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ABSTRACT: Hexapeptides are widely applied as a model system for studying the amyloid-forming
properties of polypeptides, including proteins. Recently, large experimental databases have become
publicly available with amyloidogenic labels. Using these data sets for training and testing purposes,
one may build artificial intelligence (AI)-based classifiers for predicting the amyloid state of
peptides. In our previous work (Biomolecules 2021, 11, 500), we described the Support Vector
Machine (SVM)-based Budapest Amyloid Predictor (https://pitgroup.org/bap). Here, we apply
the Budapest Amyloid Predictor for discovering numerous amyloidogenic and nonamyloidogenic
hexapeptide patterns with accuracy between 80% and 84%, as surprising and succinct novel rules for
further understanding the amyloid state of peptides. For example, we have shown that for any
independently mutated residue (position marked by “x”), the patterns CxFLWx, FxFLFx, or xxIVIV
are predicted to be amyloidogenic, while those of PxDxxx, xxKxEx, and xxPQxx are
nonamyloidogenic. We note that each amyloidogenic pattern with two x’s (e.g.,CxFLWx) describes
succinctly 202 = 400 hexapeptides, while the nonamyloidogenic patterns comprising four point
mutations (e.g.,PxDxxx) give 204 = 160 000 hexapeptides in total. We also examine the restricted
substitutions for positions “x” from subclasses of proteinogenic amino acid residues; for example, if “x” is substituted with
hydrophobic amino acids, then there exist patterns containing three x’s, like MxVVxx, predicted to be amyloidogenic. If we can
choose for the x positions any hydrophobic amino acids, except the “structure breaker” proline, then we get amyloid patterns with
five x positions, for example, xxxFxx, each corresponding to 32 768 hexapeptides. To our knowledge, no similar applications of
artificial intelligence tools or succinct amyloid patterns were described before the present work.

■ INTRODUCTION
The amyloid formation of proteins and peptides has gained
increasing attention in novel areas of medicine and biology in
the last months, including the application of amyloidogenic
aggregation cores in viral proteins as new antiviral agents1 and
the targeting of the lethal transthyretin amyloidosis with
human in vivo CRISPR-Cas9-based gene editing with a high
success rate.2

Amyloids are misfolded proteins3,4 with a well-defined and
periodic 3D structure, comprising mostly parallel β-sheets.5,6
While amyloids are only seldom present in healthy human
tissues,7 they were reported to be connected with several
neurodegenerative diseases,8 most importantly with Alz-
heimer’s disease.
In bioinformatics, numerous amyloid predictors were

designed and published in recent years, including APPNN,9

Zyggregator,10 AGGRESCAN,11 and netCSSP;12 for a recent
review of their performance, we refer to ref 13. These
predictors use different machine learning approaches for
decision making from training data. In our contribution,14

we applied a powerful but transparent machine learning tool,
the linear Support Vector Machine (SVM).15

For building an SVM, we needed a training data set of n-
dimensional vectors y1, y2, ...ym, each labeled with a bit of either
0 or 1. From the training set, we determine a hyperplane,
which, in a certain sense, “optimally” separates the 0- and the

1-labeled vectors in a way that most of the 1-labeled vectors are
on one side of the hyperplane and most of the 0-labeled ones
are on the other side.
The SVM-predictor now works as follows: If a new vector is

situated on the 0-side, then the prediction is “0”, and if it lies
on the 1-side, the prediction is “1”.
Recently, we built a Support Vector Machine for the

amyloidogenecity prediction of hexapeptides.14 The training
set was the Waltz data set16,17 of experimentally identified 514
amyloidogenic and 901 nonamyloidogenic hexapeptides. By
applying the physicochemical property data set of amino acids,
AAindex,18 we assigned property vectors y1, y2, ...ym to each
hexapeptide, and by using this multidimensional representa-
tion, we have prepared an SVM, called the Budapest Amyloid
Predictor (abbreviated as BAP), described in detail in ref 14
and freely available at https://pitgroup.org/bap.
The accuracy rate of our predictor is 84%, more exactly,

