Table 1.
Province/Country | Years of samples | Source (Reference or NCBI database) | Sample sources | Tet(X) types | Localization of gene | Plasmid types | Sequence types | Tet(X)-positive isolates | ESBLs/mcr genes | Bacterial strains |
---|---|---|---|---|---|---|---|---|---|---|
Sichuan | 2018–2020 | (Bai et al., 2019; Sun C. et al., 2019, 2020; Li et al., 2021a; Tang et al., 2021; Feng et al., 2022) | Food animals | tet(X4) | Plasmid | IncQ1-IncY IncX1 |
ST48, ST4541, ST9772, ST972, ST410, ST10, ST195, ST3696, ST25, ST196 | 27 |
cfr
mcr-1 bla TEM-1B |
E. coli
Citrobacter freundii |
(Li, 2020a; Lv H. et al., 2020; Sun et al., 2021b) | Retail meat | tet(X4) | Plasmid | IncFIA-IncHI1A-IncHI1B IncX1 | ST4656, ST1788, ST871, ST48, ST1638, ST542, ST877, ST641, ST10, ST3858, ST195, ST515 | 31 |
blaNDM-5
blaSHV-12 blaCTX-M-55 blaCTX-M-14 |
E. coli | ||
Guangdong | 2016–2019 | (He et al., 2019; Sun C. et al., 2019,Sun J. et al., 2019; Chen et al., 2020; Cheng et al., 2020; Cui et al., 2020; Sun et al., 2020; Zheng et al., 2020; Chen et al., 2021; Li et al., 2021a; Yu et al., 2021; Wu et al., 2022) | Food animals |
tet(X/X2) tet(X3) tet(X4) tet(X5) tet(X6) tet(X14) |
Plasmid Chromosome |
IncFIA-IncHI1A-IncHI1B | ST4535, ST10, ST23, ST215, ST206, ST789, ST1196, ST2144, ST195, ST101, ST109, ST789, ST2064, ST980, ST355, ST542, ST8302 | 236 |
blaTEM-1B
blaNDM-1 blaOXA-58 |
E. coli
Acinetobacter Citrobacter freundii Enterococcus faecalis Enterobacter cloacae |
(Chen et al., 2019a; Cui et al., 2020; Sun et al., 2020; Wang Y. et al., 2020; Zheng et al., 2020; Chen et al., 2021; Yu et al., 2021; Gao et al., 2022) | Farm environment |
tet(X) tet(X3) tet(X4) tet(X6) |
Plasmid Chromosome |
IncFIA-IncHI1A–IncHI1B | ST645, ST10, ST37 | 28 |
bla
SHV-81 bla SHV-110 |
Acinetobacter
E. coli K. pneumoniae Aeromonas cavive |
||
(Chen et al., 2019b) | Wild migratory birds | tet(X4) | Plasmid Chromosome |
F-:A18:B- IncHI1 |
ST1196, ST6833, ST641 | 3 | – | E. coli | ||
(Chen et al., 2020; Wang Y. et al., 2020; Cui et al., 2022) | Human |
tet(X3) tet(X4) |
Plasmid | IncX1, IncFIA, IncHIA, IncHIB | ST10, ST48, ST877, ST2144, ST101, ST515, ST542, ST871, ST4456, ST38, ST137, ST201, ST7176, ST10548, ST6984, ST46, ST1249, ST195, ST155, ST58, ST4014, ST7686, ST1114, ST7450, ST1684 | 51 |
mcr-5.2 blaNDM blaOXA blaTEM blaSHV blaCTX-M |
E. coli
Acinetobacter |
||
Jiangsu | 2015–2020 | (He et al., 2019; Sun J. et al., 2019; Chen et al., 2020; Peng et al., 2020; Li et al., 2020b; He T. et al., 2020; Li et al., 2020c; Yu et al., 2021; Cheng et al., 2021a; Li et al., 2021b) | Food animals |
tet(X3) tet(X4) tet(X6) tet(X15) |
Plasmid Chromosome |
IncHI1, IncFIB(K), IncX1, IncA/C2 | ST3997, ST284, ST93, ST1286, ST155, ST327, ST1459, ST48, ST3944, ST10170, ST8302 | 137 |
blaCTX-M cfr blaNDM-1 blaTEM − 1B |
E. coli
Acinetobacter Proteus Citrobacter freundii Providencia |
(Li et al., 2020b; Yu et al., 2021) | Farm environment | tet(X4) | Plasmid | – | – | 21 | – | E. coli | ||
(Li et al., 2019) | Aquatic animal | tet(X2/3.2) | Plasmid | – | – | 1 | – | Brevibacterium brevis | ||
Shanghai | 2015–2019 | (Chen et al., 2020; Sun et al., 2020; Wang J. et al., 2020; Li et al., 2021a; Wang J. et al., 2021) | Food animals |
tet(X) tet(X3) tet(X) |
Plasmid | IncFIA18-IncFIB(K)-IncX1 IncX1, IncQ |
ST761, ST165, ST195, ST295, ST2144 | 41 | bla OXA-58 |
E. coli
Acinetobacter K. pneumoniae |
