.000 — — 8.45 3.06 36.30 6.99 28.76 5.65

Yes 8,374,700 0.830 0.822 0.838 9.24 2.89 36.17 7.39 30.88 5.96

Indigenous identity

No (ref) 124,126,200 1.000 — — 8.58 3.03 36.50 6.88 29.09 5.56

Yes 4,245,700 1.738 1.720 1.756 6.28 2.94 30.04 8.01 23.21 6.41

Employment status

Employed (ref) 89,141,700 1.000 — — 8.49 3.02 36.48 7.05 29.02 5.64

Unemployed 7,038,300 1.486 1.471 1.501 8.02 3.19 35.05 6.87 27.66 5.95

Not in labor force 32,191,800 1.639 1.631 1.647 8.66 3.12 36.02 6.93 28.84 5.75

Educational attainment

< High school graduation (ref) 37,728,800 1.000 — — 8.36 3.21 35.86 7.09 28.38 5.94

High school, with or without trades 
certification

47,533,900 0.812 0.809 0.816 8.46 3.04 36.34 7.04 28.79 5.64

Postsecondary nonuniversity 23,495,300 0.689 0.685 0.693 8.53 2.95 36.66 7.05 29.17 5.55

University degree 19,613,800 0.544 0.540 0.548 8.86 2.86 36.54 6.75 29.83 5.37

Continues next page
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PM2.5 (μg/m3) O3 (ppb) Ox (ppb)

Characteristic Person-Yearsa HRb 95% CI Mean SD Mean SD Mean SD

Occupational class

Management (ref) 10,885,100 1.000 — — 8.64 2.96 36.77 6.95 29.46 5.51

Professional 16,184,000 0.867 0.857 0.877 8.68 2.92 36.38 6.86 29.39 5.48

Skilled, technical, and supervisory 31,562,900 1.170 1.159 1.182 8.26 3.05 36.22 7.06 28.57 5.66

Semiskilled 31,876,800 1.313 1.300 1.326 8.48 3.06 36.48 7.13 28.95 5.73

Unskilled 9,777,200 1.538 1.521 1.556 8.31 3.14 35.89 7.23 28.35 5.95

Not applicable 28,085,900 1.922 1.904 1.941 8.72 3.11 36.05 6.87 28.90 5.73

Community Size (n)

Pop: > 1,500,000 (ref) 36,383,800 1.000 — — 10.12 2.43 37.25 5.94 32.06 4.54

Pop: 500,000 – 1,499,999 21,100,100 0.941 0.936 0.946 8.53 2.42 34.45 5.79 29.06 3.90

Pop: 100,000 – 499,999 23,408,700 1.018 1.013 1.023 9.07 3.22 39.49 8.19 30.36 6.34

Pop: 30,000 – 99,999 12,633,600 1.026 1.019 1.032 8.24 3.05 36.36 6.63 27.37 4.80

Pop: 10,000 – 29,999 4,983,800 1.034 1.024 1.044 6.73 2.69 32.74 7.36 24.34 5.42

Not a CMA or CA 29,861,700 1.037 1.031 1.042 6.48 2.71 34.48 6.93 25.21 5.03

Airshed

Western (ref) 15,378,700 1.000 — — 7.55 2.52 29.54 4.40 24.14 3.29

Prairie 16,688,100 0.947 0.940 0.954 6.36 1.89 32.24 4.38 26.08 3.65

West Central 7,417,000 1.041 1.032 1.050 6.47 1.97 29.17 3.96 23.76 3.57

Southern Atlantic 12,502,600 1.095 1.087 1.103 5.28 1.93 32.22 3.05 23.25 2.63

East Central 75,502,400 1.027 1.021 1.032 9.95 2.68 40.06 5.99 32.05 4.68

Northern 883,000 1.182 1.154 1.211 4.81 1.80 25.69 6.39 18.77 4.16

Urban form

Active urban core (ref) 9,789,200 1.000 — — 9.85 2.54 35.68 6.98 30.86 5.27

Transit-reliant suburb 8,276,800 0.942 0.934 0.950 10.27 2.46 35.66 6.20 31.74 4.86

Car-reliant suburb 52,819,500 0.871 0.865 0.876 9.41 2.71 37.39 6.83 30.89 5.06

Exurban 7,279,600 0.912 0.903 0.921 7.61 2.73 38.30 7.06 28.96 5.16

Not a CMA 50,206,800 0.945 0.939 0.951 7.12 3.00 35.06 7.09 25.94 5.26

Residential instability (CAN-Marg)

Q1 (lowest) (ref) 29,568,200 1.000 — — 8.05 3.11 37.83 7.26 29.35 5.84

Q2 33,703,000 1.002 0.996 1.007 8.06 3.08 36.85 7.42 28.47 5.78

Q3 26,187,300 1.000 0.994 1.006 8.42 3.13 35.18 7.08 28.09 5.91

Q4 22,745,900 1.004 0.998 1.009 9.09 2.89 35.76 6.42 29.27 5.45

Q5 (highest) 16,167,400 1.060 1.053 1.066 9.56 2.57 34.85 5.62 29.76 4.89

Dependence (CAN-Marg)

Q1 (lowest) (ref) 21,194,400 1.000 — — 8.54 3.12 35.36 7.39 28.99 6.09

Q2 21,610,100 0.969 0.962 0.976 8.79 3.03 36.23 7.00 29.33 5.62

Q3 20,965,400 0.963 0.957 0.970 9.04 3.02 37.16 7.14 29.88 5.54

Q4 27,313,100 0.952 0.946 0.958 8.72 3.02 36.89 7.23 29.20 5.55

Q5 (highest) 37,288,900 0.932 0.926 0.937 7.86 2.97 35.92 6.47 27.84 5.52

Table 5 (Continued). Descriptive Statistics of the Stacked CanCHEC Analytical File with Cox Proportional HRs for 
Nonaccidental Mortality, and Outdoor Concentrations of PM2.5, O3, and Ox (10-year moving average with 1-year lag)

Continues next page
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PM2.5 (μg/m3) O3 (ppb) Ox (ppb)

Characteristic Person-Yearsa HRb 95% CI Mean SD Mean SD Mean SD

Material deprivation (CAN-Marg)

Q1 (lowest) (ref) 26,776,400 1.000 — — 8.48 2.83 37.50 6.97 29.63 5.34

Q2 27,472,900 1.057 1.050 1.063 8.85 2.87 37.31 7.24 29.48 5.46

Q3 25,619,000 1.077 1.071 1.083 8.73 2.97 36.68 7.17 29.21 5.48

Q4 21,604,900 1.110 1.104 1.117 8.75 3.02 35.66 6.98 28.98 5.81

Q5 (highest) 26,898,600 1.196 1.189 1.203 7.76 3.42 34.18 6.15 27.22 6.01

Ethnic concentration (CAN-Marg)

Q1 (lowest) (ref) 39,063,200 1.000 — — 7.30 2.90 36.10 6.87 27.27 5.31

Q2 31,068,600 1.019 1.014 1.024 8.36 2.96 36.87 7.16 28.79 5.54

Q3 22,368,600 1.016 1.010 1.021 8.74 2.96 35.79 7.28 29.08 5.85

Q4 18,766,500 1.029 1.023 1.035 9.63 2.82 36.26 6.94 30.48 5.57

Q5 (highest) 17,105,000 1.031 1.025 1.037 9.96 2.79 36.35 6.75 30.86 5.60

Ref = reference category; SD = standard deviation.
a Person-years are rounded to the nearest hundred for confidentiality reasons; sums may not add up to totals.
b HR for nonaccidental mortality relative to reference category stratified by age (5-year categories), sex, and immigrant status.

Table 5 (Continued). Descriptive Statistics of the Stacked CanCHEC Analytical File with Cox Proportional HRs for 
Nonaccidental Mortality, and Outdoor Concentrations of PM2.5, O3, and Ox (10-year moving average with 1-year lag)

Similar to the individual cohorts, females in the stacked 
cohort had marginally higher air pollution estimates than 
males (i.e., 0.06 μg/m3 greater PM2.5). Immigrants were also 
assigned higher concentrations than nonimmigrants for all air 
pollutants (1.46 μg/m3 greater PM2.5). Subjects who identified 
themselves as visible minorities also had higher assigned con-
centrations for PM2.5 and Ox than those who did not (0.79 μg/m3 
greater PM2.5). Exposure to O3 and Ox increased marginally 
with income. Outdoor concentrations of PM2.5 were greatest for 
those in the three middle-income quintiles.

Outdoor PM2.5 concentrations increased over the quintiles of 
the CAN-Marg dimensions of residential instability and ethnic 
concentration. Outdoor PM2.5 and Ox tended to increase with 
community size, with no clear trends for O3 exposure. Of the 
six airsheds, the East Central contained the highest number of 
person-years and had the highest outdoor concentrations for all 
air pollutants. For example, the mean outdoor PM2.5 concentra-
tion for the East Central airshed was 2.4 μg/m3 greater than the 
next-highest concentration (for the Western airshed).

Appendix Table A.4 (available on the HEI website) presents 
descriptive statistics of annual PM2.5 estimates in the Stacked Can-
CHEC. The mean PM2.5 estimates gradually decreased between 
1991 (representing the mean of 1981 to 1990) of 12.2 μg/m3 and 
2016 (representing the mean of 2006 to 2015) of 6.83 μg/m3.

CCHS Analytical File

Appendix Table A.5 presents descriptive statistics of the 
CCHS analytical cohort (mCCHS). Outdoor concentrations 

of all three air pollutants were slightly higher among women 
than men, immigrants, and people not identified as Indige-
nous. Subjects who defined themselves as visible minorities 
had higher assigned concentrations for PM2.5 and Ox than 
those who did not. Outdoor air pollutant concentrations 
assigned to cohort members also tended to be higher among 
people ages 65 years and older. Being single, university edu-
cated, and in the poorest income quintile was associated with 
higher outdoor PM2.5 concentrations. These relationships 
differ somewhat from those of the CanCHEC cohorts and 
likely reflect sampling differences for the CCHS, compared 
with the census. Subjects who were unemployed at the time 
of the interview were generally assigned lower outdoor PM2.5 
concentrations than those employed or not in the labor force.

Outdoor PM2.5 concentrations increased over the quintiles of 
the CAN-Marg dimensions of residential instability and ethnic 
concentration. Concentrations of PM2.5 and Ox tended to increase 
with community size, with the highest O3 concentrations 
observed in communities with populations between 100,000 
and 499,999. Similar to the previous cohorts, the East Central 
airshed contained the highest number of person-years and had 
the highest outdoor concentrations for all air pollutants.

EPIDEMIOLOGICAL ANALYSES

Main Analysis: Nonaccidental Mortality

Table  6 reports the HRs and 95% CIs for nonaccidental 
mortality for each CanCHEC cohort separately, the Stacked 
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in the 1991 CanCHEC, 3.4 μg/m3 in the 1996 CanCHEC, and 
4.3 μg/m3 in the 2001 CanCHEC.

Figure  14 shows the shape of the association between 
outdoor PM2.5 concentrations and nonaccidental mortality 
for the Stacked CanCHEC cohort by the number of knots 
used in the RCS (3 to 18). The RCS predictions are sublinear 
for three and four knots but take on more complex shapes for 
five and more knots. The 5 to 18 knot-based RCS functions 
produced an uneven curve between 5 and 12 μg/m3 with 
more complex curvature as the number of knots increased. 
Additional information on the fit is provided in the last row 
of panels in Figure 14. The −2 log-likelihood values decline 
with increasing number of knots as do the AIC values. The 
largest decline is observed from 8 to 9 knots. However, the 
BIC values increase from their minimum at 9 knots, suggest-
ing additional knots may not be clearly improving the fit. 
The concentration, C, at which the lower confidence limit 
on the RCS predictions is <1 is also displayed by the number 
of knots (lower right panel Figure 14). The concentration is 
highest for four knots at C = 4.2 μg/m3 and lowest for 9 and 
10 knots at C = 2.8 μg/m3. The concentration is relatively 
stable for knots number five and above (C = 2.8 μg/m3 to  
C = 3.1 μg/m3).

Using the likelihood-ratio test, we examine the strength 
of evidence that the RCS represented a statistically 
improved fit over the linear model. The likelihood ratio 
P value comparing the linear model to an RCS with 3 knots 
is P = 0.0082, for an RCS with 4 knots is P = 0.0183, and for 
all other numbers of knot (5 to 18) P values were <0.00001, 
suggesting that all RCS models examined displayed some 

CanCHEC cohort, and the mCCHS cohort (with and without 
behavioral covariates) per 10-μg/m3 increase in PM2.5 exposure. 
The largest cohort (the Stacked CanCHEC), representing nearly 
1.3 million deaths, yielded an HR of 1.084 for nonaccidental 
mortality (95% CI: 1.073 to 1.096) per 10-μg/m3 increase. For 
an IQR increase of 4.16 μg/m3 in PM2.5 mass concentration and 
for a mean nonaccidental death rate of 92.8/10,000 persons 
(over the 1991–2016 period for cohort participants ages 25–90), 
this HR corresponds to an additional 31.62/100,000 deaths 
(equivalent to an additional 7,848 deaths in Canada based on 
2016 population counts). The HR from the 2001 CanCHEC was 
marginally higher than in previous CanCHEC cycles.

Use of the refined PM2.5 (version 2-MAPLE) resulted in mar-
ginally stronger associations in the 1991 and 1996 CanCHECs 
and marginally weaker associations in the 2001 and mCCHS 
cohorts when compared with the version 1 exposure estimates 
that were used in the MAPLE Phase 1 report (Appendix Table 
A.6; available on the HEI website). As indicated in Crouse and 
colleagues (2020), the use of a 3-year moving average resulted 
in weaker associations between PM2.5 and nonaccidental mor-
tality than did a 10-year moving average (Appendix Table A.7).

The shape of the association between PM2.5 and nonacci-
dental mortality is provided in Figure 13 for each of the 1991, 
1996, and 2001 CanCHEC cohorts, using the RCS model with 
knots based on the minimum BIC model fit. In the 1991 and 
1996 RCS models, a noticeable decline in HRs was observed 
between 5 and 10 μg/m3, which was not observed in 2001. For 
each plot we identified the concentration at which the lower 
confidence limit of the function is <1 as an indication of the 
lowest adverse effect (mortality) level; this occurs at 4.0 μg/m3 

Table 6. HRs for Nonaccidental Mortality in Fully Adjusted Models Among Different Cohorts 
(CanCHECs and mCCHS) for 10-Year Mean Outdoor PM2.5 Concentrationsa

Cohort Deathsb Coeff SE HRc 95% CI

Stacked CanCHEC 1,253,300 0.0081 0.0005 1.084 1.073 1.096

1991 CanCHEC 531,300 0.0068 0.0008 1.070 1.053 1.086

1996 CanCHEC 537,400 0.0073 0.0008 1.076 1.058 1.094

2001 CanCHEC 401,000 0.0103 0.0011 1.109 1.086 1.132

mCCHS without behaviord 50,100 0.0116 0.0031 1.123 1.056 1.194

mCCHS with behaviord 50,100 0.0082 0.0031 1.086 1.021 1.155

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted 
for income adequacy quintile, visible minority status, Indigenous identity, educational attainment, labor-force 
status, marital status, occupation, and ecological covariates of community size, airshed, urban form, and four 
dimensions of Can-Marg (instability, deprivation, dependency, and ethnic concentration). Stacked CanCHEC 
analyses were also stratified by the CanCHEC cohort, and mCCHS analyses were also stratified by the CCHS 
cycle.

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.
d Behavioral covariates include additional adjustments for smoking, alcohol consumption, fruit and vegetable con-

sumption, BMI, and exercise behavior.
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cohorts examined, including after the addition of behav-
ioral characteristics to mCCHS (Table 7). The lower confi-
dence limit for the RCS fit in the stacked cohort was less 
than one for PM2.5 concentrations <3.7 μg/m3 (Figure 16).

•	 Diabetes — In the stacked cohort (41,100 deaths), HRs 
in linear models were 1.244 (95% CI: 1.173 to 1.319, 
per 10-μg/m3 increase), were significant in all cohorts 
examined, and were robust to the addition of behav-
ioral characteristics to mCCHS (Table  7). The lower 
confidence limit for the RCS fit in the stacked cohort 
was less than one for PM2.5 concentrations <10.5 μg/m3 
(Figure 16).

•	 Respiratory Disease — In the stacked cohort (105,900 
deaths), HR in linear models were 1.076 (95% CI: 1.037 
to 1.118, per 10-μg/m3 increase). Similar associations 
were observed in other cohorts, including mCCHS 
adjusted for behavioral covariates, except the 2001 Can-
CHEC (Table 7). The lower confidence limit for the RCS 
fit in the stacked cohort was less than one for PM2.5 con-
centrations <3.8 μg/m3 (Figure 16).

•	 COPD — In the stacked cohort (61,400 deaths), HRs in 
linear models were 1.059 (95% CI: 1.010 to 1.111, per 
10-μg/m3 increase), were robust to the addition of behav-
ioral characteristics in mCCHS, but significant associa-
tions were not observed in the 1991 or 2001 CanCHECs 
(Table 7). The lower confidence limit for the RCS fit in 
the stacked cohort was less than one for PM2.5 concentra-
tions <4.5 μg/m3 (Figure 16).

•	 Pneumonia — In the stacked cohort (25,600 deaths), HRs 
in linear models were 1.195 (95% CI: 1.110 to 1.287 per 
10-μg/m3 increase), but these associations were not con-
sistent across the 2001 CanCHEC and the mCCHS cohorts 
(Table 7). The lower confidence limit for the RCS fit in 
the stacked cohort was less than one for PM2.5 concentra-
tions <4.1 μg/m3 (Figure 16).

•	 Lung Cancer — No significant associations between lung 
cancer mortality and exposure to PM2.5 were observed 
in any cohort examined (Table 7). In the RCS, the shape 
of the curve increased dramatically until 10-μg/m3. The 
lower confidence limit for the RCS fit in the stacked 
cohort was less than one for PM2.5 concentrations <17.7 
μg/m3, the highest concentration examined (Figure 16).

•	 Kidney Failure — No significant associations were 
observed between kidney failure mortality and exposure 
to PM2.5 in any cohort examined (Table 7).

Sensitivity Analyses

Two-Pollutant Models: Joint Models with O3 or Ox  We 
considered a series of models where we added linear or RCS 
nonlinear terms for O3. We also fit fully adjusted RCS models 
for PM2.5, adjusting for a linear term of Ox.

evidence of improved fit over the linear model. The like-
lihood ratio test is appropriate because all RCS models 
include a linear term, and thus the linear model is nested 
within each RCS model.