ACC = 0.84, TPR = 0.75, TNR = 0.9, PPV = 0.8, NPV = 0.86
(that is, accuracy, true positive ratio, true negative ratio,
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positive predictive value, and negative predictive value,
respectively). We remark that the accuracy of our SVM is
better than or on par with that of APPNN,9 with a simpler,
more transparent structure.
In this Article, we make use of this transparent structure of

the Budapest Amyloid Predictor. We present numerous
patterns related to amyloidicity, such that each of those
patterns grasps hundreds or even tens of thousands of
individual hexapeptides and gives predictions of their
amyloid-forming properties. For example, we show that for
all (independent) substitutions of the 20 amino acids for letter
“x”, the hexapeptides CxFLFx, FxFLWx, or xxIVIV are all
predicted to be amyloids by the Budapest Amyloid Predictor.
Note that each of these patterns describes 202 = 400 different
hexapeptides. We also note that no amyloid-forming patterns
exist with three x’s for the predictor. All 5531 amyloid-forming
hexapeptide patterns with two x’s are listed in Table S1.
We also show several patterns, which, by the Budapest

Amyloid Predictor, would not form amyloids. For example, the
patterns xxDDxx, xxPxDx, and xxPKxx with any (independ-
ently chosen) amino acids for the positions denoted by x are
predicted to be nonamyloids by our Budapest Amyloid
Predictor. Note that each of these patterns succinctly describes
204 = 160 000 hexapeptides. We add that nonamyloid patterns
with five x positions do not exist for our tool at https://
pitgroup.org/bap. All of the nonamyloid forming hexapeptide
patterns with four x positions are listed in Table 2.
We note that these patterns are succinct representations of

the predictions of the Budapest Amyloid Predictor (BAP),
whose accuracy rate is 84%;14 that is, we do not state, for
example, that all CxFLFx hexapeptides are amyloids, but we
state that all of them are predicted to be amyloids by the BAP
tool. The transparent linear structure of the Support Vector
Machines makes possible the derivation of these intuitive,
useful, and well-applicable patterns from an artificial
intelligence (AI) tool, as we clarify in this Article.
We need to add also that today we are living in the era of

fast-developing AI methods and tools in numerous fields of
science and technology. Most of these tools work as follows.
Suppose the tool needs to compute a value f(y) from

another value y. For constructing such an AI tool, the following
steps are applied:

• A large set of previously acquired, correct (y, f(y)) pairs
are partitioned into two classes: the training set A and
the test set B.

• The training set A is applied to construct a tool, which
assigns the predicted value of f(y), denoted by fp(y), to
each y.

• The test set B is used for evaluating the correctness of
the tool: the predicted value, produced by the tool, f p(y),
is compared to the correct, previously known f(y).

The AI tool is deemed “good” if it is correct for a large
enough portion of the test values.
In general, however, it is difficult to get insight into the

intrinsic decision mechanisms of a typical AI tool; this is
especially true for the deep neural networks, which are applied
widely today.
In the case of linear Support Vector Machines,15 the

decision mechanism is much more transparent, and one can
exploit a highly correct SVM for gaining unprecedented
scientific information in certain cases.19 In this Article, we

show a novel and original method for gaining site-specific
amyloid-forming properties of amino acids in hexapeptides and
preparing amyloid-forming and nonamyloid forming patterns
for the succinct representation of the SVM prediction results
for hundreds (cf., Table S1) or even tens of thousands (cf.,
Table 2) of hexapeptides at the same time.

