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Aims Some artificial intelligence models applied in medical practice require ongoing retraining, introduce unintended racial bias,
or have variable performance among different subgroups of patients. We assessed the real-world performance of the
artificial intelligence-enhanced electrocardiogram to detect left ventricular systolic dysfunction with respect to multiple
patient and electrocardiogram variables to determine the algorithm’s long-term efficacy and potential bias in the absence
of retraining.

Methods
and results

Electrocardiograms acquired in 2019 at Mayo Clinic in Minnesota, Arizona, and Florida with an echocardiogram per-
formed within 14 days were analyzed (n= 44 986 unique patients). The area under the curve (AUC) was calculated
to evaluate performance of the algorithm among age groups, racial and ethnic groups, patient encounter location, elec-
trocardiogram features, and over time. The artificial intelligence-enhanced electrocardiogram to detect left ventricular
systolic dysfunction had an AUC of 0.903 for the total cohort. Time series analysis of the model validated its temporal
stability. Areas under the curve were similar for all racial and ethnic groups (0.90–0.92) with minimal performance dif-
ference between sexes. Patients with a ‘normal sinus rhythm’ electrocardiogram (n= 37 047) exhibited an AUC of 0.91.
All other electrocardiogram features had areas under the curve between 0.79 and 0.91, with the lowest performance
occurring in the left bundle branch block group (0.79).

Conclusion The artificial intelligence-enhanced electrocardiogram to detect left ventricular systolic dysfunction is stable over time in
the absence of retraining and robust with respect tomultiple variables including time, patient race, and electrocardiogram
features.
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Introduction
Left ventricular systolic dysfunction (LVSD) is a common pathology
associated with significant morbidity and mortality.1–3 Although no
routine screening strategies are currently recommended, robust ef-
forts have been made to identify patients with LVSD.4–6 Early iden-
tification may permit treatment with evidence-based therapies to
mitigate morbidity and mortality.1

The electrocardiogram (ECG) is a rapid, cost-effective, point-of-care
test that is available in most clinical settings, both inpatient and out-
patient. We have previously reported the development and clinical ap-
plication of a deep learning network to detect LVSD using an artificial
intelligence-enhanced ECG (AI ECG) in patients in primary care clinics
and in the emergency department.7–10 The AI ECG remains promising
as a non-invasive screening tool for patients with previously undiag-
nosed LVSD, including those with suspected myocardial dysfunction
secondary to SARS-CoV-2 infection,11 for which it has received US
Food and Drug Administration Emergency Use Authorization.

It is well known that a trained network is susceptible to data set
shift errors when employed in a setting that differs from its original
training environment. In some cases, AI models have to re-learn or
recalibrate to better fit an environment or setting.12 Although our
group has performed both internal and external validation of the
AI ECG algorithm to detect LVSD with promising results,13,14 its sta-
bility with respect to potentially impactful clinical factors (i.e. patient
age, ECG recording location, underlying arrhythmia, time since net-
work training) remains undetermined. To test the hypothesis that
the AI ECG network for LVSD is stable over time and across popula-
tions due to its broad training set, we assessed its accuracy with re-
spect to time since development, patient age, patient race and
ethnicity, ECG rhythm andmorphology, and ECG recording location.

Methods

Study population
All ECGs acquired between 1 January and 31 December 2019 (the year
following algorithm development) performed at Mayo Clinic in
Rochester, Minnesota, Scottsdale, Arizona, Jacksonville, Florida, and
Mayo Clinic Health System locations were evaluated (n= 406 916
from 230 661 patients). Eligible ECGs were digital, standard 10 s
12-lead ECGs acquired in the supine position during the study timeframe.
ECGs from patients who underwent transthoracic echocardiography
within 2 weeks of an eligible ECG were included in this analysis. In the
case of multiple echocardiograms for a single patient, the earliest echo-
cardiogramwas selected as the index echocardiogram. In the case of mul-
tiple ECGs in the 14-day window from echo, the ECG temporally closest
to the first echo was selected for analysis (n= 44 986 patients with valid
ECG-echo pairs). None of the patients in this analysis participated in the
derivation of algorithm, and all ECGs in the analysis were acquired after
the model was fully developed.