In the mCCHS cohort, the addition of behavioral covari-
ates (i.e., smoking, alcohol consumption, fruit and vegetable 
consumption, BMI, and exercise behavior) attenuated the 
association, from HR = 1.123 (95% CI: 1.056 to 1.194) without 
covariates to HR = 1.086 (1.021 to 1.155) with covariates, 
(both per 10-μg/m3 increase) (Table  6). Figure  15 illustrates 
the shape of the association for the mCCHS cohort, with and 
without adjustment for behavioral covariates. The shape of 
the curve was very similar between the two levels of adjust-
ment, and the lower confidence limit was less than one at 
concentrations ≤3.6 μg/m3 without behavioral covariate 
adjustment and ≤3.7 μg/m3 with adjustment.

Main Analysis: Other Causes of Death

We determined HR estimates assuming a linear concen-
tration model for cause-specific mortality per increase in 
10-μg/m3 exposure, for each CanCHEC cohort separately, 
the Stacked CanCHEC cohort, and the mCCHS cohort, with 
and without behavioral covariates (Table 7). For the Stacked 
CanCHEC cohort, we also produced RCS curves using BIC 
to determine model fitness for each of the causes of death 
(Figure 16):

•	 Cardiovascular Disease — In the stacked cohort (390,600 
deaths), HRs in linear models were 1.163 (95% CI: 1.142 
to 1.185, per 10-μg/m3 increase). Similar associations 
were observed in other cohorts, but the model was not 
robust to adjustment for behavioral covariates in the 
mCCHS cohort (Table 7). The lower confidence limit for 
the RCS fit in the stacked cohort was less than one for 
PM2.5 concentrations <3.5 μg/m3 (Figure 16).

•	 Cerebrovascular Disease — In the stacked cohort 
(72,900 deaths), HRs in linear models were 1.105 (95% 
CI: 1.058 to 1.154, per 10-μg/m3 increase). Similar asso-
ciations were observed in the CanCHECs, but the 95% 
CI included one for the mCCHS cohort with and with-
out behavior covariate adjustment (Table 7). The lower 
confidence limit for the RCS fit in the stacked cohort 
was less than one for PM2.5 concentrations <10.8 μg/m3 
(Figure 16).

•	 Heart Failure — No significant associations were 
observed between heart failure mortality and exposure 
to PM2.5 in any cohort examined (Table 7) with the lower 
confidence limit for the RCS fit in the stacked cohort 
being less than one for PM2.5 concentrations <17.7 μg/m3, 
the highest concentration examined (Figure 16).

•	 Ischemic Heart Disease — In the stacked cohort (215,700 
deaths), HRs in linear models were 1.225 (95% CI: 1.195 to 
1.255, per 10-μg/m3 increase), and were significant in all 
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Table 7. Cox Proportional HRs of Selected Causes of Death in Fully Adjusted Models Among 
Different CanCHEC Cohorts and mCCHS for Exposure to PM2.5 During the Previous 10 Yearsa

Cause of Death / Cohort Deathsb (n) Coeff SE HRc 95% CI

Cardiovascular

Stacked CanCHEC 390,600 0.0151 0.0010 1.163 1.142 1.185

1991 CanCHEC 171,500 0.0139 0.0014 1.149 1.119 1.180

1996 CanCHEC 166,500 0.0151 0.0015 1.163 1.130 1.197

2001 CanCHEC 117,600 0.0161 0.0020 1.175 1.131 1.221

mCCHS without behaviord 14,800 0.0122 0.0057 1.130 1.010 1.264

mCCHS with behaviord 14,800 0.0082 0.0057 1.085 0.970 1.214

Cerebrovascular

Stacked CanCHEC 72,900 0.0100 0.0022 1.105 1.058 1.154

1991 CanCHEC 32,100 0.0100 0.0032 1.108 1.041 1.178

1996 CanCHEC 30,900 0.0069 0.0035 1.071 1.001 1.147

2001 CanCHEC 21,800 0.0159 0.0046 1.172 1.071 1.282

mCCHS without behaviord 2,700 0.0004 0.0135 1.004 0.770 1.308

mCCHS with behaviord 2,700 −0.0014 0.0135 0.986 0.757 1.285

Heart failure

Stacked CanCHEC 20,500 0.0041 0.0043 1.042 0.959 1.133

1991 CanCHEC 8,800 −0.0004 0.0061 0.996 0.884 1.123

1996 CanCHEC 8,800 0.0009 0.0066 1.009 0.886 1.149

2001 CanCHEC 6,400 0.0083 0.0086 1.086 0.918 1.286

mCCHS without behaviord 900 −0.0119 0.0249 0.888 0.545 1.448

mCCHS with behaviord 900 −0.0178 0.0249 0.837 0.513 1.364

Ischemic heart disease

Stacked CanCHEC 215,700 0.0203 0.0013 1.225 1.195 1.255

1991 CanCHEC 96,000 0.0185 0.0018 1.203 1.161 1.246

1996 CanCHEC 91,600 0.0211 0.0020 1.235 1.189 1.284

2001 CanCHEC 63,600 0.0192 0.0026 1.212 1.151 1.276

mCCHS without behaviord 7,900 0.0248 0.0077 1.281 1.101 1.491

mCCHS with behaviord 7,900 0.0202 0.0078 1.224 1.051 1.424

Diabetes

Stacked CanCHEC 41,100 0.0218 0.0030 1.244 1.173 1.319

1991 CanCHEC 17,100 0.0180 0.0044 1.198 1.098 1.307

1996 CanCHEC 18,300 0.0163 0.0046 1.176 1.075 1.287

2001 CanCHEC 13,600 0.0293 0.0058 1.340 1.196 1.501

mCCHS without behaviord 1,700 0.0492 0.0170 1.636 1.173 2.281

mCCHS with behaviord 1,700 0.0399 0.0170 1.491 1.068 2.081

Respiratory

Stacked CanCHEC 105,900 0.0073 0.0019 1.076 1.037 1.118

1991 CanCHEC 43,100 0.0067 0.0029 1.069 1.011 1.131

1996 CanCHEC 45,900 0.0083 0.0029 1.087 1.026 1.151

Continues next page
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Cause of Death / Cohort Deathsb (n) Coeff SE HRc 95% CI

2001 CanCHEC 35,400 0.0059 0.0037 1.061 0.988 1.140

mCCHS without behaviord 4,800 0.0250 0.0102 1.284 1.051 1.568

mCCHS with behaviord 4,800 0.0220 0.0102 1.246 1.020 1.523

COPD

Stacked CanCHEC 61,400 0.0057 0.0024 1.059 1.010 1.111

1991 CanCHEC 25,800 0.0025 0.0036 1.025 0.956 1.099

1996 CanCHEC 26,300 0.0101 0.0038 1.106 1.027 1.191

2001 CanCHEC 19,300 0.0048 0.0049 1.050 0.954 1.155

mCCHS without behaviord 2,800 0.0388 0.0133 1.473 1.135 1.912

mCCHS with behaviord 2,800 0.0355 0.0133 1.426 1.098 1.852

Pneumonia

Stacked CanCHEC 25,600 0.0178 0.0038 1.195 1.110 1.287

1991 CanCHEC 11,500 0.0182 0.0053 1.200 1.082 1.331

1996 CanCHEC 10,900 0.0200 0.0059 1.221 1.087 1.371

2001 CanCHEC 7,600 0.0082 0.0080 1.085 0.927 1.271

mCCHS without behaviord 900 −0.0012 0.0231 0.988 0.629 1.553

mCCHS with behaviord 900 −0.0029 0.0231 0.972 0.618 1.528

Lung cancer

Stacked CanCHEC 129,200 −0.0011 0.0017 0.989 0.957 1.022

1991 CanCHEC 54,700 −0.0035 0.0025 0.966 0.920 1.013

1996 CanCHEC 54,800 −0.0002 0.0026 0.998 0.948 1.051

2001 CanCHEC 41,800 0.0050 0.0033 1.051 0.986 1.121

mCCHS without behaviord 5,400 0.0017 0.0095 1.017 0.845 1.224

mCCHS with behaviord 5,400 −0.0024 0.0094 0.977 0.812 1.175

Kidney failure

Stacked CanCHEC 15,000 −0.0034 0.0050 0.966 0.876 1.067

1991 CanCHEC 6,200 0.0021 0.0074 1.021 0.883 1.181

1996 CanCHEC 6,600 −0.0044 0.0077 0.957 0.824 1.112

2001 CanCHEC 4,800 0.0087 0.0099 1.091 0.899 1.324

mCCHS without behaviord 600 −0.0189 0.0290 0.828 0.470 1.461

mCCHS with behaviord 600 −0.0256 0.0290 0.774 0.439 1.368

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for 
income adequacy quintile, visible minority status, Indigenous identity, educational attainment, labor-force status, mar-
ital status, occupation, and ecological covariates of community size, airshed, urban form, and four dimensions of Can-
Marg (instability, deprivation, dependency, and ethnic concentration). Stacked CanCHEC analyses were also stratified 
by the CanCHEC cohort, and mCCHS analyses were also stratified by the CCHS cycle.

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.
d Behavioral covariates include additional adjustment for smoking, alcohol consumption, fruit and vegetable consump-

tion, BMI, and exercise behavior.

Table 7 (Continued). Cox Proportional HRs of Selected Causes of Death in Fully Adjusted Models 
Among Different CanCHEC Cohorts and mCCHS for Exposure to PM2.5 During the Previous 10 Yearsa
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concentrations and cardiovascular mortality. In the Stacked 
CanCHEC, the HR for PM2.5 decreased to 1.048 (95% CI: 1.027 
to 1.070) when O3 was included in the model (Table 9) com-
pared with 1.163 (1.142 to 1.185) in the model excluding O3 
(Table 7). When a linear O3 term was added to the RCS model 
for the relationship between PM2.5 and cardiovascular mortal-
ity, the 95% CI included the null throughout most of the range 
of PM2.5 concentrations (Figure 17). The same was true when a 
nonlinear O3 term was added to the RCS (Figure 17). Increased 
HRs for O3 were evident, but only for concentrations above 
approximately 24 ppb.

The CIs spanned an HR of 1.0 for the association between 
outdoor PM2.5 concentrations and respiratory mortality 
in the stacked cohort after adjusting for O3 (Table  9 and 
Figure  17), although there was some suggestion of an ele-
vated HR. Similarly, the concentration–response curves 
suggested some tendency for increased HRs, although with 
wide uncertainty intervals. There was little evidence of 
an association between O3 and respiratory mortality in the 
linear model. The RCS revealed a complex association with 
increases below 50 ppb and then a marked decline above 50 
ppb (Figure 17).

Adjusting for O3 attenuated the HR estimates for the asso-
ciation between outdoor PM2.5 and nonaccidental mortality. 
Specifically, in the Stacked CanCHEC adjusting for O3, the HR 
for PM2.5 (per 10-μg/m3 increase) was 1.039 (95% CI: 1.027 to 
1.051) (Table 8) compared with 1.084 (1.073 to 1.096) in mod-
els not adjusting for O3 (Table 6). In the 1996 CanCHEC and 
mCCHS cohorts, PM2.5 was not associated with nonaccidental 
mortality after adding O3. After adding a linear O3 term to the 
RCS for PM2.5 in the Stacked CanCHEC, we observed the high-
est concentration for which the RCS lower confidence limit 
was less than one, at 2.9 μg/m3 (Figure 17), a value similar to 
that based on the unadjusted model of 2.8 μg/m3. Similarly, 
when a nonlinear RCS O3 fit was added to the RCS for PM2.5, 
this concentration remained the same at 2.9 μg/m3. However, 
the magnitude of the relative-risk predictions was smaller 
after O3 adjustment and was similar for either linear or RCS 
O3 model specifications. The RCS for O3 was relatively flat for 
concentrations below 40 ppb (Figure 17). Nonlinear associ-
ations with the other cohorts are provided in the Appendix 
Figure E.1, available on the HEI website.

The addition of O3, either as a linear or the RCS model, 
greatly attenuated associations between outdoor PM2.5 

Table 8. Cox Proportional HRs of Nonaccidental Mortality in Fully Adjusted Models in CanCHEC Cohorts and 
mCCHS, with Both PM2.5 and O3 Together in the Same Modela,b

Cohort Deathsc (n) Pollutant Coeff SE HRd 95% CI

Stacked CanCHEC 1,253,300 PM2.5 0.0038 0.0006 1.039 1.027 1.051

O3 0.0036 0.0002 1.036 1.032 1.041

1991 CanCHEC 531,300 PM2.5 0.0040 0.0009 1.041 1.023 1.059

O3 0.0024 0.0003 1.024 1.018 1.031

1996 CanCHEC 537,400 PM2.5 0.0017 0.0009 1.017 0.999 1.036

O3 0.0045 0.0003 1.046 1.040 1.053

2001 CanCHEC 401,000 PM2.5 0.0033 0.0012 1.033 1.010 1.057

O3 0.0054 0.0004 1.056 1.048 1.064

mCCHS without behaviore 50,100 PM2.5 0.0064 0.0035 1.066 0.995 1.142

O3 0.0036 0.0011 1.036 1.014 1.059

mCCHS with behaviore 50,100 PM2.5 0.0016 0.0035 1.016 0.948 1.089

O3 0.0045 0.0011 1.046 1.024 1.070

a HRs are given for each pollutant in two-pollutant models. HRs scaled to IQRs are provided in Appendix Table D.1.
b Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income adequacy 

quintile, visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, and eco-
logical covariates of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, dependency, and 
ethnic concentration). mCCHS analyses were also stratified by CCHS cycle.

c Deaths were rounded to the nearest 100 for confidentiality.
d HRs are presented as per 10-μg/m3 increase.
e Behavioral covariates include additional adjustment for smoking, alcohol consumption, fruit and vegetable consumption, BMI, and 

exercise behavior.
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Table 9. Cox Proportional HRs of all Causes of Mortality in Fully Adjusted Models in the Stacked CanCHEC, 
Using Both PM2.5 and O3 Jointly in the Same Modela,b

Cause of Death Deathsc (n) Pollutant Coeff SE HRd 95% CI

Nonaccidental 1,253,300 PM2.5 0.0038 0.0006 1.039 1.027 1.051

O3 0.0036 0.0002 1.036 1.032 1.041

Cardiovascular 390,600 PM2.5 0.0047 0.0011 1.048 1.027 1.070

O3 0.0088 0.0004 1.092 1.084 1.997

Cerebrovascular 72,900 PM2.5 −0.0010 0.0025 0.990 0.944 1.039

O3 0.0093 0.0009 1.098 1.079 1.117

Heart failure 20,500 PM2.5 0.0267 0.0047 1.306 1.192 1.431

O3 −0.0199 0.0017 0.820 0.793 0.847

Diabetes 41,100 PM2.5 −0.0038 0.0034 0.962 0.901 1.028

O3 0.0205 0.0012 1.228 1.199 1.257

Ischemic heart disease 215,700 PM2.5 0.0051 0.0014 1.053 1.024 1.082

O3 0.0127 0.0005 1.135 1.124 1.147

Lung cancer 129,200 PM2.5 0.0084 0.0019 1.088 1.049 1.128

O3 −0.0079 0.0007 0.924 0.912 0.936

Respiratory 105,900 PM2.5 0.0027 0.0021 1.027 0.985 1.070

O3 0.0039 0.0007 1.040 1.025 1.055

COPD 61,400 PM2.5 −0.0021 0.0027 0.979 0.929 1.032

O3 0.0066 0.0010 1.068 1.048 1.088

Pneumonia 25,600 PM2.5 0.0142 0.0041 1.152 1.063 1.250

O3 0.0032 0.0015 1.032 1.002 1.063

Kidney Failure 15,000 PM2.5 0.0065 0.0056 1.067 0.957 1.190

O3 −0.0082 0.0020 0.921 0.886 0.958

a HRs are given for each pollutant in two-pollutant models. HRs scaled to IQRs are provided in Appendix Table D.2; available on the 
HEI website.

b Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income ade-
quacy quintile, visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupa-
tion, and ecological covariates of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, 
dependency, and ethnic concentration).

c Deaths were rounded to the nearest 100 for confidentiality.
d HRs are presented as per 10-μg/m3 increase.

The addition of a linear term for Ox in two-pollutant linear 
models resulted in the further attenuation of the association 
between PM2.5 and nonaccidental mortality (in the Stacked 
CanCHEC HR = 1.022; 95% CI: 1.010 to 1.035) (Table 10). 
After adding Ox, the association was no longer significant in 
the 1996 and 2001 CanCHECs or mCCHS cohorts. When Ox 
was added as a linear term in the RCS PM2.5 model, the high-
est concentration for which the RCS lower confidence limit 
was less than one was at 2.9 μg/m3 (Figure 18), similar to the 
single-pollutant model at 2.9 μg/m3. Nonlinear associations 

with the other CanCHEC cohorts are provided in Appendix 
Figure C.1; available on the HEI website.

In two-pollutant linear models, the addition of Ox atten-
uated the association between PM2.5 and cardiovascular 
mortality (in the Stacked CanCHEC, HR = 1.024; 95% CI: 
1.002 to 1.047) (Table  11). When Ox was added as a linear 
term to the RCS model the lower confidence limit was less 
than one throughout most of the range of PM2.5 concentrations 
(Figure 18).
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Table 10. Cox Proportional HRs of Nonaccidental Mortality in Fully Adjusted Models in CanCHEC Cohorts and 
mCCHS with Both PM2.5 and Ox Together in the Same Modela,b

Cohort Deathsc (n) Pollutant Coeff SE HRd 95% CI

Stacked CanCHEC 1,253,300 PM2.5 0.0022 0.0006 1.022 1.010 1.035

Ox 0.0053 0.0003 1.054 1.048 1.060

1991 CanCHEC 531,300 PM2.5 0.0031 0.0009 1.032 1.013 1.050

Ox 0.0034 0.0004 1.035 1.026 1.044

1996 CanCHEC 537,400 PM2.5 <0.0001 0.0010 1.000 0.981 1.020

Ox 0.0064 0.0005 1.066 1.056 1.075

2001 CanCHEC 401,000 PM2.5 0.0003 0.0013 1.003 0.978 1.028

Ox 0.0081 0.0006 1.084 1.073 1.096

mCCHS without behaviore 50,100 PM2.5 0.0038 0.0040 1.039 0.965 1.118

Ox 0.0061 0.0016 1.062 1.029 1.096

mCCHS with behaviore 50,100 PM2.5 −0.0005 0.0038 0.995 0.924 1.071

Ox 0.0068 0.0016 1.070 1.037 1.105

a HRs are given for each pollutant in two-pollutant models. HRs scaled to IQRs are provided in Appendix Table D.3; available on the 
HEI website.

b Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income ade-
quacy quintile, visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, 
and ecological covariates of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, 
dependency, and ethnic concentration). Stacked CanCHEC were also stratified by CanCHEC year, and mCCHS analyses were also 
stratified by CCHS cycle.

c Deaths were rounded to the nearest 100 for confidentiality.
d HRs are presented as per 10-μg/m3 increase.
e Behavioral covariates include additional adjustment for smoking, alcohol consumption, fruit and vegetable consumption, BMI, and 

exercise behavior.