■ METHODS
We have introduced the Budapest Amyloid Predictor Web
server14 by applying linear Support Vector Machines as the
underlying prediction tool,15 and the Waltz data set16,17 for
training and testing purposes. The Waltz data set consists of
1415 hexapeptides, from which 514 peptides are experimen-
tally labeled as “amyloidogenic” and 901 hexapeptides as
“nonamyloidogenic”. The Budapest Amyloid Predictor
(https://pitgroup.org/bap) was constructed as follows:
(i) Each amino acid from the 20 proteinogenic ones was

characterized by a 553-dimensional vector, corresponding to
its physicochemical properties published in AAindex.18 There-
fore, a hexapeptide was represented by a length 6 × 553 =
3318 vector z. We note that this highly redundant
representation has given somewhat better predictions than
more concise ones14 and has not caused any difficulties in what
follows.
(ii) By applying a quadratic programming algorithm for

SVM computation from the SciKit-learn Python library,20 we
have computed a vector w and a scalar b such that if the sign of
w·z + b is positive, then the prediction is “amyloidogenic”;
otherwise, it is “nonamyloidogenic”, with 84% accuracy, for
any vector z, representing a hexapeptide.
(iii) One can write the dot product w·z, with = 553, as

· = =
= = = +

w z wz wz
i

i i
j i j

j

i i
1

6

1

6

( 1) 1 (1)

For any given j = 1, 2, ...6, the zi’s are determined by the
amino acid at position j at the hexapeptide. This means that we
have only 6 × 20 = 120 sums in eq 1 (for six positions and 20
amino acids), and these 120 values can be precomputed. Table
1 of ref 14 lists these precomputed values. Because we need the
same table in the present work, we include it also as Table 1
here.
(iv) Table 1 makes it possible to decide if a hexapeptide is

predicted to be amyloidogenic or not, by “hand”; for example,
to decide if IVIVIV is amyloidogenic or not, we need to add up
the numbers, corresponding to I in the first, to V in the second,
to I in the third, to V in the fourth, to I in the fifth, and to V in
the sixth column, that is:

+ + + =0.06 0.14 0.26 0.14 0.06 0.01 0.15

and we need to add to this w·z value the scalar b = 1.083,
which equals 1.233, a positive number, so IVIVIV is predicted
to be amyloidogenic.
We refer to Table 1 as the Amyloid Effect Matrix.
As we have demonstrated in paragraph (iv) above, one can

simply make the prediction of the SVM by using the values
solely from this matrix.
From now on, we would like to exploit the Amyloid Effect

Matrix for finding succinct descriptions of amyloidogenic and
nonamyloidogenic patterns among the 64 million possible
hexapeptides.
Patterns of Amyloidicity. Here, we would like to find

very characteristic positions and substitutions, which already
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ensure us that all of the hexapeptides fitting those patterns are
homogeneously either amyloidogenic or nonamyloidogenic.
Let us see an example:
Example 1. Let us fix the amino acid proline (P) at

positions 3 and 4 and leave all four other positions free. Let us
consider the pattern

xxPPxx
We state that for all (independent) substitutions for x’s, the

Budapest Amyloid Predictor (abbreviated as BAP) says that
the hexapeptide is not amyloid. Because we have four x’s, the
pattern xxPPxx describes exactly 204 = 160 000 hexapeptides,
so we state that not one of these 160 000 hexapeptides is
predicted to be amyloidogenic.
It is very easy to verify this statement from Table 1. The

values corresponding to P’s in the third and in the fourth
positions (−0.56 and −0.51) add up to −1.07. Now, even if we
take the largest values of columns 1, 2, 5, and 6, that is, −0.05,
−0.08, −0.06, and 0.01, respectively, their sum is −1.25, and
adding b = 1.083 to this value, we would still have a result to be
a negative number. That is, even the largest values from
columns 1, 2, 5, and 6 could not overweigh the large negative
sum of −1.07 of the two consecutive proline residues in
positions 3 and 4. This means that all hexapeptides, fitting to
the pattern of xxPPxx, are predicted to be nonamyloids by
BAP.
Example 2. Similarly, one can also find amyloid patterns.

