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ABSTRACT
Objectives  Few machine learning (ML) models are 
successfully deployed in clinical practice. One of the 
common pitfalls across the field is inappropriate problem 
formulation: designing ML to fit the data rather than to 
address a real-world clinical pain point.
Methods  We introduce a practical toolkit for user-centred 
design consisting of four questions covering: (1) solvable 
pain points, (2) the unique value of ML (eg, automation and 
augmentation), (3) the actionability pathway and (4) the 
model’s reward function. This toolkit was implemented in 
a series of six participatory design workshops with care 
managers in an academic medical centre.
Results  Pain points amenable to ML solutions included 
outpatient risk stratification and risk factor identification. 
The endpoint definitions, triggering frequency and 
evaluation metrics of the proposed risk scoring model 
were directly influenced by care manager workflows and 
real-world constraints.
Conclusions  Integrating user-centred design early in the 
ML life cycle is key for configuring models in a clinically 
actionable way. This toolkit can guide problem selection 
and influence choices about the technical setup of the ML 
problem.

INTRODUCTION
Despite the proliferation of machine learning 
(ML) in healthcare, there remains a consid-
erable implementation gap with relatively few 
ML solutions deployed in real-world settings.1 
One common pitfall is the tendency to 
develop models opportunistically—based on 
availability of data or endpoint labels—rather 
than through ground-up design principles 
that identify solvable pain points for target 
users. There is a long history of clinical deci-
sion support tools failing to produce positive 
clinical outcomes because they do not fit 
into clinical workflows, cause alert fatigue or 
trigger other unintended consequences.2 3 Li 
et al introduced a ‘delivery science’ framework 
for ML in healthcare, which is the concept 

that the successful integration of ML into 
healthcare delivery requires thinking about 
ML as an enabling capability of a broader set 
of technologies and workflows rather than the 
end product itself.4 However, it is still unclear 
how to operationalise this framework, partic-
ularly how to select the right healthcare prob-
lems where an ML solution is appropriate. As 
ML becomes increasingly commoditised with 
advances like AutoML,5 the real challenge 
shifts towards identifying and formulating 
ML problems in a clinically actionable way.

User-centred or human-centred design 
principles are recognised as an important 
part of ML development across a range of 
sectors.6 Here, we introduce a toolkit for user-
centred ML design in healthcare and show-
case its application in a case study involving 
care managers. There were an estimated 
3.5 million preventable adult hospital admis-
sions in the USA in 2017, accounting for over 
US$30 billion in health care spend.7 Care 
management aims to assist high-risk patients 
in navigating care by proactively targeting risk 
factors via social and medical interventions. 
In this case study, we provide practical guid-
ance for ‘understanding the problem’ and 
‘designing an intervention’ (stages in the Li 
et al framework) via user-centred design prin-
ciples. We draw on cross-domain resources, 
specifically the Google People+AI Research 
guidebook8 and the Stanford d.school design 
thinking framework (Empathise/Define/
Ideate/Prototype/Test),9 which we adapt for 
a clinical setting.

METHODS
Figure  1 illustrates the toolkit. First, a 
problem must satisfy a set of ‘hurdle criteria’: 
is it worth solving? Specifically, the problem 
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must be associated with significant morbidity or clinical 
burden, have evidence of modifiability and have adequate 
data for ML techniques. For candidate problem areas, 
there are then four key user-centred questions that must 
be answered:

Q1. Where are the current pain points?
Q2. Where could ML add unique value?
Q3. How will the model output be acted on?
Q4. What criteria should the model be optimised for?
The above toolkit was applied through a series of six 

user-experience research (UXR) workshops with multidis-
ciplinary stakeholders, including care managers, nurses, 
population health leaders and physicians affiliated with 
a managed care programme at Stanford Health Care. 
Workshops were conducted virtually and were approved 
by Stanford and Advarra Institutional Review Boards, with 
consent obtained from all participants.

The schedule of workshops is detailed below:
	► Workshop 1 focused on mapping existing workflows. 

The output was a set of process maps, annotated with 
pain points.