In two-pollutant linear models using the Stacked CanCHEC, 
the addition of Ox rendered the association between PM2.5 and 
respiratory mortality nonsignificant (Table 11). When Ox was 
added as a linear term in the RCS Model, the highest concen-
tration for which the RCS lower confidence limit was below 
one was 17.7 μg/m3 (Figure 18).

Two Pollutant Models: Models Within Tertiles of O3 
or Ox  To further examine the effect of O3 and Ox on PM2.5 
HRs, we also examined the linear and nonlinear associa-
tions between PM2.5 exposure and nonaccidental mortality 
within tertiles of O3 and Ox in the Stacked CanCHEC. The 
mean exposure within each O3 and Ox tertile is shown in 
Table 12.

For tertiles of O3, the association between PM2.5 and 
nonaccidental mortality was lowest in the middle O3 tertile 
(HR = 1.041; 95% CI: 1.020 to 1.062 per 10-μg/m3 increase) 
(Table  13). Among tertiles of Ox, the significant association 
between PM2.5 and nonaccidental mortality was limited to the 
highest tertile of Ox (HR = 1.086; 1.064 to 1.108 per 10-μg/m3 

increase) (Table 14). An inverse association was observed in 
the lowest tertile of Ox and no association was observed in the 
middle tertile of Ox.

The shape of the association between PM2.5 and nonacci-
dental mortality varied by O3 and Ox tertile (Figure 19). The 
highest concentration for which the RCS lower confidence 
limit was less than one varied from 3.2 μg/m3 for the second O3 
tertile to 9.0 μg/m3 for the first O3 tertile — and from 3.2 μg/m3 
for the third Ox tertile to 17.7 μg/m3 for the first Ox tertile.

Threshold Models  To examine the sensitivity of the expo-
sure–response relationship to exposure level we considered 
several threshold levels, below which we truncated exposures 
and assumed no increased risk. Specifically, we fit fully 
adjusted threshold models for nonaccidental mortality in 
the Stacked CanCHEC for PM2.5 using threshold values from 
2.5 μg/m3 to 11.0 μg/m3 by 0.5-μg/m3 increments. Note that the 
threshold model with a threshold concentration of 2.5 μg/m2 is 
equivalent to the linear model because the minimum concen-
tration is 2.5 μg/m3.
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Table 11. Cox Proportional HRs of All Causes of Mortality in Fully Adjusted Models in the Stacked CanCHEC With Both 
PM2.5 and Ox Together in the Same Modela,b

Cause of Death Deathsc (n) Pollutant Coeff SE HRd 95% CI

Nonaccidental 1,253,300 PM2.5 0.0022 0.0006 1.022 1.010 1.035

Ox 0.0053 0.0003 1.054 1.048 1.060

Cardiovascular 390,600 PM2.5 0.0024 0.0011 1.024 1.002 1.047

Ox 0.0116 0.0005 1.123 1.112 1.135

Cerebrovascular 72,900 PM2.5 −0.0014 0.0026 0.986 0.937 1.037

Ox 0.0105 0.0012 1.110 1.084 1.138

Heart failure 20,500 PM2.5 0.0358 0.0049 1.431 1.299 1.575

Ox −0.0296 0.0023 0.744 0.711 0.779

Diabetes 41,100 PM2.5 −0.0115 0.0036 0.891 0.831 0.956

Ox 0.0287 0.0017 1.333 1.290 1.377

Ischemic heart disease 215,700 PM2.5 0.0011 0.0015 1.011 0.982 1.040

Ox 0.0175 0.0007 1.191 1.175 1.208

Lung cancer 129,200 PM2.5 0.0090 0.0020 1.095 1.053 1.138

Ox −0.0090 0.0009 0.914 0.897 0.930

Respiratory 105,900 PM2.5 0.0010 0.0022 1.010 0.967 1.055

Ox 0.0056 0.0010 1.058 1.037 1.079

COPD 61,400 PM2.5 −0.0061 0.0029 0.941 0.889 0.995

Ox 0.0106 0.0013 1.112 1.083 1.141

Pneumonia 25,600 PM2.5 0.0175 0.0044 1.191 1.094 1.298

Ox 0.0003 0.0021 1.003 0.963 1.045

Kidney failure 15,000 PM2.5 0.0124 0.0059 1.132 1.008 1.271

Ox −0.0139 0.0027 0.870 0.825 0.918

a HRs are given for each pollutant in two-pollutant models. HRs scaled to IQRs are provided in Appendix Table D.4; available on the HEI website.
b Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income adequacy quintile, 

visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, and ecological covariates 
of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, dependency, and ethnic concentration).

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.

Table 12. Mean PM2.5 Exposure Within Each O3 and Ox Tertile, 10-Year Moving 
Averages

Na Mean PM2.5 
(μg/m3) SD Minimum Maximum

O3

Tertile 1 42,804,100 29.01 3.12 6.24 32.67

Tertile 2 42,775,700 35.46 1.79 32.67 38.76

Tertile 3 42,792,000 44.41 3.90 38.76 65.21

Ox

Tertile 1 42,790,600 22.72 2.52 5.04 25.65

Tertile 2 42,790,600 28.46 1.73 25.65 31.72

Tertile 3 42,790,600 35.52 2.37 31.72 56.08

SD = standard deviation.
a Person-years were rounded to the nearest 100 for confidentiality.
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Table 13. Cox Proportional HRs of Mortality in Fully Adjusted Models in the Stacked CanCHEC for All Causes of Death, 
for PM2.5 Within Tertiles of O3

a

Cause of Death/O3 Tertile Deathsb (n) Coeff SE HRc 95% CI

Nonaccidental
Lowest 400,400 0.0087 0.0012 1.091 1.065 1.118
Middle 419,600 0.0040 0.0010 1.041 1.020 1.062
Highest 433,300 0.0095 0.0010 1.099 1.078 1.120
Cardiovascular
Lowest 128,700 0.0087 0.0021 1.091 1.047 1.137
Middle 128,000 0.0029 0.0018 1.030 0.994 1.066
Highest 133,900 0.0162 0.0017 1.175 1.136 1.216
Cerebrovascular
Lowest 24,800 −0.0041 0.0049 0.959 0.872 1.055
Middle 22,900 −0.0034 0.0042 0.967 0.890 1.050
Highest 25,200 0.0084 0.0040 1.088 1.005 1.177
Heart failure
Lowest 7,300 0.0019 0.0089 1.019 0.856 1.212
Middle 7,400 0.0210 0.0076 1.233 1.062 1.431
Highest 5,800 0.0247 0.0086 1.280 1.082 1.515
Ischemic heart disease
Lowest 68,900 0.0163 0.0029 1.177 1.113 1.245
Middle 70,800 0.0049 0.0024 1.050 1.002 1.100
Highest 76,000 0.0165 0.0023 1.180 1.128 1.234
Diabetes
Lowest 13,700 0.0005 0.0068 1.005 0.879 1.149
Middle 12,700 −0.0133 0.0060 0.875 0.779 0.984
Highest 14,800 0.0150 0.0052 1.162 1.050 1.287
Respiratory
Lowest 34,000 0.0216 0.0043 1.241 1.140 1.351
Middle 35,900 0.0021 0.0036 1.021 0.952 1.096
Highest 36,000 0.0034 0.0034 1.034 0.967 1.106
COPD
Lowest 20,000 0.0226 0.0054 1.254 1.127 1.394
Middle 21,500 −0.0006 0.0045 0.994 0.910 1.085
Highest 19,900 −0.0014 0.0045 0.987 0.904 1.077
Pneumonia
Lowest 8,600 0.0149 0.0082 1.160 0.988 1.363
Middle 8,300 0.0151 0.0071 1.163 1.013 1.336
Highest 8,700 0.0128 0.0071 1.137 0.989 1.307
Lung cancer
Lowest 40,400 0.0210 0.0038 1.234 1.146 1.330
Middle 46,700 0.0124 0.0031 1.132 1.065 1.202
Highest 42,000 0.0067 0.0031 1.069 1.005 1.136
Kidney failure
Lowest 5,000 0.0160 0.0112 1.173 0.943 1.460
Middle 5,000 0.0129 0.0095 1.138 0.945 1.370

Highest 5,000 −0.0057 0.0092 0.944 0.788 1.132
a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income adequacy quintile, 

visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, and ecological covariates 
of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, dependency, and ethnic concentration).

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.
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Table 14. Cox Proportional HRs of Mortality in Fully Adjusted Models in the Stacked CanCHEC for all Causes of Death, 
for PM2.5 Within Tertiles of Ox

a

Cause of Death/Tertile of Ox Deathsb (n) Coeff SE HRc 95% CI

Nonaccidental
Lowest 422,400 −0.0111 0.0012 0.895 0.874 0.917
Middle 402,300 0.0006 0.0011 1.006 0.985 1.027
Highest 428,600 0.0082 0.0010 1.086 1.064 1.108
Cardiovascular
Lowest 132,200 −0.0097 0.0021 0.908 0.871 0.946
Middle 122,700 −0.0042 0.0019 0.959 0.924 0.995
Highest 135,800 0.0145 0.0018 1.156 1.116 1.196
Cerebrovascular
Lowest 25,600 −0.0271 0.0049 0.763 0.693 0.839
Middle 21,900 −0.0087 0.0045 0.917 0.839 1.001
Highest 25,300 0.0154 0.0041 1.167 1.076 1.265
Heart failure
Lowest 7,800 −0.0114 0.0087 0.892 0.751 1.058
Middle 6,800 0.0494 0.0081 1.639 1.399 1.921
Highest 5,900 0.0128 0.0087 1.137 0.958 1.349
Ischemic heart disease
Lowest 69,600 −0.0024 0.0029 0.976 0.922 1.033
Middle 68,200 −0.0082 0.0025 0.922 0.877 0.969
Highest 77,800 0.0135 0.0023 1.144 1.094 1.197
Diabetes
Lowest 14,800 −0.0237 0.0067 0.789 0.691 0.900
Middle 11,800 −0.0338 0.0064 0.713 0.629 0.808
Highest 14,500 0.0094 0.0055 1.098 0.986 1.223
Respiratory
Lowest 36,800 −0.0007 0.0042 0.993 0.914 1.078
Middle 34,800 0.0040 0.0038 1.040 0.966 1.120
Highest 34,200 0.0002 0.0037 1.002 0.932 1.076
COPD
Lowest 21,700 0.0008 0.0053 1.008 0.908 1.118
Middle 20,500 −0.0021 0.0048 0.980 0.892 1.075
Highest 19,200 −0.0075 0.0047 0.927 0.845 1.017
Pneumonia
Lowest 8,900 −0.0071 0.0082 0.932 0.793 1.095
Middle 8,000 0.0171 0.0074 1.187 1.028 1.371
Highest 8,600 0.0301 0.0072 1.352 1.173 1.558
Lung cancer
Lowest 44,000 0.0012 0.0037 1.012 0.941 1.089
Middle 43,900 0.0209 0.0033 1.232 1.156 1.314
Highest 41,200 −0.0003 0.0033 0.997 0.935 1.063
Kidney failure
Lowest 5,300 −0.0141 0.0111 0.869 0.699 1.079
Middle 4,700 0.0199 0.0101 1.221 1.002 1.487
Highest 5,000 −0.0025 0.0096 0.976 0.809 1.177

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income adequacy quintile, vis-
ible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, and ecological covariates of com-
munity size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, dependency, and ethnic concentration).

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.
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airsheds (Table  16). The associations between PM2.5 and 
nonaccidental mortality were relatively low (HRs ~1.05) 
but significant for East Central and Western airsheds 
(Table 16). In contrast, the associations between PM2.5 and 
nonaccidental mortality were very high for the two airsheds 
with the lowest PM2.5 estimates (Table 5). In the Southern 
Atlantic airshed (PM2.5 mean = 5.28 μg/m3), the HR estimate 
was 1.359 (95% CI: 1.293 to 1.427 per 10-μg/m3 increase) 
(Table 16). Similarly, in the Northern airshed (PM2.5 mean = 
4.81 μg/m3), the HR estimate was 1.414 (1.110 to 1.801 per 
10-μg/m3 increase).

In the nonlinear RCS models, we observed differences in 
the shapes of associations (Figure 21, Appendix Figure C.2; 
available on the HEI website.). The Southern Atlantic, East 
Central, and Western airshed RCSs displayed an increasing 
concentration–response at lower concentrations, while we 
observed little association at lower concentrations for the 
Northern airshed (Figure  21). However, the West Central 
and Prairie airsheds displayed patterns similar to each other 
that were much different than the other airshed patterns. In 
both West Central and Prairie airsheds the mean relative-risk 
predictions increased, then flattened out, sharply decreased, 
and then sharply increased over the concentration range. We 
evaluated potential explanations for this regional variability 
in sensitivity analyses, described in the next section.

Sensitivity Analyses Related to Regional Variation in 
Concentration–Response Relationships

Regional Representation  In the Phase 1 report we sug-
gested that variation in the composition of the air pollution 
mixture (as characterized by oxidant gases or particle–
oxidant gas interactions) may play a role in explaining 
the flattening of the concentration–mortality relationship. 
Given the indications of regional variation in the con-
centration–mortality shapes as being largely responsible 
for the flattening of the national concentration–response 
relationship shape detailed earlier in this report, we 
conducted several sensitivity analyses to assess factors 
unrelated to exposure that may influence this regional 
variation.

Our sensitivity analysis evaluating whether variation 
in access to healthcare may have affected the shape of the 
concentration–mortality relationship indicated that adjust-
ment for healthcare access did not affect the shape of the 
relationship or remove the dip present at intermediate (~5–10 
μg/m3) concentrations (Figure 22).

Given that there is regional variation in several population 
characteristics (Table 16), such as the proportion of Indige-
nous respondents, we conducted regional sensitivity analyses 
(Table 17). Deaths (by cause) counts for visible minority and 
Indigenous residents in the Stacked canCHEC are provided in 
Table 18. Specifically, we evaluated whether regional variation 

The −2 log-likelihood values monotonically increase from 
a minimum for the linear model (threshold = 2.5 μg/m3) to 
a threshold concentration of 5.0 μg/m3. These values then 
decrease to a threshold concentration of 8.0 μg/m3 and then 
increase for threshold concentrations from 8.5 μg/m3 to 11.0 
μg/m3 (Figure 20A). The −2 log-likelihood value at threshold 
concentrations of 2.5 μg/m3 and 8.0 μg/m3 were identical 
(Table 15). Threshold models with threshold values of 3.0 μg/m3, 
3.5 μg/m3, and 8.0 μg/m3 did not differ significantly from the 
linear model (P ≥ 0.05). These threshold values lie below  
the −2 log-likelihood value of the linear model plus 3.84 
(purple dashed line, Figure 20A). All other threshold values 
represent models that were not a significant improvement in 
fit over the linear model, using the likelihood ratio test.

The ensemble model-based threshold distribution esti-
mates (Figure  20B) were bimodal, with most values near 
either 2.5 μg/m3 or 8.0 μg/m3. The mean ensemble predictions 
(Figure 20C) were sublinear with the lower 95% CI equaling 
one from 2.5 μg/m3 to 8.0 μg/m3. For comparison purposes, 
the RCS fit is also presented in Figure 20C. The RCS mean 
predictions are larger in magnitude than the mean ensemble 
of threshold models and clearly a better fit with a much 
lower −2 log-likelihood value (Figure  20A). However, the 
wide ensemble-based threshold model CIs likely reflect the 
increasing RCS predictions from 2.5 μg/m3 to 4.5 μg/m3 and 
then a declining trend in RCS predictions between 4.5 μg/m3 
and 8.0 μg/m3.

Regional (Airshed) Differences

In the MAPLE Phase 1 report and in the RCS curves for 
the Stacked CanCHEC nonaccidental mortality (Figure  14), 
we observed a flattening in the middle concentration range 
(~5–10 μg/m3). We hypothesized that this may have been 
due to regional variation in the air pollution mixture or 
uncontrolled regional variation in mortality risk factors. 
Given the size of the Stacked CanCHEC cohort, we therefore 
investigated this in separate analyses within each of the six 
airsheds. Population characteristics and mortality by cause 
for each airshed is shown in Table  16. Specifically, in the 
Stacked CanCHEC, the association between nonaccidental 
mortality and PM2.5 was assessed using linear (Table 16) and 
nonlinear RCS (Figure 21) models within each of the six air-
sheds: Prairie, West Central, East Central, Western, Southern 
Atlantic, and Northern. Note that all analyses are based on 
a 10-year moving average exposure window, during which 
time participants may have lived within multiple airsheds. 
Exposures, therefore, reflect the person-years for those who 
either lived in that given year or died within each airshed. In 
these analyses, airshed was assigned in each year of follow-up 
based on postal codes.

Very different HRs were obtained within the different 
airsheds in Canada. In linear models, protective asso-
ciations were obtained for the West Central and Prairie 
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Table 15. Threshold Model Results by Threshold PM2.5 Concentration for Nonaccidental Mortality in Fully Adjusted 
Models in the Stacked Cohort for Exposure to PM2.5 During the Previous 10 Yearsa

Threshold PM2.5 Concentration 
(μg/m3) Coeff SE −2 Log-Likelihood Ensemble Weight

2.5 0.00806 0.000542 25,856,951 0.326023

3.0 b 0.00806 0.000543 25,856,952 0.197743

3.5 b 0.00805 0.000544 25,856,954 0.072746

4.0 0.00794 0.000547 25,856,962 0.001332

4.5 0.00787 0.000551 25,856,969 4.02E-05

5.0 0.00789 0.000557 25,856,972 8.98E-06

5.5 0.00808 0.000565 25,856,968 6.63E-05

6.0 0.00836 0.000575 25,856,961 0.002197

6.5 0.00865 0.00059 25,856,958 0.009845

7.0 0.00896 0.000609 25,856,957 0.016232

7.5 0.00936 0.000635 25,856,955 0.044122

8.0 b 0.00994 0.000667 25,856,951 0.326023

8.5 0.01031 0.000707 25,856,960 0.003622

9.0 0.01038 0.000756 25,856,984 2.23E-08

9.5 0.01032 0.000815 25,857,013 1.12E-14

10.0 0.01038 0.000889 25,857,037 6.90E-20

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for income adequacy quintile, 
visible minority status, Indigenous identity, educational attainment, labor-force status, marital status, occupation, and ecological covariates 
of community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, dependency, and ethnic concentration).

b Threshold model concentrations that did not differ significantly from the linear model (P ≥ 0.05).