For example, we state that all 400 (=20 × 20) hexapeptides,
fitting to the pattern FxFLWx, are predicted to be amyloids.
One can easily verify this statement from Table 1. The F in
position 1 adds −0.13, in position 3 adds 0.05, L in position 4
adds 0.04, and W in position 5 contributes −0.12; their sum is
−0.16. Now, if we take the smallest values from columns 2 and

6, that is, −0.45 and −0.45, and add b = 1.083 to their sum, we
will get −0.16 − 0.45 − 0.45 + 1.083 = 0.023, that is, a positive
number, so independently from the choice of the x’s, FxFLWx
is predicted to be an amyloid-forming hexapeptide.
Minimal Patterns. In what follows, we will find all of the

minimal patterns of amyloidicity and nonamyloidicity. These
minimal patterns are the most concise representations of the
amyloid-forming rules of the BAP predictor.
Here, the “minimal” word means that we cannot decrease

the number of the fixed amino acids without invalidating the
rule. Our goal is to find the patterns with the minimum
number of amino acids fixed. From such minimal patterns, one
can easily generate valid but nonminimal ones; for example,
the xxPPxx pattern is predicted to be nonamyloidogenic for
any substitutions of x’s. Therefore, WxPPxx or VIPPxx are also
nonamyloid patterns for any substitutions for x, but they are
not minimal. It is easy to see by observing Table 1 that neither
xxxPxx nor xxPxxx are valid nonamyloid patterns, so xxPPxx is
a minimal pattern.
Finding All Minimal Patterns. Our goal is to find every

hexapeptide pattern, both the amyloidogenic and the non-
amyloidogenic ones, as predicted by BAP.
Finding these patterns is straightforward using the Amyloid

Effect Matrix (Table 1). Suppose that we intend to generate
the minimal amyloid indicating patterns. Finding the non-
amyloid patterns is a similar procedure.
Verifying whether a pattern is a valid amyloid indicator is

easy. We need to generalize the steps done in the examples. We
substitute the minimal amyloid effective amino acids on the
free positions (denoted by s) and check its score. If the score is
already positive, then this least amyloidogenic hexapeptide is
already amyloid, and then every other hexapeptide from this
space is amyloid too.
Finding the rules for hexapeptides could be done by

exhaustive search. Let say we want to find all of the rules with k
fixed amino acids, where k is between 1 and 6. In what follows,
we call the core of the rule the number of fixed amino acids
(e.g., the core of rule xxPPxx is 2). The positions s will be
referred to as free positions.
For finding all of the rules with core k, our approach is

(i) generating all of the ( )k
6 index subsets;

(ii) for each index subset, we generate all of the 20k rule
candidates by assigning all of the possible amino acids to
the k core positions; and

(iii) verify the validity of the pattern by checking each of
them as already described.

We remark that this exact exhaustive search is not fast
computationally, but it perfectly works for hexapeptides. The
number of verifications is

i
k
jjjj

y
{
zzzz =

=

=

k
6

20 21 1
k

k
k

1

6
6

less than 86 million, and its running time is several hours in
today’s low-end computers.
The amyloid patterns are listed in Table S1, while the

nonamyloid patterns are in Table 2.
The Case of Restricted Amino Acid Classes. Amino

acids are frequently characterized and classified by their
chemical properties, like polarity, nonpolarity, hydrophobicity,
hydrophilicity, etc. If we want to find patterns of amyloidicity
for the free positions, denoted by x, one can choose

Table 1. Amyloid Effect Matrix, Constructed from the
Precomputed Values from Equation 1a

