TABLE 1.
Pharmacological activities of Daphnetin.
| Pharmacological action | In-vivo/In -vitro study | Cell line/Animal | Method | Dose | Molecular mechanism | Effects/Targets | References |
|---|---|---|---|---|---|---|---|
| Anti-stress | In-vivo/in-vitro | Kunming mice Cortical neurons from SD rat brains | Unpredictable stressor | 2 and 8 mg/kg | ↓GRs | ↓ in spatial learning and memory improves the cognitive deficits caused by chronic stress | Liao et al. (2013) |
| Neuroprotective | In-vivo | E18 C57BI/6 mice | NMDA induced excitotoxicity | 20 and 40 mg/kg | × NR2B-containing NMDA receptors | × apoptosis × calcium overload | Yang et al. (2014) |
| Hepatoprotective | In-vivo In-vitro | male C57BL/6 mice | Oxidative stress induced hepatotoxicity | 20, 40 and 80 mg/kg | ↑ Keap1-Nrf2/ARE-Trx-1↓ASK1/JNK, P53 protein | ↓ t-BHP in HepG2 cells ↑ Nrf2/Trx-1 ↑GSH, ↓ ROS | Lv et al. (2020) |
| Helicobacter Pylori infection | In-vitro | 20 H. pyloristrains isloted from gastric antrum | 6.25 or 12.5 μg/ML | ↑ DNA damage, ↑recA ×membrane changes | ↓ bab A, urel transcription and H. pylori adhesion to GES-1 cell line | Wang et al. (2019) | |
| Lung protection | In-vitro/In-vivo | Mice | Endotoxin induced Lung injury | 5, 10 mg/kg | × activation of macrophage and human alveolar epithelial cells, induced TNFAIP3 ↓pro-inflammatory cytokines | NF-Kb related signal pathway, anti-inflammatory potential | Yu et al. (2014b) |
| In-vivo | C57BL/6 mice | L-arginine | 2-4 mg/kg i.p | ↓IL-6, TNF-α, MPO ↓JAK-2, STAT-3 | ↓infiltration and cytokine secretion in inflammatory cells | Yang et al. (2021c) | |
| Rheumatoid arthritis | In-vivo | Rats | Freund’s complete adjuvant induced arthritis | 2.25 and 4.5 mg/kg | ↓IL-1, TNF-α and MIF | ↓paw swelling and arthritic scores × inflammatory cells infiltration and articular cartilage degeneration | (Gao et al., 2008; Yao et al., 2011; Tu et al., 2012) |
| In-vivo | Female Wistar rats | Collagen induced arthritis | 1 and 4 mg/kg | ↑ Foxp3 | ↓Th1/Th2/Th17 | Yao et al. (2011) | |
| ↓ activity of Th17 ↓ RORγt, NF-KB, CD77 ↓IL-10 ↑ Tregs | ↓ paw swelling ×hyperplasia of synovial, destruction and degeneration of chondrocytes Modulate balance of Th17 and Tregs | ||||||
| Osteoporosis | In-vivo In-vitro | Sprague Dawley rats MC3T3-E1 pre osteoblasts | Dexamethasone induced | 1 and 4 mg/kg | activate Wnt/GSK-3β/ß catenin signaling pathway | ↓ body weight gain, bone mineral content and microstructure parameters | Wang et al. (2020b) |
| ↑ osteoblast proliferation, differentiation and mineralization | |||||||
| Hepatoprotective | In-vivo | Mice | Lipopolysaccharide/D-galactosamine induced liver failure | 20, 40, 80 mg/kg | × Inos × COX-2 ↑ autophagy ↑ pro-autophagy protein expression | ↓ ALT, AST ↓pro-inflammatory cytokines ↓MDA ↓myeloperoxidase ↑GSH, SOD level × MAPK, NF-kβ, NLRP3 | Lv et al. (2018) |
| Liver cancer | In-vivo | Huh7 and SK-HEP-1 | 0, 5, 10, 50 and 100 µM | ↑ G1 phase arrest | ×cell viability | Liu et al. (2022) | |