(Wang J. et al., 2021) | Farm environment | tet(X) | Chromosome | – | – | 1 | – | Proteus | ||
Henan | 2013–2019 | (Sun C. et al., 2019, 2020; Li et al., 2020d; Li et al., 2021a) | Food animals |
tet(X4) tet(X6) |
Plasmid Chromosome |
IncX1 IncFIA-IncFIB(K)-IncX1 |
ST10, ST48, ST641, ST2345 | 11 | mcr-1 | E. coli |
(He D. et al., 2020) | Retail meat | tet(X6) | – | – | – | 1 | – | Proteus | ||
Hebei | 2019 | (Li et al., 2021a) | Food animals | tet(X4) | Plasmid | IncX1, IncQ, IncFIA-IncHI1A-IncHI1B | ST48, ST10, ST4156, ST195, ST6833, ST515, ST2064, ST58 | 16 | – |
E. coli
K. pneumoniae |
2017 | (Wang L. et al., 2019) | Human | tet(X5) | Plasmid | – | – | 1 | – | Acinetobacter | |
Shandong | 2017–2019 | (Bai et al., 2019; He et al., 2019; Cui et al., 2020; Du et al., 2020; Liu et al., 2020; Li et al., 2021a; Yu et al., 2021) | Food animals |
tet(X/X2) tet(X3) tet(X4) tet(X6) |
Plasmid Chromosome |
IncFII, IncFIA-IncHI1B-IncHI1A | ST761, ST746, ST101, ST10, ST847 | 83 |
bla
TEM − 1B
bla CTX-M-55 |
Acinetobacter Myroides sp. E. coli K. pneumoniae Proteus |
Zhejiang | 2015–2019 | (Chen et al., 2020; Zhang et al., 2020b; Li et al., 2021a; Cheng et al., 2021b; Zheng et al., 2022) | Food animals |
tet(X2) tet(X3) tet(X4) tet(X6) tet(X5.2) tet(X14) |
Plasmid Chromosome |
IncFIA-IncHI1B-IncHI1A IncFIA-IncHI1B-IncX1 | ST10, ST773, ST1196, ST6883, ST641, ST515, ST767 | 100 |
bla
OXA-58
bla NDM-1 |
Acinetobacter
Enterococcus faecalis Proteus E. coli |
(Cheng et al., 2021b) | Farm environment | tet(X2) | – | – | – | 3 | – | Myroides sp. | ||
(He et al., 2019; Ruan et al., 2020; Zeng et al., 2021) | Human | tet(X4) | Plasmid | IncX1 | ST773 | 33 | mcr-1 bla CTX-M-14 | E. coli | ||
Jiangxi | 2015–2018 | (Sun J. et al., 2019; Chen et al., 2020) | Food animals |
tet(X4) tet(X3) |
Plasmid Chromosome |
IncQ1 | ST761, ST515, ST871, ST8302 | 37 | mcr-1, blaCTX-M-14 |
E. coli
Acinetobacter |
Hainan | 2017–2018 | (Chen et al., 2020; Cui et al., 2020) | Food animals |
tet(X) tet(X3) |
Plasmid | – | – | 43 | bla NDM-1 | Acinetobacter |
Farm environment | tet(X) | Plasmid | – | – | 5 | bla OXA-58 | Acinetobacter | |||
Guangxi | 2017–2020 | (Sun J. et al., 2019; Cui et al., 2020; Feng et al., 2022) | Food animals |
tet(X) tet(X4) |
Plasmid | – | ST1196, ST10, ST1415, ST34, ST109, ST48, ST195, ST799, ST2223, ST1244, ST3888, ST6404, ST641, ST677, ST452, ST1250 | 97 | – |
Acinetobacter
E. coli |
Fujian | 2018 | (Sun J.et al., 2019; Chen et al., 2020; Cui et al., 2020) | Food animals |
tet(X) tet(X4) |
Plasmid | – | ST8302, ST761, ST515, ST8338 | 26 | – | Acinetobacter |
Qinghai | 2015–2018 | (Chen et al., 2020) | Wild migratory birds | tet(X4) | – | – | – | 5 | – | Acinetobacter |
Xinjiang | 2017–2018 | (Cui et al., 2020) | Food animals | tet(X) | – | – | – | 8 | bla NDM-1 | Acinetobacter |
Farm environment | tet(X) | – | – | – | 3 | – | Acinetobacter | |||
Liaoning | 2018 | (Cui et al., 2020) | Food animals | tet(X) | – | – | – | 2 | – | Acinetobacter |
Farm environment | tet(X) | – | – | – | 3 | – | Acinetobacter | |||
Taiwan | 2019–2020 | (Hsieh et al., 2021; Wang et al., 2021a) | Human Environment |
tet(X) tet(X10) |
Chromosome | – | ST793, ST723 | 7 1 |
bla OXA-72 |
Acinetobacter
Amniculibacterium aquaticum |
Shanxi | 2018–2020 | (Li et al., 2021a; Feng et al., 2022) | Food animals | tet(X4) | Plasmid | IncFIA-IncHI1B-IncHI1A IncX1 | ST641, ST58, ST515, ST2064, ST6833, ST10, ST48, ST4156 | 11 | – | E. coli |