Table 16. Airshed Characteristics, Proportion of Visible Minority and Indigenous Residents, and Death 
Counts for All Causes of Death in the Stacked CanCHEC

Airshed

Western Prairie West 
Central

Southern 
Atlantic

East 
Central Northern

Population characteristics (%)

Indigenous identity 4.63 6.26 13.63 2.22 1.27 27.67

Visible minority 11.15 6.18 5.45 1.49 6.62 4.14

Deaths (n) by cause of deatha

Nonaccidental 156,500 138,000 73,500 129,300 749,200 6,900

Cardiovascular 49,800 45,900 24,000 40,800 228,200 1,900

Cerebrovascular 10,800 8,000 4,600 7,500 41,500 400

Heart failure 3,000 2,700 1,200 2,400 11,200 100

Diabetes 5,200 4,100 3,400 4,600 23,600 200

Ischemic heart disease 24,500 25,500 12,900 21,900 129,800 1,000

Lung cancer 14,500 12,300 6,600 14,200 80,700 900

Respiratory 13,800 12,100 5,900 11,100 62,200 700

COPD 8,000 7,000 3,300 6,900 35,700 500

Pneumonia 3,800 2,800 1,500 2,400 14,900 100

Kidney failure 1,400 1,800 1,000 1,800 8,900 100

a Deaths were rounded to the nearest 100 for confidentiality.
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lost to follow-up as an additional potential explanation for 
the observed flattening. Here we evaluated separate models 
excluding immigrants, Indigenous respondents, and persons 
>80 years, 60–79 years, and >60 years. In all such sensitivity 
analyses the dip persisted in the Prairie and West Central 
airsheds, but it was not present nor were the curves sensitive 
to exclusion in the other airsheds.

To address potential residual confounding within the 
5-year age strata in our main models, we conducted an addi-
tional sensitivity analysis using 1-year age strata (Figure 24). 
Results indicate highly similar relationships when using 
1-year age strata, compared with the 5-year strata included in 
our main models.

Sensitivity of the Nonaccidental Mortality–PM2.5 
Association to Removal of Person-Years Above 
Selected Concentrations

We examined the nonaccidental mortality–PM2.5 associa-
tion shape sensitivity to the removal of person-years from PM2.5 
at or above selected concentrations. We selected 12 μg/m3 as 
it is the current U.S. National Ambient Air Quality Standard 
and 10 μg/m3 as it is the current Canadian and World Health 
Organization guideline. Restricting person-years to PM2.5 
concentrations below 12 μg/m3 removed 13% of person-years 
and 10% of deaths compared with the full cohort, while 
30% of person-years and 28% of deaths were removed when 
person-years were restricted to PM2.5 concentrations less than 
10 μg/m3. Results of linear models for these restricted cohorts 
are presented in Table 19. HRs and the lower 95% confidence 
limit was greater than one for the 12-μg/m3 restriction, 
while the HR was slightly above one with a confidence limit 
spanning one for the 10-μg/m3 restriction. Given the spatial 
patterns in PM2.5 concentrations and the regional variation in 

in the shape of the concentration–mortality relationship may 
be due to differential regional representations of immigrants 
or Indigenous respondents. Results indicate, however, that 
the flattening of the relationship persisted after exclusion of 
these populations (Figure 23). Further, we explored regional 
variation in the proportion of healthy older persons who are 

Figure 22. RCS predictions over PM2.5 concentration range based on 
9 knots with and without adjustment for proximity to healthcare 
resources. Mean and uncertainty bounds with adjustment (blue line 
and blue-shaded area) and without adjustment (black line and grey-
shaded area).

1.15

R
el

at
iv

e 
R

is
k

1.10

1.05

1.00

0 2 4 6 8
PM2.5 (µg/m3)

10 12 14 16 18

Table 17. Cox Proportional HRs of Nonaccidental Mortality in Fully Adjusted Models in the 
Stacked CanCHEC, for PM2.5 Within Each Airshed in Canada (see Figure 3)a

Airshed Deathsb (n) Coeff SE HRc 95% CI

East Central 749,200 0.0056 0.0007 1.057 1.044 1.072

Prairie 138,000 <−0.0001 <−0.0001 0.901 0.862 0.941

Southern Atlantic 129,300 0.0306 0.0025 1.359 1.293 1.427

West Central 73,500 <−0.0001 <−0.0001 0.774 0.717 0.836

Western 156,500 0.0052 0.0016 1.053 1.021 1.086

Northern 6,900 0.0347 0.0123 1.414 1.110 1.801

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status and are adjusted for 
income adequacy quintile, visible minority status, Indigenous identity, educational attainment, labor-force status, 
marital status, occupation, and ecological covariates of community size, airshed, urban form, and four dimensions 
of Can-Marg (instability, deprivation, dependency, and ethnic concentration).

b Deaths were rounded to the nearest 100 for confidentiality.
c HRs are presented as per 10-μg/m3 increase.
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followed by a clear decline in the magnitude of predictions 
over the 5 to 9 μg/m3 concentration interval. Above 9 μg/m3 
the <10 μg/m3 cohort RCS increased.

These results suggest that a positive association exists 
for concentrations >9 μg/m3, however, it is unclear whether 
these data support a positive association in the 5 to 9 μg/m3 
concentration interval.

Extended SCHIF

The basis of our eSCHIF model is using 1,000 series of 
simulated RCS predictions over the concentration range and 
fitting the two-variable eSCHIF function to these predictions. 
We therefore require that the simulation-based predictions and 
corresponding standard errors are similar to those obtained 
using standard methods. To evaluate this requirement, we 
compared the mean predictions and their 95% CIs between 
methods based on using s z j Jˆ ( ), 1, . . . ,j′β = to represent the 
mean predictions at a sequence of concentrations zj, j = 1, . . ., J 
and s z z j Jˆ ( ) 1.96 ˆ ( ), 1, . . .,j j′β × σ = to represent the 95%  

the shape and magnitude of the concentration–mortality rela-
tionship described earlier, interpretation of these restricted 
cohorts is complex, as the restrictions lead to different cohorts 
with geographic representation and covariate distributions 
that differ from the full cohort.

For each set of person-year restrictions we also identified 
the number of RCS knots that minimized the BIC (8 for <12 
μg/m3 and 6 for <10 μg/m3) and plotted the mean predictions 
with their corresponding uncertainty intervals in Figure 25.

The RCS mean predictions were similar for the full cohort 
and the cohort that was restricted to person-years with 
<12 μg/m3 of PM2.5 exposure for PM2.5 concentrations less than 
10 μg/m3 (Figure 25). Over the 10 to 12 μg/m3 concentration 
range, the full cohort RCS was slightly larger in magnitude 
compared with the <12 μg/m3 restricted cohort, suggesting 
that person-years ≥12 μg/m3 were contributing to a positive 
association with nonaccidental mortality in defining the curve 
below 12 μg/m3. This relationship was observed to a much 
greater extent in the RCS predictions for the cohort restricted 
to person-years with <10 μg/m3 of PM2.5 exposure, suggesting 
that PM2.5 concentrations ≥10 μg/m3 were clearly contributing 
to positive associations with mortality. In all three curves, a 
steep increase was observed from the minimum concentration 
of 2.5 μg/m3 to 5 μg/m3. For the full cohort and the <12 μg/m3 
restricted cohort the RCS predictions flattened over the 5 to 
9 μg/m3 range and then increased above 9 μg/m3. A similar 
increase was observed for the <10 μg/m3 restricted cohort 

Table 18. Number of Deaths of Visible Minority and 
Indigenous Residents for All Causes of Death in the 
Stacked CanCHEC

Deaths (n)

Cause of Death Visible 
Minorities Indigenous

Nonaccidental 46,800 38,700

Cardiovascular 14,200 10,900

Cerebrovascular 3,200 1,900

Heart failure 600 600

Diabetes 2,400 3,000

Ischemic heart disease 7,400 6,200

Lung cancer 3,500 3,500

Respiratory 3,200 3,600

COPD 1,200 1,800

Pneumonia 1,000 1,000

Kidney failure 800 700

a Deaths were rounded to the nearest 100 for confidentiality.

Figure 23. RCS sensitivity analyses for nonaccidental mortality in 
the Stacked CanCHEC, using BIC on the fully adjusted model for 
the best-fitting spline for two airsheds that show a large dip in the 
concentration–response shape and removal of population groups 
for which linkage to mortality may have been less complete. Black 
line: full cohort; red line: immigrants removed from cohort; blue line: 
Indigenous respondents removed from cohort.
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We now illustrate the eSCHIF model with four examples. 
The first is based on the 2001 cohort where the RCS model that 
minimized the BIC contained three knot values. The mean RCS 
predictions over the concentration range from z0 = 2.5 μg/m3  
to the 99.9th percentile concentration zj = 15.0 μg/m3 by  
0.1-μg/m3 increments are displayed in Figure 27A, in addition 
to the average of the 1,000 eSCHIF predictions at each con-
centration and the corresponding 0.025 and 0.975 percen-
tiles. In this example, we suggest that the eSCHIF provides 
a reasonable approximation to the (well-behaved) monotoni-
cally increasing mean RCS predictions in addition to the 
monotonically increasing CIs. The corresponding PAF(zj+1, zj)  
results are displayed in Figure  27B, based on a 0.1-μg/m3 
change in concentration throughout the concentration range. 
The RCS-based PAF(zj+1, zj) mean values are constant below 
the first and above the last (third) knot values because the 
RCS is linear over these ranges. Note that even though the 
lower confidence limit of the RCS is less than one when 
z < 4.5 μg/m3, the lower confidence limit on the PAFi(zj+1, zj) is 
greater than zero, suggesting that there is some evidence that 
any reduction in concentration is associated with reductions 
in attributable deaths.

As our second example, we consider the 2001 cohort RCS 
for PM2.5 after adjustment for the RCS of O3 (Figure  28A), 
again with three knots. The mean RCS predictions are approx-
imately one for z < 4.5 μg/m3 with the upper confidence limit 
declining with concentration below the mean concentration 
of 7.7 μg/m3 and then increasing above this concentration. 
The lower confidence limit of the PAF is less than zero for 
concentrations less than 7.7 μg/m3 for both the RCS and 
eSCHIF (Figure  28B). Again, our eSCHIF model provides a 
close approximation to both RCS relative risk predictions and 
PAF predictions.

In the first two examples, the RCS model provides a 
reasonable relative risk function for use in benefits analysis. 
In such cases transforming the eSCHIF is not necessary. 

CI to the average, 0.025, and 0.975 percentiles of ri′s(zj),  
i = 1, . . ., 1,000 for j = 0, . . ., J (Figure 26A), for an RCS using 
three knots for nonaccidental mortality in the 2001 cohort. 
The corresponding PAF(zj+1, zj) estimates are presented in 
Figure 26B. These two approaches yield very similar results, 
and we conclude that 1,000 randomly generated values of the 
distribution of β̂ provide an acceptable approximation to the 
standard method of estimating mean and CI relative risk and 
PAF predictions.

Figure 24. RCS predictions over PM2.5 concentration range based on 
9 knots specifying age as 1-year or 5-year strata. Mean and uncer-
tainty bounds with 1- and 5-year strata (blue line and blue-shaded 
area) (black line and grey-shaded area).
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Table 19. Cox Proportional PM2.5 HRs of Mortality in Fully Adjusted Models in the 
Stacked CanCHEC for Selected Person-Year Restrictionsa

Person-Year 
Restriction

Person-
Years 

(millions)

Deaths
(millions) Coeff SE HRb 95% CI

None 128.37 1.25 0.00806 0.0005421 1.084 1.072 1.096

PM2.5 <12 μg/m3 111.85 1.12 0.00604 0.0007006 1.062 1.048 1.077

PM2.5 <10 μg/m3 90.02 0.90 0.00068 0.0008930 1.007 0.989 1.025

a Fully adjusted models are stratified by sex, age (5-year categories), and recent immigrant status 
and are adjusted for income adequacy quintile, visible minority status, Indigenous identity, edu-
cational attainment, labor-force status, marital status, occupation, and ecological covariates of 
community size, airshed, urban form, and four dimensions of Can-Marg (instability, deprivation, 
dependency, and ethnic concentration).

b HRs are presented as per 10-μg/m3 increase.
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Figure 25. RCS predictions for nonaccidental mortality over the PM2.5 concentration range for the full cohort, person-years with PM2.5 <12 μg/m3, 
and person-years with PM2.5 <10 μg/m3.
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Figure 26. Comparison of standard and simulation-based methods to determine mean and 95% confidence intervals. (A) Relative risk estimates 
and (B) PAF Estimates (%) per 0.1-μg/m3 are also presented. Mean and 95% CI: Standard = dashed red line and pink-shaded area; Simulated = 
dashed blue line and blue dotted lines
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1.15

(A) 2001 Cohort (Non-Accidental): eSCHIF+r’s(z0) (blue), RCS (red)

(B) Population Attributable Fraction (%) per 0.1 µg/m3
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Figure 27. 2001 cohort nonaccidental death RCS mean relative risk predictions over the PM2.5 concentration range, with eSCHIF relative risk 
predictions. (A) Relative risk estimates; (B) PAF estimates. Mean and 95% CI: RCS = solid red line and pink-shaded area; eSCHIF = solid blue 
line and dashed blue lines. Green x-axis tick marks show RCS knot locations.

However, in our third example such a transformation is 
likely desirable. The example is nonaccidental mortality 
in the stacked cohort, where a more complex RCS relation-
ship between the relative risk and PM2.5 concentrations is 
observed (Figure 29A). The eSCHIF average predictions are 
much smoother than the RCS mean predictions, display-
ing a supralinear association. The eSCHIF CIs widen as 

concentration deviates from the mean, as do the RCS CIs. 
The eSCHIF-based PAF average estimates are also much 
smoother than those based on the RCS (Figure  29B). The 
eSCHIF-based PAF lower confidence limit is near zero 
from approximately 5  μg/m3 to 7 μg/m3, suggesting lower 
and uncertain marginal benefits for exposure reductions 
in this concentration range. This observation is supported 
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Figure  28. 2001 cohort nonaccidental death RCS mean relative risk predictions adjusted for O3 over the PM2.5 concentration range, with 
eSCHIF relative risk predictions. (A) Relative risk estimates; (B) PAF estimates. Mean and 95% CI: RCS = solid red line and pink-shaded area; 
eSCHIF = solid blue line and dashed blue lines. Green x-axis tick marks show RCS knot locations.

by the ensemble of threshold models (Figure 20). However 
the eSCHIF-based PAF predictions suggest larger benefits 
from reductions in the 2.5 to 5 μg/m3 concentration range, 
thus differing from the ensemble of threshold models. We 
also note that the RCS model is a much better predictor in 
these data than the linear model or any threshold model 

examined. Finally, both the RCS- and eSCHIF-based PAF 
display uncertain predictions at the highest concentrations 
(>15 μg/m3), with lower confidence limits overlapping zero.

We illustrate the use of an ensemble of RCS predictions 
with nonaccidental mortality in the stacked cohort. We ran 
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Figure 29. Stacked cohort nonaccidental death RCS (9 knots) mean relative risk predictions over the PM2.5 concentration range, with eSCHIF 
relative risk predictions. (A) Relative risk estimates; (B) PAF estimates. Mean and 95% CI: RCS = solid red line and pink-shaded area; eSCHIF = 
solid blue line and dashed blue lines. Green x-axis tick marks show RCS knot locations.

16 RCS models with 3 to 18 knots. Using the AIC as the 
measure of fit, 2.4% of the 1,000 simulated realizations were 
assigned to 14 knots, 79.0% to 15 knots, 1.4% to 16 knots, 
6.5% to 17 knots, and 10.7% to 18 knots. All other numbers 
of knots were assigned zero weight. The eSCHIF average 
predictions (Figure 30A) provide a smooth representation of 

the ensemble-based RCS predictions with a corresponding 
smoother PAF fit (Figure 30B). The eSCHIF fit of the ensemble 
of RCS displays a pattern similar to those of the eSCHIF based 
on the minimum BIC RCS fitting criteria (9 knots) displayed 
in Figure 29, suggesting some robustness of the eSCHIF to the 
method of determining the 1,000 RCS predictive curves.
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Figure 30. Stacked cohort nonaccidental death ensemble RCS mean relative risk predictions over the PM2.5 concentration range, with eSCHIF 
relative risk predictions. (A) Relative risk estimates; (B) PAF estimates. Mean and 95% CI: RCS = solid red line and pink-shaded area; eSCHIF = 
solid blue line and dashed blue lines.

DISCUSSION

The MAPLE project has provided enhanced estimates of 
associations between nonaccidental and cause-specific mortal-
ity and exposure to PM2.5, based on a large, stacked cohort of 
7.1 million unique respondents to three cycles of the Canadian 
census, each representing about 20% of the entire population 

of Canada. These results further refine previous estimates 
provided in the Phase 1 MAPLE report. In this Phase 2 report, 
duplicate respondents in more than one CanCHEC cycle were 
removed and PM2.5 exposure models were updated using data 
derived from a series of new collocated measurements of PM2.5 
and AOD collected at five sites across Canada. These measure-
ments, which were used to develop refined models based on 
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value assigned to respondents in the cohort). This minimum 
effect (mortality) level was also substantially lower than the 
minimum measured concentrations in studies conducted in 
other countries. For example, the National Health Interview 
Survey Cohort had a minimum value of 7.6 μg/m3 (Pope et al. 
2018) and the American Cancer Society Cancer Prevention II 
Cohort had a minimum value of 6.7 μg/m3 (Turner et al. 2016). 
However, we did detect some uncertainty in the threshold 
concentration with the best-fitting threshold values for the 
minimum concentration (2.5 μg/m3) and a concentration of 8 
μg/m3. This was most likely due to the dip in the risk relation-
ship for concentrations near 8 μg/m3.

From a statistical perspective, the wiggles in relative-risk 
predictions for nonaccidental deaths may be due to a combi-
nation of the large number (1.25 million) of deaths, the use of 
RCS that do not have additional smoothing parameters, the 
large number of knots (9) with a limited range between knots 
(~1 μg/m3), and a pattern in the data displaying a marked 
increase in risk at low concentrations, followed by a slight 
decline, and then followed by an increase in risk. Relatively 
small improvements in prediction can warrant inclusion 
of additional spline knots when the numbers of death are 
very large. The limited range between knots can force RCS 
predictions to oscillate over small ranges in concentration. 
For example, RCS predictions become increasingly wiggly 
as the number of knots increases and the concentration 
range between knots decreases (Figure 14). We suggest that 
use of smoothing splines, such as thin-plate splines where a 
smoothing parameter is estimated from the data, be consid-
ered in future work. These smoothing splines may be able to 
reduce the wiggle-ness of relative risk predictions. However, 
we also suggest that the eSCHIF is specifically designed to 
smooth out these wiggles yet preserve the general concentra-
tion–response relationship as described by the RCS.