Patient data
The institutional review boards of the Mayo Clinic Foundation approved
of this study and protocol. Following institutional review board approval,
patient age and self-reported race and ethnicity were collected from the
Mayo Clinic unified data platform. The original protocol was modified to
include patients,18 years of age, and the institutional review board ap-
proved this change. The ECG date, acquisition location, and rhythmwere
extracted from the MUSE system (GE Healthcare, Marquette, WI). For
all ECGs, the final rhythm and other ECG findings were adjudicated by
a technologist under cardiology supervision.

All echocardiograms had one or more ejection fraction (EF) measure-
ment performed by a cardiologist. For studies with more than one left
ventricular ejection fraction measurement, we used a heuristic technique
to select the most accurate measurement.7 The preferred measurement

Performance and bias of the AI ECG for HF detection 239



used for analysis was (frommost accurate to least accurate): 3D echocar-
diography, biplane imaging using the Simpson method, 2D methods,
M-mode measurements, and, in the absence of any of the preceding,
the reported visually estimated EF.

Artificial intelligence model
The artificial intelligence model used in this study has been previously de-
scribed.7 Briefly, the model uses a convolutional neural network that ana-
lyzes a matrix with 10 s, 12-lead ECG data resampled to 500 Hz (5000×
12 values per ECG). Each matrix row contains the raw amplitude for
each of the 12 leads for that timestamp. The model uses seven convolu-
tional blocks, each with a convolutional layer, batch normalization, a
‘Relu’ activation function and a max-pooling layer, followed by two fully
connected blocks.7 The model was developed using 44 959 unique pa-
tients and was tested on 52 870 patients not used to develop the model.
In the original testing cohort, the model was able to detect an EF≤ 35%
with an area under the curve (AUC) of 0.93 and an EF≤ 40% with an
AUC of 0.91.

Although the model was developed and tested prior to the start date
of the present study, to avoid any data leakage, patients used to develop
the model were excluded from the current analysis, as we assume that
the model might have an unfair advantage when testing the same patients
again due to the biometric information in the ECG.

Main outcome
While the original publication focused on the detection of EF≤ 35%, in
this work we adjusted the threshold for the definition of low EF to≤
40%, in accordance with the Universal Definition and Classification of
Heart Failure, European Society of Cardiology, and American College
of Cardiology professional society guidelines.1,15,16 The AUC for the de-
tection of EF≤ 40%, was evaluated with respect to multiple factors: time
(in 1-month blocks, for each month of 2019), patient age (in 10-year in-
tervals), race and ethnicity, ECG recording location and situation (in-
patient, outpatient or emergency department), echocardiogram
measurement type used to assess EF, and ECG features at the time of
screening.

The focus of the statistical analysis was providing descriptive data on
the performance of the algorithm over the range of patient profiles iden-
tified above. No formal hypothesis testing was configured to test for dif-
ferences from the original area under the receiver operating
characteristic curve. Instead, differences in the point estimates of AUC
between the original sample and the new validation cases greater than
3 percentage points were considered because the original study yielded
confidence intervals within the precision of 1 percentage point.7 An ex-
ploratory analysis was conducted by calculating month-by-month esti-
mates of the AUC over the 12-month study period. Data were also
presented in forest plots that provided an estimate of sensitivity and spe-
cificity. To arrive at binary test predictions, the previously selected
threshold of 0.256 was utilized (i.e. a new threshold optimized for EF
≤ 40% was not considered in the analysis). Data analysis was conducted
using Python version 3.76 and R version 4.0.3.

Results

Background characteristics
The overall cohort had a mean age of 64.0+ 17.6 years, 43% were fe-
male, and 9.6% of the population had an ejection fraction (EF) of≤ 40%.
The mean absolute time between the screening ECG and the echocar-
diogram was 1.5+ 2.2 days. The majority of patients were white
(89.2%), and patients with an EF≤ 40% were significantly older and

more comorbid than patients with an EF .40%. Details of age, race,
and comorbidities by EF value are described in Table 1. Expanded
race and ethnicity characteristics are described in Supplementary
material online, Table S1.