Gansu | 2019 | (Li et al., 2021a) | Food animals | tet(X4) | Plasmid | IncFII | ST540 | 1 | – | E. coli |
Anhui | 2019 | (Li et al., 2021a) | Food animals | tet(X4) | Plasmid | IncFIA-IncHI1B-IncHI1A IncFIA-IncFIB-IncX1 IncX1, IncFII | ST877, ST2035, ST218 | 8 | – | E. coli |
Beijing | 2018 | (Zhai et al., 2022) | Human | tet(X4) | Plasmid | IncFIIK | ST534 | 1 | – | K. pneumoniae |
(Sun et al., 2020) | Food animals | tet(X4) | Plasmid | IncFIA-IncHI1B-IncHI1A | ST744 | 1 | – | E. coli | ||
Shaanxi Ningxia |
2018–2020 | (Sun et al., 2020; Feng et al., 2022) | Food animals | tet(X4) | Plasmid | IncX1, IncN, IncR, IncY, IncFIA, IncFIB | ST877, ST2035, ST10392, ST10, ST7366, ST890, ST3580, ST442, ST278, ST4429, ST1602, ST746, ST48, ST189, ST8504, ST1437, ST7604 | 7,346 | – | E. coli |
Guizhou | 2018 | (Sun et al., 2020) | Food animals | tet(X4) | Plasmid | – | ST48, ST202, ST542, ST206, ST890 | 1 | – | E. coli |
Hunan | 2015–2018 | (Chen et al., 2020) | Food animals | tet(X3) | Plasmid | – | – | 14 | – | Acinetobacter |
Vietnam | 2021 | (Dao et al., 2022) | River | tet(X4) | Chromosome | – | – | 1 | bla OXA-48 | Shewanella Xiamen |
Sierra Leone | 2010–2011 | (Leski et al., 2013) | Human | tet(X) | – | – | – | 11 | – |
Enterobacter cloacae E. coli
K. pneumoniae Pseudomonas Delftia acidovorans Comamonas testosteroni |
Singapore | 2018 | (Ding et al., 2020) | Human | tet(X4) | Plasmid | IncI1 | ST73 | 2 | mcr-1 | E. coli |
Japan | 2012 | (Usui et al., 2021) | Food animals | tet(X6) | Plasmid | IncW | – | 1 | – | E. coli |
Chile | 2010–2021 | (Concha et al., 2021; Wang et al., 2021a) | Aquatic animals |
tet(X) tet(X10) |
– | – | – | 3 | – |
Epilithonimonas Chryseobacterium sp. |
Pakistan | 2018–2019 | (Mohsin et al., 2021; Li et al., 2022) | Food animals Farm environment Human |
tet(X4) tet(X7) |
Plasmid | IncFII, IncQ | ST6726, ST694, ST4388、ST224 | 41 1 |
mcr-1 |
E. coli
Pseudomonas aeruginosa |
United Kingdom | 1966–2020 | (Martelli et al., 2022) | Food animals Human Rainbow trout |
tet(X4) tet(X12) tet(X4) tet(X7) tet(X6) |
Plasmid – – – |
IncX1-IncY – – – |
ST1140 – – – |
1 1 5 2 2 |
– |
E. coli Riemerella anatipestifer Salmonella Shigella soneii Enterobacter hormaechei Salmonella Typhimurium Chryseobacterium sp. |
Norway | – | (Marathe et al., 2021) | Wastewater treatment plants | tet(X4) | Plasmid | IncFIA/FIB | ST167 | 1 | bla CTX-M-14 | E. coli |
Belgium | 2007–2017 |
LDIS01000001.1 SELG01000025.1 |
Food animals Musca domestica |
tet(X10) | – – |
– – |
– – |
1 1 |
– – |
Arcobacter thereius
Apibacter muscae |
South Africa | 2013 | MKSZ01000121.1 | Thiocyanate stock biobioreactor | tet(X10) | – | – | – | 1 | – | Bacteroidales bacterium |
United States of America | 2010–2018 | (Wang et al., 2021a) | Human Environment |
tet(X10) tet(X7) tet(X10) |
– – – |
– – – |
– – – |
47 1 2 |
– – – |
Bacteroides sp. E. coli Chryseobacterium sp. Bacteroides sp. |
Australia | 2018 | VSOP01000024.1 | Mus musculus | tet(X10) | – | – | – | 1 | – | Alistipes sp. |
Ireland | 2017 |
VLSQ01000048.1 VLSR01000042.1 SMTB01000142.1 |
Environment Food animals |
tet(X3) tet(X6) |
– – |
– – |
– – |
2 1 |
– – |
Acinetobacter sp. |
Bolivia | 2016 | PQTA01000018.1 | Human | tet(X7) | – | – | – | 1 | – | E. coli |
Turkey | 2021 | (Kürekci et al., 2022) | Wastewater | tet(X4) | Plasmid | IncFIA-IncHI1-IncFIB(K) | ST609 | 2 | bla SHV-12 | E. coli |