| ×tumorigenesis | |||||||
| ↑cell apoptosis | |||||||
| ×Wnt/ß catenin signaling | |||||||
| Nephroprotective | In-vivo | C57BL/6 mice | Cisplatin induced nephrotoxicity | 2.5,5,10 mg/kg | ↓ TNF- α, IL-1β, ROS, MDA | ×NF-kB signaling pathway activate Nrf2 pathway | Zhang et al. (2018) |
| ↓ BUN, creatinine | |||||||
| ↓ renal injury | |||||||
| ↓inflammation, oxidative stress, apoptosis | |||||||
| In-vivo | WT and Nrf2 mice | Cisplatin induced nephrotoxicity | 20-40 mg/kg | ↑SOD, GSH, SIRT1, SIRT6, HO-1, Nrf2, NQO1 ↓MDA, MPO | ↓ BUN, creatinine ↓ renal injury ↓inflammation, oxidative stress, apoptosis | Fan et al. (2020) | |
| Diabetic nephropathy | In-vivo | mesangial cells | High Glucose induced | 0, 10, 20, 40 μM | ↑ Nrf2 ×p-Akt ×p-p65 | ↓ ROS, MDA ↓TNF- α, IL-1β ↓IL-6, ↓fibronectin ↓collagen IV ↑ SOD activity ↓ cell proliferation | Xu et al. (2019) |
| Cerebral Ischemia/Reperfusion injury | In -vivo | C57BL/6mice | Middle cerebral artery occlusion | 5, 10, 20 mg/kg | ↓TNF- α, IL-1β, IL-6, TLR4 | ×TLR4/NF-kβ ↓IkBα degradation ↓neural cell apoptosis | Liu et al. (2016a) |
| In-vitro | Hippocampal neuron | Reoxygenation induced lung injury | 10, 20 and 40 µm | ↑ Nrf2 ↑ HO1 | × oxidative stress and neuronal apoptosis | Zhi et al. (2019) | |
| Ischemic brain injury | In-vitro | HT22 cells | glutamate induced toxicity in hippocampal HT22 cell | 5, 10, 25, 50, 75, and 100 μM/L | ×NF-kB pathway | ↑SOD, GSH ×TLR4/NF-kB pathway | Du et al. (2014) |
| Microglial activation | In-vivo | Murine microglia | Intracellular signal transduction | 0–160 µm | ×iNOS ×COX-2 | ↓ TNF-α, IL-1β, IL-6 NO, ×microglial activation ↓Th17 development ×NF-kB × MAPK × IKK /IkB PI-3K/Akt | Yu et al. (2014a) |
| Psoriasis | In-vitroIn-vitro | HaCaT human keratinocytes in Mice | imiquimod induced psoriasis like skin lesion | 50-100 mg/ cm | ↓ IL-1β, IL-6, IL-8, IL-17A, TNF- α, IL23A, MCP-1 | pathway ×p65 phosphorylation ×nuclear translocation ↓erythema ↓scaling, epidermal hyperplasia, inflammatory cells infiltration | Gao et al. (2020) |
| Cell proliferation and Estrogenicity | In-vivo In-vitro | MCF-7 cells Female mice | 17.5, 35, 70, 140 mg/kg | ↓ Cyclin D1 ↑ p27 | ↑GO phase ↓G1 phase ↑S phase ↑G2 phase ↑M phase ↓cyclin/CDK2 ↓cyclin D1/CDK4 ×cyclin D1 | Jiménez-Orozco et al. (2011) | |
| Leukemia | In-vivo | Albino Wistar rats | Benzene induced | 12.5, 25, 50 mg/kg | ↑sphingosine1-phosphate receptor-1 ↓SGOT ↓Cytochrome P450 ↓CYP2E1 | ↓ NF-kB ↑Hematological parameter ↑nucleated bone marrow cells ↑megakaryocyte , SOD, GSH ↓MDA, ↓8- OhdG ↑albumin, total protein ↓BUN, bilirubin ↓prothrombin time | Pei et al. (2021) |
| Ovarian cancer | In-vitro | A2780 | 5, 10, 20, 40 μg/ml | ↓ p-Akt ↓ p-mTOR ↑p-AMPK, LC3 II, p62 | ↑ROS production ×cell proliferation ↑apoptosis, autophagy, Blood count, Hemoglobin↓ proinflammatory cytokines | Fan et al. (2021a) | |