We examined the sensitivity of the shape of the nonacci-
dental mortality–PM2.5 association to the removal of person-
years above selected concentrations. Removing person-years 
with PM2.5 exposure at or above 12 μg/m3 and 10 μg/m3 
indicated that the higher concentrations were contributing 
to a positive association with nonaccidental mortality. 
However, a steep increase was observed from the minimum 
concentration of 2.5 μg/m3 to 5 μg/m3 in all curves, further 
suggesting adverse effects on mortality at concentrations 
as low as 2.5 μg/m3. Additional analyses described later 
indicated that regional variation in the concentration–
mortality relationship are likely contributing to the overall 
shape, including the flattening within the midrange of the 
concentration distribution. Sensitivity analyses designed to 
identify reasons for this complex shape are described later 
in the regional variation section.

Compared with prior research and results presented in 
the MAPLE Phase 1 report, our estimates in this analysis are 
also based on longer-term exposure estimates (i.e., 10 years of 
prior exposure) using new estimates of PM2.5 that are based on 

remote sensing, include the GEOS-Chem, land use information, 
and ground measurements that were tailored to the estimation 
of low PM2.5 concentrations. Additional analyses using the 
refined exposure estimates and selected mortality causes were 
also conducted with the mCCHS cohort.

CONCENTRATION–RESPONSE RELATIONSHIPS 
FOR NONACCIDENTAL MORTALITY

We observed consistent positive associations between 
PM2.5 concentrations and nonaccidental mortality in all of 
the cohorts examined. In our Stacked CanCHEC analyses, 
which included nearly 1.3 million nonaccidental deaths, 
each 10-μg/m3 increment in outdoor PM2.5 concentration 
corresponded to an HR of 1.084 (95% CI: 1.073 to 1.096). 
In nonlinear models using RCS, mean predictions were 
greater than one for all concentrations that predicted at the 
minimum concentrations. Using an ensemble of threshold 
models, the mean prediction was greater than one for all 
observed concentrations, but the lower 95% confidence 
limit was greater than one only for concentrations greater 
than 8.0 μg/m3. The mCCHS cohort analyses complemented 
those of CanCHEC by providing information on the shapes 
of concentration–response relationships between PM2.5 and 
nonaccidental and selected mortality causes, with and with-
out adjustment for behavioral covariates including smoking, 
BMI, fruit and vegetable consumption, exercise, and alcohol 
use. Although there was some attenuation evident in linear 
models with the inclusion of the behavioral covariates, this 
attenuation varied by cause of death (Table 7). Further, we 
found that the inclusion of these covariates led to no discern-
able differences in the shapes of the concentration–response 
curves and in the concentration (3.6–3.7 μg/m3) at which 
the lower 95% confidence limits of the HRs were above one. 
Similar to our findings in the Phase 1 report, these results 
suggest that these individual-level variables were unlikely 
to be important confounders of the relationship between 
outdoor PM2.5 concentrations and mortality at the very low 
observed concentrations. Given the similar population rep-
resentativeness of the CanCHEC and mCCHS cohorts, these 
results and our inclusion of many individual-scaled socio-
economic and demographic characteristics in the CanCHEC, 
which likely capture variation in health outcomes attributed 
to health behavior, also suggest no strong confounding from 
behavioral factors in the CanCHEC analyses.

The PM2.5–nonaccidental mortality relationship estimated 
using the eSCHIF suggests a supralinear form (Figure  29). 
This shape was similarly reported in previous work on the 
1991 CanCHEC (Crouse et al. 2012, 2015) and 2001 CanCHEC 
(Pinault et al. 2017) cohorts, as well as in the pooled CanCHEC 
results presented in the Phase 1 report (and in Pappin et al. 
2019). We have extended the analyses presented in the Phase 
1 report, where no lower threshold was detected, for the mean 
of the association between PM2.5 and nonaccidental mortality, 
specifically, the concentration of 2.5 μg/m3 (the minimum 
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five or more knots (Figure 14). The dip was not present in the 
mCCHS however (Figure  15). Both the 2001 CanCHEC and 
mCCHS cohorts started follow-up in 2001. This is also the 
period when better data support was available for our PM2.5 
prediction model, including ground-monitoring and remote-
sensing data. The dip was present in cardiometabolic causes 
of death such as all cardiovascular, ischemic heart disease, 
heart failure, stroke, and diabetes. No such dip was observed 
in lung-related disease such as lung cancer, all respiratory, 
COPD, and pneumonia (Figure 16).

To further explore the causes of the dip, we fit RCS to each 
of the six airsheds separately (Figure 21). Next, we examined 
possible confounding and effect modification by oxidant gases 
(i.e., O3 – Figure 17 and Ox – Figure 18) to evaluate how these 
pollutants may affect the concentration–response curves for 
PM2.5. Taken together, the results of these analyses suggest that 
there is important spatial variation in the strength and shape of 
associations between PM2.5 and mortality across Canada. Spe-
cifically, PM2.5 concentrations were positively associated with 
nonaccidental mortality in the East Central, Southern Atlan-
tic, Western, and Northern airsheds. However, associations 
were not observed except at relatively high concentrations 
(~12 μg/m3 and above) for the Prairie and the West Central 
airsheds, where there was even some evidence of inverse 
relationships. The dip in the national concentration–response 
curve therefore appeared to be explained by similar patterns 
observed in these areas. These findings cannot be explained 
by PM2.5 mass concentrations, as these overlapped between 
all the airsheds, but they may be attributable to unrecognized 
population differences, unmeasured confounders (i.e., factors 
that are causes of mortality and are causally or noncausally 
associated with outdoor PM2.5 concentrations), or spatial 
differences in particle composition, air pollution mixtures, or 
interactions between pollutants. With respect to unmeasured 
confounders, it is not clear which variables could have been 
considered beyond those already included in the analyses. 
The most likely candidates would be ecological variables 
(e.g., neighborhood-level factors), rather than individual-level 
factors as individual-level characteristics are not likely to be 
strongly related to outdoor PM2.5 concentrations (e.g., if an 
individual starts smoking or has a BMI increase, it doesn’t 
affect the long-term outdoor PM2.5 concentration). This is sup-
ported by our analyses with individual-level characteristics 
that include BMI and smoking.

Our sensitivity analyses for evaluating the potential role 
of regional variation in healthcare access or in differential 
representation of population characteristics (age, immigrants, 
Indigenous respondents) indicated that results were insen-
sitive to an adjustment for healthcare access or to removal 
of specific population subgroups. Although other unmea-
sured population factors may still vary among regions, our 
additional evaluation of regional variation and sensitivity to 
copollutant adjustment supports a potential role for regional 
variation in the pollutant mixture composition.

a refined methodology, resulting in reduced evaluation errors 
with ground monitors and improved performance at low con-
centrations specifically. These new estimates were derived 
from a series of new collocated measurements of PM2.5 and 
AOD that provided some new insights on aerosol MSE, and 
that were used to refine models based on remote sensing, 
GEOS-Chem, land use information, and ground data. These 
enhancements and their application to backcasted exposures 
are likely to have reduced exposure measurement error when 
compared with prior CanCHEC and CCHS analyses.

CONCENTRATION–RESPONSE RELATIONSHIPS 
FOR OTHER CAUSES OF DEATH

In addition to nonaccidental mortality, we also examined 
the shapes of concentration–response relationships for 
other causes of death using the Stacked CanCHEC (and for 
selected causes with sufficient numbers of deaths in the 
mCCHS). These included cardiovascular, cerebrovascular, 
heart failure, ischemic heart disease, diabetes, respiratory, 
COPD, pneumonia, and lung cancer mortality. Of the spe-
cific causes examined, PM2.5 concentrations were strongly 
and consistently associated with ischemic heart disease, 
respiratory disease, and to a somewhat lesser degree for 
cardiovascular disease and diabetes. These findings suggest, 
not unexpectedly, that our all-cause mortality findings were 
driven by these major causes of death in Canada. There was 
less consistency between the CanCHEC and mCCHS findings 
and across specific CanCHEC cohorts for several of the other 
causes. This potentially reflects small differences in the 
overall population representation of the cohorts, variation in 
disease management over time, or both, as well as generally 
less robust associations for several specific causes of death. 
Specifically, associations were observed in CanCHEC but 
not in the mCCHS for cerebrovascular disease, while asso-
ciations for COPD mortality were observed in the Stacked 
CanCHEC and mCCHS but not in the 1991 or 2001 CanCHEC 
cohorts alone. Similarly, associations for pneumonia mortal-
ity were observed in the Stacked CanCHEC analysis but were 
not consistent across the 2001 CanCHEC and the mCCHS 
cohorts. No significant associations were found between 
exposure to PM2.5 and lung cancer, heart failure, or kidney 
failure.

REGIONAL VARIATIONS AND SENSITIVITY 
TO ADJUSTMENT FOR OXIDANT GASES

Additional analyses were conducted to examine possible 
explanations for the observed dip in the concentration–
response curve for PM2.5 and nonaccidental mortality in the 
middle of the PM2.5 distribution that was first observed in 
the Phase 1 report and then in these analyses. The dip was 
observed for nonaccidental deaths in the 1991 and 1996 
cohorts but not in the 2001 cohort (Figure 13). However, the 
dip was present in the stacked cohort when RCS were fit with 
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other hand, is based on the CCHS survey, which is not totally 
representative of the entire population of Canada, as the sam-
pling frame for the survey is designed to produce estimates 
at a health-region level (Sanmartin et al. 2016). Second, in all 
cohorts, individual covariates are collected only at the time of 
the census or survey, while it is acknowledged that many of 
these characteristics are likely to change over the follow-up 
period. Third, postal codes reported on tax files are used to 
assign air pollution exposures and neighborhood covariates. 
Postal codes may not always represent the location of a per-
son’s residence, such as when the postal code represents a post 
office box or the address of a relative. One analysis of the CCHS 
has indicated that postal codes in tax files do represent the 
location of the residence in 92.9% of cases (Bérard-Chagnon 
2017). Accuracy in assignment of residential location using 
postal codes is relatively high for urban postal codes, within 
about 500 meters of a person’s home, although it may be more 
distant in rural areas (Khan et al. 2018). However, PM2.5 is more 
spatially uniform in rural areas of Canada relative to urban 
areas, which may mitigate some of this possible misclassifica-
tion in rural regions.

Based on a Stacked CanCHEC, individual CanCHECs, 
and the mCCHS cohorts, we report associations between 
nonaccidental mortality and exposures to PM2.5 at concentra-
tions above 2.5 μg/m3, corresponding to the minimum PM2.5 
concentrations assigned to the cohort. We also report associa-
tions between PM2.5 and death due to cardiovascular disease, 
ischemic heart disease, cerebrovascular disease, diabetes, 
nonmalignant respiratory disease, COPD, and pneumonia, 
as well as minimum PM2.5 concentrations, above which we 
observe a significant association for these causes. Future work 
will apply our eSCHIF methodology to other international 
cohorts, to determine if associations observed are consistent 
in other regions of the world.

DATA SHARING

Approved researchers can access the CanCHECs in 
Research Data Centres and in the Federal Research Data 
Centre. Information on the Research Data Centre program, 
including the application process and guidelines, are avail-
able at https://www.statcan.gc.ca/en/microdata/data-centres.
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As PM2.5 is a complex mixture that varies across both space 
and time, it is not altogether surprising to observe spatial 
differences in the shapes of concentration–response curves 
for PM2.5, simply because these populations are not exposed 
to the same thing (despite similarity in measured PM2.5 mass 
concentrations). More work is needed to understand how 
PM2.5 composition and pollutant interactions affect long-term 
health risks. Our findings for Ox and O3 suggest that oxidant 
gases may be particularly important. Specifically, Ox was 
more strongly associated with mortality than was PM2.5 mass 
for several outcomes examined in the stacked cohort (i.e., 
nonaccidental mortality, diabetes, ischemic heart disease, 
respiratory mortality, and COPD; Table 11), and the shapes 
of concentration–response relationships between PM2.5 and 
nonaccidental, cardiovascular, and respiratory mortality were 
clearly influenced by Ox (Figure 18). For cardiovascular out-
comes in particular, PM2.5 was most strongly associated with 
mortality when Ox was higher (Table 14).

Collectively, these findings further support the notion 
that the long-term health effects of PM2.5 are spatially hetero-
geneous and suggest that outdoor Ox concentrations should 
be considered in combination with PM2.5 as there may be 
important interactions between these pollutants. Although 
the nature of these possible interactions require further 
research to fully elucidate, this finding is consistent with our 
previous results (Weichenthal et al. 2017), which suggested 
that the chronic health effects of PM2.5 mass concentrations 
are enhanced in the presence of oxidant gases. As noted 
earlier, this pattern could be explained by a direct action of 
Ox on the lungs, or Ox could simply be an efficient marker of 
harmful air pollution mixtures reflecting spatial variations in 
atmospheric processes or sources that can have an effect on 
particle toxicity (e.g., particle aging or oxidation of organic 
components). Ultimately, we cannot conclusively explain 
the observed heterogeneity in PM2.5–mortality associations 
in our current study, but our findings strongly suggest that 
important spatial differences do exist and that oxidant gases 
(or particle–oxidant gas interactions) may play a role in 
explaining this variation. Future work should examine this 
possibility, as it may allow for more efficient regulatory inter-
ventions if we can predict where PM2.5 mass concentrations 
are expected to pose the greatest threat to public health, or 
which sources may be most relevant.

Although our study was strengthened by the use of a 
Stacked CanCHEC with 7.1 million respondents with indi-
vidual socioeconomic and demographic indicators, there are 
some limitations arising from the use of such cohorts. First, 
CanCHEC excludes the institutional population on census day, 
and those not enumerated by the census. Although the Can-
CHECs are largely representative of the population of Canada, 
they tend to be slightly healthier than the overall Canadian 
population (Tjepkema et  al. 2020). This may be heightened 
by our exclusion criteria, which tend to remove person-years 
associated with marginalized groups. The mCCHS, on the 

https://www.statcan.gc.ca/en/microdata/data-centres
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easy to understand. The review also examined if the report 
highlighted key study findings and limitations. The data 
audit included (1) a remote live demonstration of selected 
data processing codes, and (2) the review of the codes for data 
reduction, processing and analysis, and model development. 
This specific portion of the audit was restricted to the key 
components of the study and associated findings. Selected 
codes for exposure assessment and epidemiological model 
development were sent to RTI. No raw data were sent to RTI 
due to data confidentiality restrictions.

The codes were reviewed at RTI to verify, to the extent 
feasible, linkages between the various scripts, confirmation of 
the models reported, and verification of key tables. The codes 
appear to be largely consistent with the models described 
in the report and followed the overall model development 
procedure described. The auditors identified a couple of 
discrepancies whose impact on the overall study findings are 
anticipated to be negligible. The values themselves could not 
be generated at RTI due to unavailability of the input data.

The remote live demonstration included a real-time exe-
cution of selected codes generating key tables and figures in 
the report. Values generated by the codes during the real-time 
demonstration matched the values in the report. Except for 
the couple of discrepancies, no major quality-related issues 
were identified from the review of the codes and the report.

Recommendations were made to address noted discrepan-
cies, add clarifying statements for some findings, and general 
edits for improved clarity.

A written report was provided to HEI. The QA oversight 
audit demonstrated that the study was conducted according 
to the study protocol. The final report, except as noted in 
the comments and recommended corrections, appears to be 
representative of the study conducted.

Linda Morris Brown, MPH, DrPH, Epidemiologist, Quality 
Assurance Auditor

Prakash Doraiswamy, PhD, Air Quality Specialist, Quality 
Assurance Auditor

David Wilson, PhD, Statistician, Quality Assurance Auditor

June 07, 2022

Yin P, Brauer M, Cohen A, Burnett RT, Liu J, Liu Y, et al. 2017. 
Long-term fine particulate matter exposure and nonaccidental 
and cause-specific mortality in a large national cohort of Chi-
nese men. Environ Health Perspect 125:117002.

HEI QUALITY ASSURANCE STATEMENT

The conduct of this study was subjected to independent 
audits by RTI International staff members Dr. Linda Brown and 
Dr. Prakash Doraiswamy. These staff members are experienced 
in quality assurance (QA) oversight for air quality monitoring, 
chemical transport modeling, use of satellite data, and epide-
miological methods and analysis. The RTI QA oversight team 
also included statistician Dr. David Wilson who reviewed the 
statistical methods and accompanying codes.

The QA oversight program consisted of an initial onsite 
audit of the research study for conformance to the study pro-
tocol and standard operating procedures and a final remote 
audit of the final report and the data processing steps. The 
onsite audit was performed by Drs. Brown and Doraiswamy. 
The final remote audit was performed by Drs. Brown, 
Doraiswamy, and Wilson. The dates of the audits and reviews 
are listed below.

Audit 1: Onsite Audit at an External Facility Nearby 
Statistics Canada in Ottawa, Canada, August 23–24, 2018

The auditors conducted an in-person audit in Ottawa, 
Canada, at an external facility due to security restrictions at 
Statistics Canada. The audit reviewed the following study 
components: progress reports, personnel and staff, internal 
quality assurance procedures, air quality data processing and 
documentation, health data processing and quality checks, and 
backup procedures. Program codes were inspected to verify 
proper documentation. The codebook for the analytic file was 
examined. The audit included an observation of selected scripts. 
No actual script executions were observed due to restrictions on 
connection to Statistics Canada from an external location. No 
errors were noted during the audit, but recommendations were 
made for ensuring proper documentation for field and lab log 
sheets (e.g., including detailed documentation with reason and 
signature when modifying previously recorded values), updat-
ing study plan and quality plan, documenting codes and docu-
menting procedures, checks and assumptions related to model 
development, and QA/QC. The audit was conducted at an exter-
nal location not affiliated with any of the research team mem-
bers and therefore did not include an inspection of facilities or  
equipment.

Audit 2: Final Remote Audit, March – June 2022

The final remote audit consisted of two parts: (1) review 
of the final project report, and (2) audit of data processing 
steps. The review of the final report focused on ensuring 
that the methods are well documented and the report is 
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HEI’s Low-Exposure Epidemiology Studies Review Panel

collaboration, the teams aim to (1) evaluate concentration–
response thresholds, (2) share analytical techniques and 
identify common statistical methods (e.g., a common set of 
covariates across the studies), and (3) determine strengths, 
weaknesses, and common findings of the three studies. That 
work is expected to be completed in 2022.

The current MAPLE study is the second of two phases. 
In November 2019, HEI published Research Report 203: 
Mortality–Air Pollution Associations in Low Exposure 
Environments (MAPLE): Phase 1, along with a Commentary 
by HEI’s Low-Exposure Epidemiology Studies Review Panel 
(Brauer et  al. 2019). That Report and Commentary summa-
rized and discussed analyses and findings produced through 
the first half of Dr. Brauer’s study. The present Commentary 
focuses on the research and findings produced during the sec-
ond phase, recognizing that this work builds on the Phase 1 
analyses.