1 2 3 4 5 6

A −0.26 −0.32 −0.27 −0.14 −0.43 −0.22
R −0.45 −0.41 −0.46 −0.33 −0.52 −0.35
N −0.40 −0.34 −0.49 −0.27 −0.46 −0.30
D −0.49 −0.43 −0.56 −0.41 −0.56 −0.36
C −0.09 −0.21 0.03 −0.05 −0.17 −0.05
Q −0.37 −0.30 −0.36 −0.34 −0.48 −0.32
E −0.51 −0.41 −0.43 −0.30 −0.61 −0.39
G −0.23 −0.37 −0.46 −0.37 −0.30 −0.33
H −0.32 −0.26 −0.26 −0.30 −0.35 −0.25
I −0.06 −0.08 0.26 0.09 −0.06 −0.07
L −0.10 −0.18 0.02 0.04 −0.22 −0.13
K −0.39 −0.45 −0.51 −0.35 −0.59 −0.32
M −0.17 −0.25 −0.02 −0.10 −0.19 −0.18
F −0.13 −0.11 0.05 −0.03 −0.13 −0.11
P −0.56 −0.38 −0.56 −0.51 −0.42 −0.45
S −0.37 −0.35 −0.41 −0.30 −0.48 −0.23
T −0.34 −0.33 −0.28 −0.23 −0.40 −0.23
W −0.17 −0.17 −0.09 −0.06 −0.12 −0.16
Y −0.23 −0.11 −0.13 −0.06 −0.18 −0.15
V −0.05 −0.14 0.19 0.14 −0.19 0.01

aThe rows correspond to the amino acids, while the columns
correspond to the positions. The larger numbers show stronger
amyloidogenic properties in the given position. Source: ref 14
(Copyright 2021 the authors). In ref 14, by ordering the columns of
this table, a position-dependent amyloidogenecity order of amino
acids is given in a subsequent table.
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substitutions only from a given restricted class, and then one
can have stronger, more specific patterns than in the general
case, when x can be substituted by any of the 20 amino acids.
Finding those patterns in the restricted classes can be done

analogously to the general case. The minimum values of Table
1 from the given class need to be considered.
Statistical Analysis. We refer to the work14 for the

statistical accuracy estimations of the Budapest Amyloid
Predictor. There we have shown that the predictor has ACC
= 0.84, TPR = 0.75, TNR = 0.9, PPV = 0.8, and NPV = 0.86
(that is, accuracy, true positive ratio, true negative ratio,
positive predictive value, and negative predictive value,
respectively). Figure 1 of ref 14 also gives the ROC (receiver
operating characteristics) curve of the tool, with the AUC
(area under curve) value as 0.89.

■ RESULTS AND DISCUSSION
Figure 1 visualizes the substitutions into a nonamyloid and an
amyloid pattern.

We have successfully identified all 5531 minimal amyloid
patterns (Table S1) using BAP. For example, xxIYCI, IFIYxx,
and CxVVxC are amyloid patterns from Table S1.
We have found that almost all amyloidogenic hexapeptide

patterns contain valine (V) and/or isoleucine (I) residues,
both of branched and hydrophobic side chains. Among the
5531 patterns identified (Table S1), only 16 patterns are free
of both V and I: CxFLWx, CxFLFx, CxCLWx, CxCLFx,
CxLLWx, CxLLFx, LxFLWx, LxFLFx, LxCLWx, LxCLFx,
LxLLWx, LxLLFx, FxFLWx, FxFLFx, FxCLWx, and CxFLCx.
Furthermore, leucine, L, the third branched and hydro-

phobic side chain, is represented one or more times in the
above listed 16 patterns. In conclusion, V, I, and L residues
make hexapeptides intrinsically amyloidogenic.
We remark that no amyloid pattern with three free positions

(i.e., x) exists, by the results of the exhaustive search.
Table 2 lists the 24 nonamyloid patterns, each with four free

positions. No other nonamyloid patterns exist with four free
positions, and no nonamyloid pattern exists with five free
positions by the results of the exhaustive search, described in
the Methods.

Results for Amino Acid Subsets. In this subsection, we
find amyloid patterns when the x positions can be substituted
only by the members of some specific amino acid classes. The
amino acid classes we examine are small nonpolar, hydro-
phobic, and polar amino acids, as classified by ref 21, and listed
in the second column of Table 3.