| Human renal cell carcinoma | In-vitro | A-498 cells | 10 and 50 µm | ↑p38 MAP kinase ↑cytokeratin 8 and 18 | MAPK Signaling pathway ×ERK1/ERK2 pathway ×S phase transition ×DNA synthesis | Finn et al. (2004) | |
| Corneal inflammation and neovascularization | In-vivo | Male ICR mice | Alkali burn | (10-20 μmol/L) DAP eyedrops, q.i.d | ↓HUVECs ↑STAT3, ERK, AKT | ×corneal inflammation (↑VEGF-A) and neovascularization (↑TLR4/NLRP3) | Yang et al. (2022) |
| In various tumors | In-vivo | Female in bred BDF1 C57Bl/6 | S180 sarcoma, MXT breast adenocarcino ma, C26 colon carcinoma | 10,20 and 40 mg/kg | ↑p38 MAP kinase ↑cytokeratin 8 and 18 ↑pro-apoptotic caspase-3 | ×mitogenic pathway ↓Cyclin D1 ×S phase ×Akt/ NF-kβ pathway ×proliferation | Jiménez-Orozco et al. (2020) |
| In-vivo | Murine | Osteosarcoma LM8 cells | 30-60 µm | ↓ RhoA ↓Cdc42 | ↓intracellular stress fibers and filopodia | Fukuda et al. (2016) | |
| Mitochondrial dysfunction and cell death | In-vitro | C57Bl/6 mice | Tert-butyl hydroperoxide | 2.5,5,10 µg/ml | ↑HO-1, SOD ↑NADPH, NQO1, GCLM ↑GCLC, BCl2 ↓ Bax, Caspase 3 | ×ROS production ×cytochrome c release, NLRP3 activation ↑Nrf2 pathway activate JNK and ERK | Lv et al. (2017) |
| CFA induced inflammatory pain | In-vivo | Murine | CFA | 4 and 8 mg/kg | ↓ spinal pro-inflammatory cytokines | ×spinal glial activation × NF-kβ pathway ↑Nrf2 pathway/HO-1 signaling pathway | Yang et al. (2021a) |
| Inflammatory bowel disease | In-vivo | Mice | Fecal transplantation | 16, 8, 4 mg/kg | ↑ T reg cells development ↓ Th 17 cell differentiation | Ji et al. (2019) | |
| Lipid metabolism | In-vitro | HepG2 cells | 5, 20 and 50 µm | ↑ PNPLA3 | ↓TG | Liu et al. (2019) | |
| Insulin resistance | In-vitro | HepG2 cells | 20 and 50 µm | ↑ pAKT/AKT P13K | ↑ glucose uptake | Liu et al. (2019) | |
| Oxidative stress | In-vitro | HepG2 cells | 5, 20, and 50 µm | ↓ CYP2E1 and CYP4A ↑ Nrf2 | ↓ oxidative stress | Liu et al. (2019) | |
| Angiogenesis | In-vivo | Rat | TNF and VEGF induced | 9.375–900 µM | ↓ c-Src, FAK, ERK1/2, Akt, VEGFR2, iNOS, MMP2 | × angiogenesis ×migration ×invasion ×tube formation × NF-kβ pathway ×TNF-α induced IkBα degradation ×translocation of the NF- kβp65 protein ↑apoptosis | Kumar et al. (2016b) |
Abbreviations: Inhibits; ↑: Upregulates, Increase; ↓: Downregulates, Decrease; CUS, chronic unpredictable stress; GRs: Glucocorticoid receptors; ALF, acute liver failure; APAP, acetaminophen; ASK1, Apoptosis signaling-regulating kinase 1; AREs, Antioxidant response elements; HO-1, Heme oxygenase-1; JNK, c-Jun N-terminal kinase; NF-κB, Nuclear factor-kappaB; Nrf2, Nuclear factor erythroid 2-related factor; 2NLRP3, Nucleotide-binding domain-like receptor protein 3 ROS, reactive oxygen species; Trx-1, Thioredoxin-1; Txnip, Thioredoxin-interacting protein; PALI, pancreatic acute lung injury; JAK-2, Janus kinase-2; STAT-3, Signal transducer and activator of transcription 3; VEGFR2, Vascular endothelial growth factor 2; iNOS, inducible nitric oxide synthase.