This Commentary was prepared by HEI’s Low-Exposure 
Epidemiology Studies Review Panel, which was convened to 
review these three HEI-funded studies, and by members of 
HEI’s Scientific Staff. The Commentary includes the scientific 
and regulatory background for the research, a summary of the 
study’s approach and key results, and the Panel’s evaluation 
of the Investigator’s Report. This Commentary is intended to 
aid HEI sponsors and the public by highlighting the strengths 
and limitations of the study and by placing the Investigators’ 
Report into scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Setting ambient air quality standards at levels considered 
adequate to protect public health is central to programs 
designed under the U.S. Clean Air Act, the European Union 
Ambient Air Quality Directives, and similar measures around 
the world. Although the process for setting such standards 
varies, all contain several common components:

•	 Identifying, reviewing, and synthesizing the scientific 
evidence on sources, exposures, and health effects of air 
pollution

•	 Conducting risk and policy assessments to estimate pub-
lic health effects likely to be seen at various levels of the 
standards

INTRODUCTION

Ambient air pollution is an important contributor to the 
global burden of disease (GBD 2020; HEI 2020). Although 
levels of air pollution have declined over the past 50 years 
in many high-income countries, several studies published in 
the last decade reported associations between risk of mortal-
ity and long-term exposure to particulate matter ≤2.5 µm in 
aerodynamic diameter (PM2.5*) at low concentrations (Beelen 
et  al. 2014; Crouse et  al. 2012, 2015; Hales et  al. 2012; 
Pinault et  al. 2016). To inform future risk assessment and 
regulation, it is important to confirm whether associations 
with adverse health effects continue to be observed as air 
pollution levels decline further. Determining the shape of 
the concentration–response curve at low concentrations 
is also key to identifying levels of exposure with minimal 
health risks. Thus, HEI initiated a research program on 
health effects at low concentrations.

In 2016, HEI funded three studies under Request for Appli-
cations (RFA) 14-3, Assessing Health Effects of Long-Term 
Exposure to Low Levels of Ambient Air Pollution, to explore 
the health effects associated with exposures to low concentra-
tions of air pollution using large cohorts and administrative 
databases (e.g., census, health insurance claims). Dr. Brauer’s 
study, Mortality–Air Pollution Associations in Low Exposure 
Environments (MAPLE), focused on a nationally representa-
tive cohort of approximately nine million people in Canada. 
Additional information about the RFA and the two other 
studies that were conducted in the United States and Europe is 
included in the Preface. It should be noted that all three study 
teams are conducting additional analyses to harmonize their 
approaches to the maximum extent possible. Through this 

Research Report 212, Mortality–Air Pollution Associations in Low Exposure 
Environments (MAPLE): Phase 2, M. Brauer et al.

Dr. Michael Brauer’s 4-year study, “Identifying the shape of the association 
between long-term exposure to low levels of ambient air pollution and the 
risk of mortality: An extension of the Canadian Census Health and Envi-
ronment Cohort using innovative data linkage and exposure methodology,” 
began in April 2016. Total expenditures were $2,065,564. The draft Phase 
2 Investigators’ Report from Brauer and colleagues was received for review 
in December 2020. A second revised report, received in October 2021, was 
accepted for publication in January 2022. During the review process, HEI’s 
Low-Exposure Epidemiology Studies Review Panel and the investigators 
had the opportunity to exchange comments and to clarify issues in both the 
Investigators’ Report and the Panel’s Commentary.
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near and below the then current NAAQS. Although a range 
of possible shapes for the curve is considered, including 
whether there is a threshold at a concentration below which 
effects are not likely, the U.S. EPA’s conclusions in these 
reviews thus far have not found evidence of such thresholds 
(although studies to date have not always had the statistical 
power to detect one) (U.S. EPA 2004, 2013). Also, although 
the standard is set under the Clean Air Act at “a level requisite 
to protect public health with an adequate margin of safety,” 
it has been understood that there are likely additional, albeit 
more uncertain, health effects of exposure to air pollution 
concentrations below the NAAQS.

Both documents are subjected to extensive public 
comments and review by the Clean Air Scientific Advisory 
Committee, which was established under the U.S. Clean 
Air Act. The Committee is charged with peer reviewing the 
documents, which includes advising the Administrator on 
the strength and uncertainties in the science and making 
the decision whether to retain or change the NAAQS. The 
current NAAQS for long-term exposure to PM2.5, NO2, and O3 
are as follows (https://www.epa.gov/criteria-air-pollutants 
/naaqs-table):

•	 PM2.5: annual mean averaged over 3 years of 12 µg/m3

•	 NO2: annual mean of 53 ppb (approximately 100 µg/m3)

•	 O3: 3–year average peak season 8-hour mean of 70 ppb 
(approximately 140 µg/m3)

SETTING AIR QUALITY STANDARDS IN CANADA

Air quality policy in Canada is broadly directed by the 
Canadian Environmental Protection Act of 1999, a federal 
regulation that aims to prevent pollution and protect the 
environment and human health. However, multiple levels of 
government collectively share responsibility in developing 
specific policies and managing air pollution. They are led by 
the Canadian Council of Ministers of the Environment (CCME), 
an intergovernmental organization of Ministers from federal, 
provincial, and territorial governments (Health Canada 2016).

In 2012, the CCME collaborated with industry, nongov-
ernmental, and Indigenous organizations to develop and 
implement an Air Quality Management System. As part of 
this system, new Canadian Ambient Air Quality Standards 
(CAAQS) replaced the older Canada Wide Standards for 
several ambient air pollutants. The CAAQS were adopted 
across Canada, except for Quebec, with decreasing target 
concentrations set for 2015, 2020, and 2025. Risk of adverse 
health effects is the primary consideration in setting CAAQS, 
but technology, economics, and societal concerns are also 
considered (Health Canada 2016). The current 2020 CAAQS 
for long-term exposure to PM2.5, NO2, and O3 are as follows 
(CCME 2021):

•	 PM2.5: annual mean averaged over 3 years of 8.8 µg/m3

•	 NO2: annual mean of 17 ppb (approximately 33 µg/m3)

•	 Identifying and setting standards based on risk assessments

•	 Monitoring air quality to identify areas that do not meet 
the standards

•	 Implementing air quality interventions to meet the stan-
dards by reducing the concentrations to which people 
are exposed

In September 2021, the World Health Organization (WHO) 
updated its 2005 Global Air Quality Guidelines after extensive 
research and deliberation. The new Air Quality Guidelines set 
ambitious targets for air pollutants of worldwide importance, 
including PM2.5, nitrogen dioxide (NO2), and ozone (O3). 
Although the Air Quality Guidelines are not legally binding, 
they will influence air quality policy across the globe for years 
to come. The recommended limits for long-term exposure are 
as follows (WHO 2021):

•	 PM2.5: annual mean of 5 µg/m3

•	 NO2: annual mean of 10 µg/m3

•	 O3: peak season 8-hour mean of 60 µg/m3

SETTING AIR QUALITY STANDARDS IN THE 
UNITED STATES

The U.S. Clean Air Act requires that in setting the 
National Ambient Air Quality Standards (NAAQS), the U.S. 
Environmental Protection Agency (U.S. EPA) Administrator 
reviews all available science and sets the NAAQS for all 
major (criteria) pollutants (e.g., particulate matter, NO2, and 
O3) at a level “requisite to protect the public health with an 
adequate margin of safety.” In practice, that review has had 
two principal steps:

1.	 Synthesis and evaluation of all available science in what 
is now called an Integrated Science Assessment. This 
document reviews the widest range of exposure, dosim-
etry, toxicological, mechanistic, clinical, and epidemio-
logical evidence. It then—using a predetermined set of 
criteria (U.S. EPA 2015)—draws on all lines of evidence 
to determine whether the exposure is causal, likely to be 
causal, or suggestive of being causal for a series of health 
outcomes.

2.	 Assessment of the risks based on that science is then con-
ducted in a Risk and Policy Assessment. This additional 
analysis draws on the Integrated Science Assessment to 
identify the strongest evidence—most often from human 
clinical and epidemiological studies—of the lowest con-
centrations at which health effects are observed, the 
likely implications of such concentrations for adverse 
health outcomes across the population, and the degree to 
which the newest evidence suggests that there are health 
effects observed below the then current NAAQS for a 
particular pollutant.

The Risk and Policy Assessment also examines the uncer-
tainties around estimates of health effects and the shape of the 
concentration–response curve, especially at concentrations 

https://www.epa.gov/criteria-air-pollutants/naaqs-table
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SUMMARY OF APPROACH AND METHODS

The overall objective of the MAPLE study was to charac-
terize the relationship between long-term exposure to low 
ambient concentrations of PM2.5 and nonaccidental mortality 
in a representative sample of the adult Canadian population. 
The investigators developed fine-scale satellite-based PM2.5 
exposure estimates for North America from 1981 to 2016. They 
then applied epidemiological analyses to estimate the shape of 
the concentration–response relationship and the lowest PM2.5 
concentration of detectable health effects. Here we describe the 
overall approach and methods of the MAPLE study.

STUDY OBJECTIVES

To estimate ambient PM2.5 concentrations, the investigators 
proposed to

1.	 Develop and apply annual average satellite-derived PM2.5 
estimates for North America at 1 km × 1 km spatial reso-
lution for years 2000–2016

2.	 Evaluate PM2.5 estimates using insight gained from com-
parisons of colocated measurements of PM2.5 and aero-
sol optical depth (AOD) with chemical transport model 
(GEOS–Chem) simulations of that relationship

3.	 Use a combination of geophysical and statistical meth-
ods, together with land use information, to further refine 
the above PM2.5 estimates

4.	 Use available PM2.5, PM10, and total suspended PM 
monitoring data in Canada from 1981–1999, to scale the 
1 km × 1 km exposure estimates back in time annually 
from 1981–1999 and produce high-resolution exposure 
estimates over the entire 1981–2016 study period

5.	 Make the above refined PM2.5 estimates available to other 
studies that cover Canada and the United States for 
incorporation into their analyses

To examine the concentration–response relationship 
between PM2.5 exposure and risk of nonaccidental mortality, 
investigators proposed to:

1.	 Use five cohorts linked to mortality, vital statistics, and 
tax records through December 31, 2016

a.	 Three Canadian Census Health and Environment 
Cohort (CanCHEC) cycles (1991, 1996, and 2001)

b.	 A CanCHEC cohort combining all three cycles

c.	 A pooled Canadian Community Health Survey (CCHS) 
cohort that contained detailed information on health 
behaviors

2.	 Examine the shape of the association between long-term 
exposure to ambient concentrations of PM2.5 and mortal-
ity in all five cohorts by using

a.	 Restricted cubic splines (RCS)

b.	 A standard threshold approach

•	 O3: 3–year average peak season 8-hour mean of 62 ppb 
(approximately 124 µg/m3)

Although CAAQS are nonlegally binding goals, air quality 
is actively managed. Local governments within individual 
air zones and regional airsheds monitor air quality with 
four management levels—green, yellow, orange, and red. 
Each level corresponds to increasing pollutant concentration 
targets up to the CAAQS at the red level. The four levels 
also have increasingly strict mitigation strategies, ranging 
from industrial and mobile emissions controls to individual 
consumer incentives, with the goal of discouraging emissions 
so ambient concentrations remain below the CAAQS (CCME 
2021).

EVALUATING ASSOCIATIONS BELOW CURRENT AIR 
QUALITY STANDARDS AND GUIDELINES

As the quality and availability of data on air pollution 
concentrations improved over the first decade of this cen-
tury, emerging research from Canada and New Zealand 
suggested that associations between PM and mortality 
could be observed down to concentrations well below the 
NAAQS of 12 µg/m3 (Crouse et al. 2012; Hales et al. 2012). 
Using standard statistical methods, these studies found 
robust associations, with some evidence of larger effects at 
the lowest concentrations of PM2.5. However, neither study 
examined associations with NO2 or O3 exposure, and some 
potential individual-level confounding variables were 
unavailable. If replicated in other populations and by other 
investigators, such findings could change the basis for future 
determinations of the levels to set the NAAQS and other air 
quality standards.

At the same time, the findings of these previous studies 
from Canada and New Zealand suggested several questions:

•	 Would the results be robust to the application of more 
sophisticated statistical methods, including nonlinear 
and causal inference models?

•	 Could other important determinants of population 
health not accounted for in prior studies—including 
lifestyle factors such as smoking, health status, access 
to medical care, and differences in air pollution sources 
and time–activity patterns—modify or confound the 
associations?

•	 What might be the effects of co-occurring pollut-
ants on health effect associations at low ambient 
concentrations?

As described in the Preface, these important questions 
were the basis for RFA 14–3. After a rigorous selection 
process, the Research Committee recommended the study 
by Brauer and colleagues for funding because it used a large 
representative sample of the Canadian population, aimed to 
develop new methods for concentration–response modeling 
in health assessments, and built on prior work by an experi-
enced research team.
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cohorts and one survey-based cohort, including approxi-
mately 7.6 million people, and recorded nearly 1.4 million 
deaths (Commentary Figure 1). Three CanCHEC cohorts com-
prised randomly selected participants who completed the 
mandatory long-form census. This census contains detailed 
individual-level sociodemographic information, such as 
education, income, and ethnicity. A Stacked CanCHEC cohort 
merged all CanCHEC cycles into a single cohort with dupli-
cate respondents removed. The survey-based CCHS cohort 
comprised randomly selected participants to complete one of 
the CCHS health surveys between 2001 and 2012. In addition 
to the sociodemographic information in CanCHEC, the CCHS 
includes information on health status and behaviors such as 
smoking.

Survey data were linked to Statistics Canada’s Social Data 
Linkage Environment from survey date through December 31, 
2016, which provided residential histories via annual tax 
records and dates and causes of death. Participants were 

c.	 An extended version of the Shape Constrained 
Health Impact Functions (SCHIF) to identify the 
lowest concentration for which there is evidence of 
a positive association with mortality

The study was completed in two phases, with the Phase 1 
Report (Brauer et al. 2019) providing interim results to inform 
ongoing review of the NAAQS for PM2.5. In Phase 2, the 
investigators refined some of their methods, tackled additional 
aspects of the analysis, and omitted methods shown to be 
insufficiently robust during Phase 1 (Commentary Table).

METHODS AND STUDY DESIGN

Study Population

The investigators used a nationally representative sample 
of the adult Canadian population, ages 25–89 years, and fol-
lowed them for up to 25 years. They created four census-based 

Commentary Table. Analytic Approaches in the MAPLE Study

Phase 1 Phase 2

Use of CanCHEC Cohorts for 
Overall Analysis 

Cohort-specific analyses and 
meta-analyses

Cohort-specific and pooled cohort analyses 
with duplicates removed (see Commentary 
Figure 1)

Linking CanCHEC and CCHS 
Participants to Death Records

Probabilistic and deterministic linkage Deterministic only linkage

PM2.5 Exposure Modeling Developed a high-resolution exposure 
model using single daily satellite 
observations

Improved the model with multiple daily 
satellite observations and colocated 
ground measurements 

PM2.5 Exposure Windows and 
Lag Time

1-, 3-, and 8-year moving average with a 
1-year lag

10-year moving average with a 1-year lag 
based on analysis showing larger effect 
estimates for longer moving averages

PM2.5 Exposure Assignment for 
Person–Years with Missing Postal 
Codes 

Imputed as the national population-
weighted average exposure 

Imputed based on the population-weighted 
average exposure from nearby postal codes

Covariate Adjustment Directed Acyclic Graph informed (group-
level covariates only), fully adjusted 
(included group- and individual-level 
covariates), and indirectly adjusted for 
health behaviors

Fully adjusted only

Evaluation of the Concentration–
Response Shape 

RCS, SCHIF RCS, extended SCHIF, and threshold 

Copollutant Analysis Linear HR models adjusted for NO2, O3, 
and Ox

Linear HR models adjusted for O3 and 
Ox, stratified by O3 and Ox tertiles and 
nonlinear model adjustment for linear O3 
and Ox

Additional Sensitivity Analyses With and without immigrants included Exclusion of person-years with PM2.5 
exposure >U.S. and Canadian air quality 
standards, and mortality risk by regional 
airshed

Ox = gaseous pollutant oxidant capacity.
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chemical transport model, land use information, and 
ground-monitoring data. First, multiple daily satellite mea-
surements of AOD from the moderate resolution imaging 
spectroradiometer (MODIS) were inversely weighted by 
error, then converted to geophysical PM2.5 concentrations 
using GEOS-Chem model simulations (van Donkelaar et  al. 
2019). To evaluate the conversion in regions of low PM2.5 
concentrations, the investigators collected colocated ground 
measurements of PM2.5, aerosol scatter, and AOD at five 
sites (in five different airsheds) with low concentrations of 
air pollution across Canada. Sites included Halifax, Nova 
Scotia; Sherbrooke, Quebec; Downsview, Ontario; Lethbridge, 
Alberta; and Kelowna, British Columbia, and were added to 
the Surface Particulate Matter Network (SPARTAN).

Next, they used geographically weighted regression to 
merge the satellite-derived geophysical estimates with aver-
age monthly ground monitoring measurements (Canadian 

excluded if they had immigrated less than 10 years prior, turned 
90 years old during follow-up, or had no recorded postal code 
with which to assign exposure. Due to these exclusions and 
the noninstitutionalized representation of CanCHEC, the study 
sample was slightly healthier than Canada’s general population 
as evidenced by lower mortality rates, particularly for older 
individuals (Tjepkema et al. 2019). All data linkages and analy-
ses were conducted at Statistics Canada’s secure Research Data 
Centers by approved researchers with government security 
clearance.

Exposure Assessment

PM2.5 Model  Brauer and colleagues developed high reso-
lution (1 km2) annual average ambient PM2.5 concentration 
estimates for North America for 1981 to 2016. The method 
combined remote sensing of AOD with the GEOS-Chem 

Commentary Figure 1. MAPLE study cohorts. The five cohorts included CanCHEC 1991, CanCHEC 1996, CanCHEC 2001, Stacked CanCHEC, 
and CCHS. The Stacked CanCHEC and CCHS cohorts included groups of respondents that entered the study in different census or survey years 
(dashed lines). Participants were followed until death or the end of the study.
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baseline risk in the study population, while controlling for 
potential individual- and area-level confounding characteris-
tics. In this Commentary, HRs were reported per interquartile 
range (IQR), or 75th versus 25th percentile, increase in PM2.5 
exposure with 95% confidence intervals (CI). Person-years 
before the census and after year of death were excluded from 
the analysis.