When the substitutions to the free positions, denoted by x,
can be done only from special subsets, listed in Table 3, we can
get amyloid rules with three free positions, in contrast with the
unrestricted case, when our rules have two free positions
(Table S1).
When x is allowed to be substituted from the small nonpolar

set, then 411 patterns can be found with three free positions,
for example, VIIxxx, IIIxxx, VxIVxx, VxIIxx, VxILxx, VxIFxx,
VxICxx, VxIWxx, VxVVxx, and VxVIxx. All of the existing 411
patterns are listed in Table S2. No such pattern exists with four
free positions.
If x is chosen from the hydrophobic set, then 43 patterns

exist with three free positions, listed in Table 4. No such
pattern exists with four free positions, by the results of the
exhaustive search.
When x is chosen from polar amino acids, then the only four

patterns with three free positions are xxIVIx, xxIVWx, xxIIIx,
and xxVVIx.
We note that no pattern exists in these three cases without V

and I amino acids; that is, all of the patterns in these three
restricted substitutions contain either valine or isoleucine in
fixed positions.
If proline is not allowed to be substituted for any x, but

otherwise the remaining 19 amino acids can be chosen for the
x positions, then we have exactly four amyloid patterns with
three x positions: xxIVIx, xxIVWx, xxIIIx, and xxVVIx; note

Figure 1. Examples of amyloid and nonamyloid patterns.

Table 2. List of All Nonamyloid Patterns with Four Free
Positionsa

PxPxxx PxDxxx xxPPxx xxPDxx xxPGxx xxPKxx
xxPQxx xxDPxx xxDDxx xxDGxx xxDKxx xxDQxx
xxKPxx xxKDxx xxNPxx xxGPxx xxRPxx xxPxEx
xxPxKx xxPxDx xxDxEx xxDxKx xxDxDx xxKxEx

aIt contains 24 patterns. Note that each pattern describes 204 =
160 000 hexapeptides succinctly, all of which are predicted to be
nonamyloids by the Budapest Amyloid Predictor.14 From the 24
patterns, only nine do not contain proline in a fixed position.

Table 3. Amino Acid Subsets Examineda

class name class elements listing

no. of
free

positions
no. of
patterns

small nonpolar GAST 3 411
hydrophobic CVLIMPFYW 3 43
polar DENQHKR 3 4
hydrophobic-{P} CVLIMFYW 5 38
amino acids-{P} QFYESNCDMLIAHGWRKVT 3 4

aThe classification of the residues in the first three rows is as in ref 21.
The last two rows correspond to the classes where we left out proline,
a well-known structure-breaker from the hydrophobic set or from all
of the amino acids. The third column shows the number of free
positions we get in the special substitutions, and the fourth column
shows the number of patterns found for these special substitutions for
“x”.
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that without the restriction to proline, no amyloid pattern
exists with three free positions.
These four patterns are exactly the same as in the case of

polar residue substitutions, but the set of hexapeptides they
represent differs: in the case of polar substitutions, each of the
four patterns represent 73 = 343 hexapeptides, while for the
nonproline substitutions, 193 = 6859 hexamers.
If x could be chosen from hydrophobic amino acids, except

proline, the “structure breaker”, then we have the “largest”
patterns of amyloidicity: 38 patterns exist with just one fixed
position, listed in Table 5. Note that each of those patterns
describes 85 = 32 768 hexapeptides, such that all of them are
predicted to be amyloidogenic.

■ CONCLUSIONS
Here, we established the patterns of amyloidicity and
nonamyloidicity in the case of hexapeptides, based on a
Support Vector Machine-based predictor, available at https://
pitgroup.org/bap. Because there are 206, that is, 64 million
hexapeptides, formed from the 20 proteinogenic amino acids, it
is worthwhile to show succinct patterns of both amyloid-
forming and nonforming hexapeptides, based on the BAP
predictor. First, in the literature, we have introduced
hexapeptide patterns with free-to-choose positions, denoted
by “x”, describing hundreds, or even tens of thousands of
hexapeptides with the same predicted amyloidogenecity, each
with only six characters. In Table S1, we list 5531 amyloid
patterns (e.g., CxLLVx), where for the positions, denoted by
“x”, we can substitute any of the 20 amino acids, and the
resulting hexapeptide will be predicted as “amyloidogenic” by
BAP. Note that each of the patterns in Table S1 describes 400
hexapeptides. Similarly, we have found succinct representations
of the BAP-predicted nonamyloidogenic hexapeptides (Table
2), each with four free positions. Therefore, each entry of
Table 2 represents 204 = 160 000 hexapeptides. We have also
examined restricted substitutions for the x positions, like small
nonpolar, or hydrophobic or polar amino acids, and described
succinct patterns for those hexamers in Tables 3, 4, 5, and S2.
To our knowledge, no machine learning tool was used