	► Workshop 2 focused on where ML could add unique 
value (Q2). This yielded a mapping between pain 
points and possible ML formulations, categorised into 
automation (replicating repetitive, time-consuming 
tasks) versus augmentation (adding superhuman 
functionality).8

	► Workshops 3 and 4 focused on how a model output 
would be acted on (Q3). Low-fidelity study probes 
were developed—storyboards of how an ML tool might 
fit into a clinical workflow. These were presented to 
participants for feedback and refined iteratively.

	► Workshops 5 and 6 explored ML evaluation metrics 
for the most promising concept designs. This 
included how care managers would expect results to 
be presented and any auxiliary information required 
alongside the main model output (Q4)

RESULTS
What are the current pain points?
The following pain points were identified:
1.	 Identifying and prioritising the highest risk patients.
2.	 Extracting relevant risk factors from the electronic 

health record.
3.	 Selecting effective interventions.
4.	 Evaluating intervention efficacy.

Where could ML add unique value?
Risk stratification (pain point number 1) emerged as an 
opportunity for ‘augmentation’ given the challenges in 
forecasting future deterioration. The ML formulation was 
a model to predict adverse outpatient events, with emer-
gency department visits and unplanned chronic disease 
admissions chosen as the prediction endpoints (online 
supplemental table S1). Identifying risk factors (pain point 
number 2) was classed as an opportunity for ‘automation’ 
given that there is a large volume of unstructured clinical 
data to sift through. The proposed ML formulation was 
a natural language processing tool for summarising clin-
ical notes and extracting modifiable risk factors. Selecting 
interventions and evaluating efficacy (pain points number 
3 and 4) were also classed as augmentation opportunities. 
The ML formulation involved causal inference approaches 
to estimate individualised treatment effects.

Figure 1  Toolkit for integrating user-centred design into the problem definition stages for ML development in healthcare. ML, 
machine learning; UXR, user-experience research.
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How will the model output be acted on?
Online supplemental figure S1 shows example workflows 
and storyboards addressing the first two ML formulations 
above. The actionability pathway for risk scores and person-
alised risk factor summaries is that care managers can more 
rapidly prepare for calls and more effectively target their 
calls to patients with modifiable risk. These risk summaries 
could be presented to care managers on a monthly basis 
alongside the existing rule-based lists for high-risk patients. 
To mimic the existing workflow, the triggering frequency 
for inference was set as monthly and the inclusion criteria 
were tailored to fit the managed care population.

What criteria should the model be optimised for?
Since care managers have a limited capacity of patients whom 
they can contact, precision (positive predictive value) at c 
(where c is capacity) was selected as the primary evaluation 
metric. The value of c could be set either as a percentage of 
the total attributable population (more generalisable across 
health systems) or as a fixed value (more realistic given 
care manager staffing does not directly scale with patient 
load). We also selected realistic baselines to compare the 
ML models against—namely, rule-based risk stratification 
heuristics such as selecting recently discharged patients or 
those with high past utilisation.10

DISCUSSION
We applied a practical toolkit for user-centred design, 
involving four key questions about pain points and ML 
formulations, via a series of participatory design workshops 
with care management teams. This guided us towards the 
pain points of outpatient risk stratification and risk factor 
identification, with ML formulations involving personalised 
risk scoring and extraction of potentially modifiable risk 
factors from the notes. Critical choices about the setup of 
the ML model were informed by workflow considerations—
namely, the endpoint definition, the triggering frequency 
and the inclusion criteria. Importantly, the evaluation 
metrics must be tailored to a care management workflow. 
In this case, there was a capacity constraint on how many 
patients a care manager can contact each day or week. 
Hence, the most pragmatic metric was the precision of 
the model on the top c highest risk patients, rather than 
global accuracy metrics such as area under the curve of the 
receiver operating characteristic (ROC-AUC) or precision 
recall curve (PR-AUC).

This study is limited in only focusing on a single clinical 
use-case and only using workshops and concept probes as a 
medium for UXR, given the challenges around direct field 
observation during the pandemic. Future work will show-
case the results of the ML models generated from this UXR 
collaboration.

CONCLUSION
User-centred design is important for developing ML tools 
that address a real clinical pain point and dovetail with 

existing workflows. An iterative approach involving stake-
holder interviews and concept feedback can be used to 
identify pain points, pinpoint where a model could add 
unique value, understand the actionability pathway and 
prioritise evaluation metrics.
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