Cause-specific outcomes were selected partly based on 
similar studies (e.g., Global Burden of Disease project) to 
facilitate comparison and determined using International 
Classification of Disease, 10th edition (ICD–10) codes. 
Selected outcomes were cardiovascular mortality, cerebro-
vascular mortality, heart failure, ischemic heart disease, 
diabetes (types 1 and 2), nonmalignant respiratory disease, 
chronic obstructive pulmonary disease (COPD), pneumonia, 
lung cancer, and kidney failure. Models were adjusted for 
numerous individual-level variables (e.g., income, minority 
[not white], Indigenous identity, education, marital sta-
tus, employment, and occupation) and community-level 
variables (community size, airshed, urban form, and four 
Canadian Marginalization Index dimensions). Models were 
stratified by 5-year age groups, sex, and immigrant status. 
Analyses of the CCHS cohort were further adjusted for indi-
vidual-level health behavior variables (smoking, alcohol 
consumption, fruit and vegetable consumption, body mass 
index, and exercise behavior). Given the multiple years that 
participants could enter the Stacked CanCHEC and CCHS 
cohorts, analyses of these were also stratified by census or 
survey year.

Concentration–Response Function  To examine the shape 
of the association, and to identify the lowest PM2.5 concen-
tration at which a positive association with mortality was 
observed, Brauer and colleagues applied three nonlinear 
modeling approaches—RCS, extended SCHIF, and standard 
threshold (see Sidebar). In RCS modeling (Harrell 2015), 
the investigators tested 3 to 18 knots (i.e., 16 models) and 
selected the model with the lowest Bayesian Information 
Criterion, a measure of fit. Next, the investigators applied 
a novel extension of the SCHIF model (Burnett et al. 2018; 
Nasari et  al. 2016), which they deemed more suitable for 
health impact assessments. For the RCS and extended 
SCHIF, the HR was fixed to one (e.g., no association) at the 
minimum PM2.5 concentration of 2.5 µg/m3, meaning that the 
risk of mortality associated with all higher concentrations 
was compared with the risk at the minimum concentration. 
The 95% CIs for RCS and extended SCHIF were computed 
to reflect the uncertainty in high- and low-level exposure 
estimates relative to the mean PM2.5 concentration, becom-
ing wider as PM2.5 concentrations deviated from the mean. 
Finally, the standard threshold model was applied to iden-
tify levels of exposure with no detectible health effects. They 
evaluated threshold values ranging from 2.5 to 10 μg/m3 and 
identified the most probable thresholds using a weighted 

National Air Pollution Surveillance and U.S. EPA Air Quality 
System Data Mart) to produce hybrid PM2.5 estimates for the 
years 2000 through 2016. Because few AOD data exist before 
2000, the investigators used historic ground measurements of 
PM2.5, PM10, and total suspended PM to backcast, or simulate, 
satellite-based estimates from 1981 through 1999 (Meng et al. 
2019).

Copollutant Models  To estimate the effect of PM2.5 on 
mortality in the presence of important copollutants, the 
investigators estimated ambient NO2, O3, and gaseous pol-
lutant oxidant capacity (Ox) concentrations. One hundred 
m2-resolution NO2 concentrations for 2006 were previously 
derived via land use regression modeling that incorporated 
ground monitoring, satellite (10 km2), and land use data 
(Hystad et al. 2011). Warm season (May–September) 8-hour 
daily maximum O3 concentrations were estimated using 
chemical transport modeling of monitoring data at spatial 
resolutions of 21 km2 (2002–2009) and 10 km2 (2010–2015) 
(Pappin et al. 2019; Robichaud and Ménard 2014; Robichaud 
et al. 2016). NO2 and O3 concentrations were backcasted to 
all study years using time-series analysis of ground monitor-
ing measurements obtained in 24 large cities (Weichenthal 
et  al. 2017). Ox was calculated as a weighted average of 
O3 and NO2 following a formula used by Weichenthal and 
colleagues (2017).

Exposure Assignment  For each study year (1981–2016), 
individual residential, geocoded postal codes were assigned 
to the nearest 1 km2 grid of estimated ambient concentration 
of PM2.5. NO2 and O3 exposure was assigned to postal codes 
based on the geographically nearest time-series data point. 
Brauer and colleagues accounted for changes in postal codes 
over time and for residential mobility. Exposure assignment 
to urban postal codes provided locational accuracy within 
about 150 meters, whereas greater uncertainty existed when 
assigning exposure to rural postal codes, which are accurate 
within a 1–5 kilometer range (Khan et  al. 2018). Missing 
postal codes were imputed for 2.1% of the person-years, with 
exposure assigned based on the population-weighted average 
of postal codes that had at least two characters in common 
with the postal codes of adjacent nonmissing person-years. 
To assess long-term exposure, the investigators used a 10-year 
moving average with a 1-year lag. The lag ensured that expo-
sure temporally preceded recorded deaths.

Health Assessment

Associations with Mortality  To assess PM2.5 exposure with 
the rate of nonaccidental total- and cause-specific mortal-
ity, the investigators conducted Cox proportional hazards 
regression on all five cohorts. This linear modeling method 
calculates a hazard ratio (HR), which describes the risk of 
mortality associated with PM2.5 exposure, compared with the 
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ensemble method. Under all three modeling scenarios, they 
reported the lowest PM2.5 concentration for which the HR 
95% CI lower limit was greater than or equal to one; this 
concentration was defined as the lowest concentration with 
observed adverse health effects.

Sensitivity Analyses  The investigators assessed the associa-
tion between PM2.5 and mortality and restricted the analysis to 
person-years with <10 and <12 µg/m3 of exposure to evaluate 
whether the association persisted below these concentrations. 
The cutoff value of 10 µg/m3 corresponded to the CAAQS 
and WHO Air Quality Guidelines prior to 2020 and 2021, 
respectively. The cutoff value of 12 µg/m3 corresponded to 
the current U.S. NAAQS. They also examined associations 
controlling for, and stratified by tertiles of, copollutants O3 
and Ox. Finally, they examined the association and shape of 
the concentration–response function across six geographic 
regions with distinct atmospheric conditions known as air-
sheds: Northern, Western, Prairie, West Central, East Central, 
and Southern Atlantic (Commentary Figure  2). Population 
density is highest in the East Central, and lowest in the West 
Central and Northern airsheds.

Modeling the Shape of the Concentration–Response Function

Brauer and colleagues used three nonlinear modeling 
approaches to evaluate the shape of the association between 
ambient PM2.5 exposure and nonaccidental mortality. Unlike 
a linear model where the change in risk of mortality for a 
unit increase in PM2.5 is constant across all exposure concen-
trations, nonlinear models allow the association to fluctuate. 
Allowing fluctuation is important because many biological 
responses to toxicants do not follow a linear relationship 
outside of narrow concentration ranges (Klassen 2019). The 
Sidebar Figure shows hypothetical example curves derived 
from the models described here.

•	 RCS allows for highly complex curves. Splines represent 
smoothly connected piecewise polynomials and take on dif-
ferent shapes over different intervals of PM2.5 exposure; they 
are connected by knots, or points where the curve changes 
shape. A disadvantage of RCS is that the curve can become 
so complex that it is biologically implausible or exceedingly 
difficult to interpret.

•	 The extended SCHIF incorporates RCS predictions, 
but places constraints on the shape so that it is consistent 
with known biological concentration–response curves. 
Therefore, error-prone data that produce highly complex, 
or wiggly, RCS curves would be smoothed into a near-
linear, sublinear (e.g., U-shaped), supralinear (e.g., inverted 
U-shaped), sigmoidal (e.g., S-shaped), or simpler non-
monotonic (e.g., areas of decreasing response) curve. This 
approach ensures that public health risks can be interpret-
ed and communicated.

•	 Threshold models assume that there is a level of PM2.5 ex-
posure between 0 and the threshold value where mortality 
is not affected. Above the threshold value, PM2.5 is associ-
ated with mortality and the concentration–response curve 
can take on a variety of shapes. The MAPLE study applied 
a linear model beyond the threshold. These models are 
commonly used in toxicology (and pharmacology) where a 
specific concentration of toxicant (or drug) is required to 
elicit a target effect.

Commentary Figure 2. Airsheds of Canada. The associations between 
PM2.5 and mortality were also examined by airshed because regional 
geographical features and weather conditions influence ambient air 
quality.
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about 32 additional deaths for every 100,000 people each year 
with a 4.16-µg/m3 increase in PM2.5 exposure. In reference to 
the 2016 Canadian population, this was equivalent to 7,848 
additional deaths annually. In cause-specific analyses, ambi-
ent long-term PM2.5 exposure was associated with increased 
mortality due to cardiovascular, ischemic heart, and cerebro-
vascular diseases, diabetes, pneumonia, respiratory disease, 
and COPD (Commentary Figure 3), with the largest associa-
tion for diabetes. The associations with kidney failure and 
lung cancer were consistent with the null; these two causes of 
death were less common in the population. The association 
with heart failure was also consistent with the null given the 
confidence interval.

Nonlinear Concentration–Response Function  The RCS 
models suggested that the shape of the association between 
PM2.5 and total nonaccidental mortality was nonlinear, with a 
statistically significantly better fit than the linear model. In the 
Stacked CanCHEC cohort the RCS with 9 knots was selected 
and showed that the relative risk of mortality increased rap-
idly with increasing PM2.5 concentration from the minimum 
observed concentration of 2.5 until about 5 µg/m3, plateaued 
with undulations to about 8 µg/m3, and increased again at 
higher concentrations (Commentary Figure 4). In other words, 
although the HR (e.g., a single point on the curve) is generally 
higher for any given higher concentration of PM2.5 when com-
pared with the minimum exposure, the largest increases in the 
HR (e.g., change in the curve) occurs at lower concentration 
ranges. In the RCS curve, the lowest PM2.5 concentration for 
which the 95% CI lower limit of the HR was ≥1 was 2.8 µg/m3.

The extended SCHIF model showed a similar but 
smoothed concentration–response curve compared with the 
RCS in the Stacked CanCHEC cohort, demonstrating a rapid 
increase from PM2.5 of 2.5 to 5 µg/m3, and then increasing 
approximately linearly at an intermediate rate thereafter 
(Commentary Figure 4). Results for the threshold analysis in 
the Stacked CanCHEC were not conclusive. Specifically, the 
HR was greater than one even at the lowest level exposure of 
2.5 µg/m3, but the 95% CI lower limit did not exceed one until 
a threshold of 8 µg/m3 was reached. Above 8 µg/m3, the slope 
was steeper for the threshold model compared with the RCS 
and extended SCHIF. Model fit (using the likelihood statistic) 
was equal for models with thresholds of 2.5 and 8 µg/m3, 
and all threshold models demonstrated inferior fit compared 
with the RCS model. Overall, the three nonlinear modeling 
approaches all suggested that there may be no safe level of 
PM2.5 exposure given the minimum observed exposure con-
centration in this study of 2.5 µg/m3.

Cause-specific analyses of the concentration–response 
curve in the Stacked CanCHEC cohort using RCS generally 
showed increased risk of mortality across the observed PM2.5 
concentration ranges (see Investigators’ Report Figure  16). 
However, this was not the case for heart failure, lung cancer, 
or diabetes. The concentration–response curve for heart 

SUMMARY OF FINDINGS

EXPOSURE ESTIMATION RESULTS

Between 1981 and 2015, average annual PM2.5 concentra-
tions ranged from 8 to 16 µg/m3 in Canada’s largest cities, but 
only from 2 to 6 µg/m3 in rural areas. The highest annual PM2.5 
concentration, 18 µg/m3, was observed in the cities of Toronto, 
Hamilton, Quebec, and Vancouver between 1981 and 1990. 
Over the next 25 years, PM2.5 concentrations declined. For 
example, in the Stacked CanCHEC cohort, the 10-year average 
assigned exposure was 12.2 µg/m3 in 1991, but just 6.8 µg/
m3 in 2016. Similarly, the average assigned exposure for 
CanCHEC 1991, 1996, and 2001, and CCHS were 9.0, 8.3, 7.7, 
and 6.8 µg/m3, respectively. The highest and lowest assigned 
exposure concentrations for the Stacked CanCHEC overall 
were 17.7 and 2.5 µg/m3, respectively, with similar high and 
low concentrations among all individual cohorts (see Inves-
tigators’ Report Table 4 for complete descriptive statistics).

The chemical composition of PM2.5 varied widely across 
the colocated sampling sites in the five different regional 
airsheds. The PM2.5 composition variability reflected differ-
ences in natural and anthropogenic sources of PM. O3 and 
Ox concentrations also varied by regional airshed and were 
highest in southern areas. Compared with Phase 1, Brauer 
and colleagues noted improved performance using the refined 
Phase 2 exposure models. For example, when comparing 
PM2.5 concentrations estimated from the model with those 
measured at ground monitors across the North America, a 
higher R2 (0.81 vs. 0.71) and lower root mean square deviation 
(1.5 vs. 1.9 µg/m3) were achieved in Phase 2.

HEALTH ASSESSMENT RESULTS

PM2.5 was Associated with Increased Mortality in Linear 
Models  Ambient long-term PM2.5 exposure was associated 
with increased nonaccidental mortality. The investigators 
observed similar results across all five cohorts. In the CCHS 
cohort, adjustment for individual-level health behaviors 
elicited similar, but attenuated associations. The investigators 
theorized that after adjusting for the numerous individual- 
and community-level variables, health behaviors might not 
be important confounders at the low PM2.5 exposure concen-
trations observed in this study population. Therefore, health 
assessment results presented here will focus primarily on the 
Stacked CanCHEC cohort given that it had the largest sample 
size and longest follow-up.

In the Stacked CanCHEC cohort an IQR increase (4.16 µg/m3) 
in PM2.5 exposure was associated with a 3% rise in the total 
nonaccidental mortality rate (HR per IQR: 1.034; 95% CI: 
1.030–1.039) (Commentary Figure 3). When scaled to the aver-
age annual total nonaccidental mortality rate over the entire 
25-year study period (1991–2016), this HR corresponded to 
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exposure below the previous CAAQS of 10 µg/m3, PM2.5 was 
not significantly associated with total nonaccidental mortal-
ity. The concentration–response curve using RCS showed 
a similar rapid increase in the relative risk of mortality for 
PM2.5 concentrations from 2.5 to 4 µg/m3, but no further 
increased relative risk from 4 to <10 µg/m3. The investigators 
suggested that higher PM2.5 concentrations contributed to 
the observed positive associations with mortality. They also 
noted that the interpretation of these results was challenging 
because the restrictions compromised the representativeness 
of the cohorts. Specifically, the <12 and <10 cutoffs excluded 
13% and 30% of person-years and 10% and 28% of deaths, 
respectively. Therefore, these restricted cohorts were not 
representative of the original Stacked CanCHEC and thus not 
representative of the Canadian adult population.

Copollutants Weaken the Association  Inclusion of copol-
lutants O3 or Ox in two-pollutant models with PM2.5 weakened 

failure hovered near the null, and for lung cancer showed an 
increased risk until a peak at 8 µg/m3, and then decreased. 
The concentration–response curve for diabetes demonstrated 
a decreased risk until 8 µg/m3, and then increased.

Associations Below U.S. NAAQS  When restricting the anal-
yses of the Stacked CanCHEC to person-years with exposure 
below the U.S. NAAQS for annual average PM2.5 exposure of 
12 µg/m3, similar results were observed when compared with 
the full cohort. Specifically, the linear model showed that 
PM2.5 exposure was associated with total nonaccidental mor-
tality, although the HR was slightly smaller compared with 
the full cohort. The concentration–response curve using RCS 
showed a nearly identical relative risk of mortality with the 
full cohort for PM2.5 concentrations from 2.5 to 8 µg/m3, and a 
slightly lower relative risk through <12 µg/m3 (see Investiga-
tors’ Report Table 19 and Figure 25). However, when restrict-
ing the analyses of the Stacked CanCHEC to person-years with 

Commentary Figure 3. Ambient PM2.5 exposure and nonaccidental mortality in the Stacked CanCHEC cohort. Ambient PM2.5 exposure with 
a 10-year moving average and 1-year lag was associated with higher total nonaccidental and select cause-specific mortality rates using a linear 
model and controlling for individual- and community-level sociodemographic variables. 
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to vary over space and time. In addition, stratified analyses 
found larger associations between PM2.5 and nonaccidental 
mortality in the highest O3 or Ox exposure terciles. As such, 
they recommended that future studies evaluate interactions 
between mixtures of PM2.5 chemical constituents and PM2.5 
with other copollutants.

EVALUATION BY THE HEI LOW-EXPOSURE EPIDE-
MIOLOGY STUDIES REVIEW PANEL

EVALUATION OF STUDY DESIGN AND APPROACH

The MAPLE Study examined whether long-term low-level 
air pollution exposure was associated with nonaccidental death 
among five population-based cohorts comprising 7.6 million 
Canadian adults. The investigators combined information from 
satellites, ground monitors, and models to estimate fine-scale 
PM2.5 concentrations across Canada between 1981 and 2016. 
They assigned 10-year moving average exposure with a 1-year 
lag using complete residential histories and followed people 
for up to 25 years. Long-term PM2.5 exposure was associated 
with increased risk of total nonaccidental mortality, including 
deaths caused by several cardiovascular and respiratory-related 
diseases and by diabetes. The MAPLE cohort included 20% 
of noninstitutionalized adults and was geographically repre-
sentative of the Canadian population. Overall, the collection 
and analysis of such high-quality and comprehensive data over 
more than two decades was a major accomplishment.

the associations between PM2.5 exposure and total nonacci-
dental mortality in the Stacked CanCHEC cohort (O3-adjusted 
HR per IQR: 1.016; 95% CI: 1.011–1.021; Ox-adjusted HR per 
IQR: 1.096; 95% CI: 1.091–1.101). Two-pollutant nonlinear 
models that included O3 or Ox flattened the concentration–
response curves for PM2.5 exposure and total nonaccidental 
mortality in the Stacked CanCHEC cohort.

Airsheds and Copollutants Modify the Association  Anal-
yses of different regional airsheds across Canada revealed 
considerable variation in the association and shape of the 
concentration–response curve by place. In the Stacked Can-
CHEC, PM2.5 concentration–response curves using RCS for 
the East Central, Southern Atlantic, Western, and Northern 
airsheds varied in shape but generally showed increases in 
total nonaccidental mortality across PM2.5 concentrations. 
In contrast, the Prairie and West Central airsheds showed 
minimal increased mortality for PM2.5 concentrations from 
2.5 to 5 µg/m3 and then an inverse association with mortality 
for PM2.5 concentrations from 5 to 8 µg/m3 (see Investigators’ 
Report Table  16 and Figure  21). Further sensitivity analy-
ses that adjusted for proximity to healthcare resources or 
excluded immigrants, Indigenous people, or older age groups 
suggested that the variation was not due to differences in 
population characteristics or healthcare access by regional 
airshed. Instead, Brauer and colleagues hypothesized that the 
regional variation in the PM2.5–mortality relationship could be 
due to differences in PM chemical composition and pollutant 
mixtures, including copollutants O3 and Ox, which are known 

Commentary Figure 4. Concentration–response curves for ambient PM2.5 exposure and relative risk of nonaccidental mortality in the Stacked 
CanCHEC cohort. The RCS and extended SCHIF 95% CIs are wider at low and high PM2.5 levels to reflect greater uncertainty in the hazard ratio 
at these levels of exposure relative to the mean concentration. (Adapted from Investigators’ Report Figures 20 and 29.)