before to derive succinct chemical knowledge through simple
patterns for deep structural properties.

■ ASSOCIATED CONTENT
Data Availability Statement
The Budapest Amyloid Predictor webserver is available freely
at https://pitgroup.org/bap. The hexapeptide patterns identi-
fied in this work are enclosed in the text or in the Supporting
Information.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c02513.

Table S1 lists all of the existing minimal patterns of
amyloid-forming hexapeptides, computed from the SVM
model of the Budapest Amyloid Predictor; Table S2 lists
all of the existing minimal patterns of amyloid-forming
hexapeptides, computed from the SVM model of the
Budapest Amyloid Predictor, when the substitutions for
the positions, denoted by “x”, are allowed by small,
nonpolar residues, G, A, S, and T (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Vince Grolmusz − PIT Bioinformatics Group, Eötvös
University, Budapest H-1117, Hungary; Uratim Ltd.,
Budapest H-1118, Hungary; orcid.org/0000-0001-9456-
8876; Email: grolmusz@pitgroup.org

Authors
László Keresztes − PIT Bioinformatics Group, Eötvös
University, Budapest H-1117, Hungary

Evelin Szögi − PIT Bioinformatics Group, Eötvös University,
Budapest H-1117, Hungary

Bálint Varga − PIT Bioinformatics Group, Eötvös University,
Budapest H-1117, Hungary

Viktor Farkas − MTA-ELTE Protein Modeling Research
Group, Budapest H-1117, Hungary

András Perczel − MTA-ELTE Protein Modeling Research
Group, Budapest H-1117, Hungary; Laboratory of Structural
Chemistry and Biology, Eötvös University, Budapest H-1117,
Hungary; orcid.org/0000-0003-1252-6416

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c02513

Table 4. List of All 43 Amyloidogenic Patterns with Three Free Positions When x Is Hydrophobic, Chosen from
CVLIMPFYWa

VxIVxx VxIIxx VxILxx VxIFxx VxVVxx VxVIxx VxVLxx IxIVxx
IxIIxx IxILxx IxVVxx IxVIxx CxIVxx CxIIxx CxILxx CxVVxx
CxVIxx LxIVxx LxIIxx LxILxx LxVVxx LxVIxx FxIVxx FxIIxx
FxVVxx MxIVxx MxIIxx MxVVxx WxIVxx WxIIxx GxIVxx YxIVxx
xxIVIx xxIVxV xxIVxC xxIVxI xxIVxF xxIIxV xxIIxC xxILxV
xxVVxV xxVVxC xxVIxV

aEach pattern describes 93 = 729 hexapeptides.

Table 5. List of All 38 Amyloidogenic Patterns with Five Free Positions When x Is Hydrophobic, but Cannot Be Proline,
Chosen from CVLIMFYWa

Vxxxxx Ixxxxx Cxxxxx Lxxxxx Fxxxxx Mxxxxx Wxxxxx xIxxxx
xFxxxx xYxxxx xVxxxx xWxxxx xLxxxx xCxxxx xxIxxx xxVxxx
xxFxxx xxCxxx xxLxxx xxMxxx xxWxxx xxxVxx xxxIxx xxxLxx
xxxFxx xxxCxx xxxWxx xxxYxx xxxxIx xxxxWx xxxxFx xxxxCx
xxxxYx xxxxxV xxxxxC xxxxxI xxxxxF xxxxxL

aEach pattern describes 85 = 32 768 hexapeptides.
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