1.15

1.10

Modest increase in risk

RCS

Extended
SCHIF

Threshold

0 1 2 3 4 5 6 7 8

PM2.5 (µg/m3) Exposure

9 10 11 12 13 14 15 16 17 18

Rapid increase in risk

R
el

at
iv

e 
R

is
k 

of
 N

on
ac

ci
d

en
ta

l M
or

ta
lit

y

1.05

1.00



 85

HEI’s Low-Exposure Epidemiology Studies Review Panel    

the five cohorts, allowing them to compare results across 
different time periods, length of follow-up, and with different 
covariate adjustments.

Although all methods consistently showed associations 
of increased mortality with greater PM2.5 levels, the Panel 
was unclear about how to interpret findings from some of 
the statistical methods, including the lowest PM2.5 concen-
tration at which the lower confidence limit of the HR was 
greater than or equal to one, and uncertainty estimates for 
the extended SCHIF. For the former, it is unclear how statis-
tically appropriate and robust this approach is for estimating 
a potential threshold, as discussed further below. For the 
latter, the RCS simulations used as input for the extended 
SCHIF model were not clearly frequentist or Bayesian, thus 
the statistical properties of the uncertainty estimates and 
how they relate to standard approaches is unclear. Further 
details on the rationale and limitations of these methods 
would have improved the report. Despite this, the standard 
statistical approaches that were used reached similar sub-
stantive conclusions.

DISCUSSION OF THE FINDINGS AND 
INTERPRETATION

Brauer and colleagues found that long-term low-level 
ambient PM2.5 exposures averaged over ten years, with a 
1-year lag were associated with an increased risk of total 
nonaccidental mortality, as well as for several specific 
causes. The increased risk for total, respiratory-, and car-
diovascular-related mortality is consistent with a recent 
meta-analysis (Chen and Hoek 2020), and the increased risk 
for diabetes mortality was recently reported in large U.S.-
based cohort studies (Bowe et  al. 2019; Lim et  al. 2018). 
However, the lack of an association between PM2.5 and lung 
cancer conflicts with prior research that demonstrated rela-
tively consistent positive associations (Ciabattini et al. 2021; 
Pope et al. 2002).

Shape of the Concentration–Response Function

The investigators observed a rapid increase in mortality 
risk for person-years exposed to long-term PM2.5 concen-
trations between 2.5 µg/m3 and 5 µg/m3 in both the RCS 
and extended SCHIF curves. Between PM2.5 concentrations 
of 5 and 8 µg/m3, the RCS concentration–response curve 
demonstrated only a modest increase in the mortality risk 
where the slope of the curve was shallower. Mortality risk 
increased at an intermediate rate and was approximately 
linear for the RCS and extended SCHIF models above 8 
and 5 µg/m3, respectively. The supralinear curve at low 
concentrations and near linearity at higher concentrations is 
consistent with concentration–response curves estimated in 
a recent study of over 325,000 Europeans with average PM2.5 
exposures below 25 µg/m3 (Brunekreef et al. 2021; Strafoggia 
et al. 2022; Strak et al. 2021) and in a study that combined 

This study addressed important research gaps in under-
standing the health effects of low-level ambient air pollution. 
Regulators want to know whether tightening PM2.5 standards 
below current levels might benefit public health. The U.S. 
EPA’s 2019 Integrated Science Assessment asserted that 
the scientific evidence supported a nonthreshold, linear 
association between PM2.5 and adverse health effects, with 
limited and uncertain evidence of a supralinear shape at 
lower PM2.5 concentrations (U.S. EPA 2019). Consequently, 
the U.S. EPA invited information on the shape of the con-
centration–response curve, particularly at concentrations 
below 8 µg/m3. Because Canada boasts some of the cleanest 
ambient air quality globally with a large proportion of the 
population who experience low exposures (HEI 2017), it was 
an ideal setting to address these research questions. Indeed, 
half of all person-years in the Stacked CanCHEC cohort were 
estimated to have PM2.5 exposures at concentrations less 
than 8.26 µg/m3 averaged over the entire study period, and a 
quarter were below 6.26 µg/m3. These exposures were lower 
than those seen in most prior studies (Chen and Hoek 2020), 
enabling Brauer and colleagues to evaluate the lower end of 
the concentration–response curve.

Evaluation of Air Pollution Models and  
Exposure Estimation

The investigators developed highly detailed PM2.5 expo-
sure models that incorporated information from ensemble 
satellite measurements, atmospheric modeling, government 
and supplemental ground monitor measurements, and land 
use. Phase 2 refinements to the exposure models demonstra-
bly improved the exposure estimation. Although the inves-
tigators incorporated new colocated measurements at five 
sites with lower ambient air pollution, data remained sparse 
across rural, less polluted areas. The Panel appreciated that 
the investigators acknowledged this potential measurement 
error given the MAPLE study’s emphasis on capturing low 
PM2.5 exposure concentrations. Favorably, the epidemiolog-
ical analyses were weighted more toward highly populated 
areas in cities and near the U.S. border with less exposure 
measurement error. Yet it is uncertain how exposure measure-
ment error may have affected analyses that focused on the 
lower observed exposure ranges, particularly in mostly rural 
regional airsheds with no major cities.

Evaluation of Epidemiological Analysis

A major strength of this study was the thorough epidemi-
ological analysis. The analysis of the concentration–response 
curve was impressive, using three different nonlinear mod-
eling techniques. The investigators assessed cause-specific 
mortality, adjusted for copollutants O3 and Ox, and analyzed 
findings by regional airshed. They also conducted sensitivity 
analyses that restricted the cohort to people with PM2.5 expo-
sures below the current U.S. and former Canadian standards 
of 12 and 10 µg/m3, respectively. Analyses were applied to 
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sample size and concomitant statistical power also imply 
that bias, more so than precision, should be considered 
when interpreting these results.

In analyses restricting the cohort to 10-year PM2.5 expo-
sure below the current NAAQS (12 µg/m3) and the former 
CAAQS and WHO Air Quality Guidelines (10 µg/m3), the 
investigators found that compared with the full cohort, there 
were lower associations for person-years below 12 µg/m3, and 
that there was no evidence of a positive association below 
10 µg/m3 when using linear models. However, the concen-
tration–response curves for the <10 µg/m3, <12 µg/m3, and 
full cohorts all demonstrated similar steep increases in mor-
tality for exposure concentrations <5 µg/m3. The investigators 
suggested that the observed associations at low to moderate 
concentrations in the full cohort were strongly influenced 
by the inclusion of person-years with higher PM2.5 exposure. 
The Panel disagreed with this interpretation given the use of 
flexible RCS models in which adjacent segments of the curve 
generally do not overly influence each other. The investigators 
noted that restricting the analyses to person-years with these 
lower exposure concentrations changed the cohort composi-
tion, raising potential concerns about differences in associ-
ations across populations or locations. Therefore, the actual 
health benefits of achieving lower PM2.5 exposures across the 
entire country remain uncertain, although likely beneficial. 
The linear model results in this study were inconsistent 
with a recent study that analyzed a subsample of older U.S. 
adults with 1-year PM2.5 exposures below 12 µg/m3 (Dominici 
et  al. 2022) and with a meta-analysis that evaluated results 
for groups of studies with successively lower mean exposure 
(Chen and Hoek 2020); those studies showed larger effect 
estimates among people with lower exposures. A possible 
explanation for this discrepancy is the flatter slope segment of 
the concentration–response curve in the current study, which 
spanned concentrations 5 to 8 µg/m3. If analyses restricted 
person-years to below 5 µg/m3, the steeper slope portion of 
the concentration–response curve might have resulted in a 
larger effect estimate in the linear model.

Differences in Associations Due to PM Composition 
and Pollutant Mixtures

The RCS concentration–response curves generally 
increased across PM2.5 concentrations for four of the airsheds. 
In contrast, the concentration–response curves for the Prairie 
and West Central airsheds showed only small increased 
mortality risk with subtle undulations for low PM2.5 con-
centrations, followed by decreased risk near 8 µg/m3. These 
results were mirrored in the linear models where PM2.5 was 
associated with lower risk of mortality in the Prairie and 
West Central airshed. Thus, it is possible that the Prairie 
and West Central airsheds were responsible for driving the 
low slope and undulating segment in the overall curve for 
Canada. Although the investigators adjusted for a wide range 

41 cohorts with varying levels of exposure from across the 
globe (Burnett et al. 2018).

The immediate rise in mortality risk from the minimum 
PM2.5 concentration of 2.5 µg/m3 suggests that there is no 
threshold for adverse health effects given the observed data. 
This is consistent with the investigators’ threshold model 
analysis in which a conclusive threshold value could not be 
determined. The investigators approximated a threshold value 
by reporting the PM2.5 concentration (2.8 µg/m3) at which the 
95% CI lower limit exceeded one in the RCS curve. However, 
the Panel was unclear on how to interpret this metric. The 
approach as implemented does not account for the uncertainty 
in the HR at the minimum exposure concentration. Therefore, 
it does not estimate the uncertainty for the difference in the 
mortality risk at a given exposure concentration compared 
with the minimum exposure concentration, thereby prevent-
ing a robust statistical assessment with regard to the presence 
of a threshold. The absence of evidence for a threshold is 
consistent with most prior studies that evaluated thresholds 
(Chen and Hoek 2020). This reinforces that we currently have 
no evidence of a PM2.5 concentration below which there is 
no association with health effects. Further, the investigators’ 
health impact analysis projected that PM2.5 reductions within 
the 2.5 to 5 µg/m3 range would benefit the largest proportion 
of the sample population. Overall, evidence from this study 
supports the 2021 WHO Air Quality Guidelines of 5 µg/m3 
and suggests that achieving ambient PM2.5 concentrations 
below 5 µg/m3 where the curve demonstrates supralinearity 
could prevent premature mortality.

The segment of the RCS concentration–response curve 
in the middle PM2.5 concentration range between 5 and 
8 µg/m3 demonstrated a shallower slope relative to segments 
of the curve in lower and higher concentration ranges. The 
RCS curve also demonstrated up-and-down undulations in 
this middle concentration range. These results imply that 
incremental reductions within this middle range may not 
yield substantial health benefits. However, this segment 
of the RCS curve must be interpreted cautiously due to its 
inconsistency with prior evidence and lack of biological 
plausibility. The investigators concluded that the undula-
tions in the RCS curves were partly due to the large sample 
size which statistically favored many knots, resulting in an 
RCS curve that is likely under-smoothed relative to the true 
unknown curve. Due to different results for the individual 
cohorts, which can serve as a proxy for different results over 
time, the investigators also suggested that undulations in the 
curve may be due to lower data quality prior to 2001. The 
Panel noted that it is possible that the undulating portion of 
the RCS curve is a true reflection of the data and potentially 
due to complex features such as exposure measurement 
error and aggregation of heterogeneous responses to air 
pollution across different populations and spatial regions. 
When evaluating potential sources of error, the study’s large 
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the Canadian population as a whole. Although the response 
and data linkage rates were high for both the CanCHEC and 
CCHS cohorts, successive steps in assembling cohort data 
incrementally reduced inclusivity and generalizability. 
Census quality reports indicate that 4% of the Canadian 
population are not enumerated in CanCHEC and tend to 
be younger, mobile, low income, homeless, or Indigenous 
peoples (Tjepkema et  al. 2019). After imputation, 90% of 
person-years were linked to a valid postal code. Because 
this linkage is based on tax records, unlinked person-years 
are presumably associated with lower income. Explicit 
exclusion criteria was more likely to remove immigrants 
and older individuals, and implicit exclusion criteria by 
way of missing data were more likely to remove minorities, 
Indigenous peoples, and individuals who were unemployed 
or lived in rural and Northern communities. Because socio-
economically disadvantaged subsets of the population might 
be more susceptible to both exposure and the adverse health 
effects of poor ambient air quality (Deguen and Zmirou-
Navier 2010; Hajat et  al. 2015), it is important to keep in 
mind that results from this study might portray a more 
optimistic scenario than the reality.

CONCLUSIONS

The MAPLE study aimed to characterize the association 
between nonaccidental mortality and long-term exposure to 
ambient PM2.5 concentrations lower than most of the world. 
Brauer and colleagues developed fine-scale satellite-, moni-
tor-, and model-based PM2.5 exposure estimates across North 
America from 1981 to 2016. They applied comprehensive 
epidemiological analyses in a large representative sample of 
Canadian adults to identify the shape of the concentration–
response curve and the lowest PM2.5 concentration at which 
associations with health effects could be detected.

The study demonstrated that 10-year PM2.5 exposures were 
associated with increased total and cause-specific mortality. 
Given the minimum observed exposure of 2.5 µg/m3, the 
findings support a nonthreshold, supralinear concentration–
response curve.

The Panel commended the investigators’ impressive 
accomplishments and agree that the results show a positive 
association with mortality even at PM2.5 concentrations below 
the current U.S. ambient air quality standard of 12 μg/m3. 
Yet they noted that uncertainty remains in how to interpret 
some of the results, including the low-slope segment of the 
RCS concentration–response curve for middle concentration 
ranges and differences by regional airshed. The influence 
of individual PM chemical components, copollutants, and 
residual confounding on the results remains uncertain. 
Further interpretation of findings and further description 
for some of the nonstandard statistical methods would have 
enhanced the report. Future work is warranted to build on 

of individual level and spatial covariates and performed 
sensitivity analyses to control for disparate demographic 
makeup and healthcare access, residual confounding could 
be responsible for the regional variation. Regional heteroge-
neity across North America, but not in Europe, has previously 
been reported in a meta-analysis of long-term PM2.5 exposure 
and mortality (Chen and Hoek 2020). Consequently, aggre-
gating data across certain geographic regions might have 
limitations unless the underlying cause of the heterogeneity 
can be determined. In the end, the investigators hypothesized 
that regional variation may partly be attributed to regional 
differences in PM2.5 composition. This notion is supported by 
the varied chemical composition of the colocated sampling 
measurements in five of the airsheds. It is also supported 
by prior research indicating that individual PM2.5 chemical 
components vary by geography and in elicited adverse health 
effects (Dai et  al. 2014; Davis et  al. 2011; Lippmann et  al. 
2013). In this study the colocated measurements only served 
as a supplemental input to the exposure modeling and were 
not used in the health analysis directly. Note also that the 
regional variation is unlikely to be solely due to differences 
in the concentrations of copollutants O3 and Ox as the Prairie 
and West Central airsheds had distributions of these pollut-
ants similar to the other airsheds.

Although the effects of PM2.5 chemical composition in 
the MAPLE study were speculative, the results showed that 
adjusting for copollutants O3 and Ox attenuated the associ-
ation between PM2.5 and mortality, and inclusion of these 
copollutants in the nonlinear models flattened the RCS con-
centration–response curves. This result is consistent with 
the findings from numerous previous studies (Dominici et al. 
2022; U.S. EPA 2019). In stratified analyses, the largest effect 
sizes were observed for PM2.5 and mortality in the highest O3 
and Ox tertiles, suggesting that these gases play an import-
ant role in determining the adverse health effects of PM2.5. 
Recent studies in Europe and the United States indicated 
that NO2 was also an important copollutant (Brunekreef et al. 
2021; Dominici et al. 2022). Brauer and colleagues assessed 
NO2 exposure but did not evaluate it in the MAPLE study 
Phase 2, given the Phase 1 results demonstrating minimal 
effect of adjusting for NO2 on the association between PM2.5 
and mortality. Note that these multipollutant results must 
be interpreted in light of the fact that O3, Ox, and NO2 were 
estimated at coarser spatial resolutions than PM2.5. Given the 
sensitivity of the association between PM2.5 and mortality to 
copollutants O3 and Ox, it will be important to investigate 
this issue in future studies.

Generalizability of the Findings

The size of the study populations was unprecedented 
and allowed detailed investigations for the questions at 
hand. The Panel noted that despite the large size of the 
MAPLE cohort, the results might not be generalizable to 
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ABBREVIATIONS AND OTHER TERMS

	 mCCHS	 CCHS mortality cohort

	 MSE	 mass scattering efficiency

	 NAAQS	 National Ambient Air Quality Standards

	 NAPS	 National Air Pollution Surveillance

	 NO2	 nitrogen dioxide

	 O3	 ozone

	 Ox	 gaseous pollutant oxidant capacity

	 PAF	 population attributable fraction

	 PCCF+	 Postal Code Conversion File Plus

	 PM	 particulate matter

	 PM2.5	 particulate matter ≤2.5 μm in 
aerodynamic diameter

	 R2	 coefficient of determination 

	 RCS	 restricted cubic splines

	 RFA	 request for applications

	 RMSD	 room mean square difference

	 SCHIF	 shape constrained health impact 
function

	 SD	 standard deviation

	 SE	 standard error

	 SIA	 secondary inorganic aerosol

	 SO2	 sulfur dioxide

	 SPARTAN	 Surface PARTiculate mAtter Network

	 TSP	 total suspended particulate matter

	 U.S. EPA	 U.S. Environmental Protection Agency

	 WHO	 World Health Organization

	 AERONET	 Aerosol Robotic Network

	 AIC	 Akaike information criterion

	 AOD	 aerosol optical depth

	 BIC	 Bayesian information criterion

	 BMI	 body mass index

	 CA	 census agglomeration

	 CAAQS	 Canadian Ambient Air Quality 
Standards

	 CAN-Marg	 Canadian Marginalization Index

	 CanCHEC	 Canadian Census Health and 
Environment Cohort

	 CCHS	 Canadian Community Health Survey

	 CCME	 Canadian Council of Ministers of the 
Environment

	 CI	 confidence interval

	 CMA	 census metropolitan area

	 COPD	 chronic obstructive pulmonary disease

	 ESCAPE	 European Study of Cohorts for Air 
Pollution Effects 

	 eSCHIF	 extended shape constrained health 
impact function

	 GBD	 global burden of disease

	 GEMM	 Global Exposure Mortality Model 

	GEOS-Chem	 GEOS-Chem chemical transport model

	 HR	 hazard ratio

	 ICD	 International Classification of Disease

	 IQR	 interquartile range

	 MAPLE	 Mortality–Air Pollution Associations in 
Low Exposure Environments
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