Temporal evaluation
Evaluation of the AUC by month is shown in Figure 1. The per-month
AUC remains greater than 0.89 throughout the year of 2019 without
significant variation. There is moderate variability of the confidence
interval range on a month-to-month basis; however this does not sig-
nificantly impact overall accuracy of the algorithm over time. This vis-
ual finding was supported with the time series model. In particular,
the estimated slope of the performance over the 12-month period
was 0.0002 consistent with temporal stability of the model.

Age group and sex evaluation
Evaluation of AUCwith respect to age revealed robust test perform-
ance (AUC .0.87) for the age groups 0–10 years old and 20–80
years old (Figure 2A). The AUC was lower for patients with 10–20
years of age and greater than 80 years (AUC 0.831–0.843); however,
the sample size of the number of patients aged under 20 years of age
was small (n= 1183). The AUC was minimally different between
male and female patients (Figure 2B).

Electrocardiogram accuracy with respect
to race and ethnicity
To validate that the model is not impacted by patient race, we used
self-reported race and ethnicity to determine whether significant dif-
ferences in AUC among the groups exist. In this validation cohort, 43

Table 1 Baseline cohort characteristics with
and without left ventricular systolic dysfunction

Age (95% CI) 63.6 (63.4, 63.7) 68.5 (68.0, 69.0)

Female (%) 18270 (44.5) 1082 (27.5)

Race (%)

Non-Hispanic White 36601 (89.1) 3513 (89.4)

Black 1810 (4.4) 206 (5.2)

Other 2647 (6.4) 209 (5.3)

Hispanic (%) 1776 (4.3) 121 (3.1)

Congestive heart failure (%) 14530 (35.4) 3776 (95.9)

Myocardial infarction (%) 6498 (15.8) 1625 (41.4)

Hypertension (%) 27090 (66.0) 3066 (78.1)

Diabetes mellitus (%) 10283 (25.0) 1398 (35.6)

Renal disease (%) 11997 (29.2) 1806 (46.0)

Cerebrovascular disease (%) 8645 (21.1) 1055 (26.9)

Peripheral vascular

disease (%)

16947 (41.3) 2611 (66.5)

COPD (%) 11613 (28.3) 1380 (35.1)

Connective tissue/

rheumatologic disease (%)

2963 (7.2) 284 (7.2)

EF below 30% by TTE (%) 0 (0.0) 1848 (47.0%)

EF below 50% by TTE (%) 4262 (10.4) 3928 (100%)

*CI, confidence interval; EF, ejection fraction; TTE, transthoracic echocardiogram
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302 patients self-reported race and ethnicity. The model had similar
AUC among all races and ethnicities tested (AUC: 0.90–0.93) with
slightly higher AUC for black and Hispanic patients, as noted in
Figures 2C, 2D, and Supplementary material online, Figure S1.
Patients with unknown racial demographics had slightly lower
AUC (0.899; see Supplementary material online, Figure S1).

Electrocardiogram accuracy with respect
to ejection fraction measurement type
For each echocardiogram the most accurate EF measurement avail-
able was used (order of accuracy from highest to lowest: 3D,
Simpson method, 2D method, M-mode, and visual estimation of
the EF). Electrocardiogram evaluation of EF exhibited a higher
AUC when using 3D EF estimates from the echocardiogram (AUC
0.951) and lower AUC when EF was obtained by visual estimation
(0.743) when compared with 2D-based modalities (AUCs ranged
from: 0.89–0.94 with overlapping confidence internals, Figure 2E).

Electrocardiogram recoding location
Evaluation of the AI algorithm performance with respect to collec-
tion site and location of appointment is described in detail in
Figure 2F and 2G. With respect to appointment location, outpatients
had the highest AUC (0.925), followed by the emergency depart-
ment (0.897) and inpatient locations (0.866) (Table 2F). In
Figure 2G, minimal AUC differences among the different Mayo
Clinic locations were noted (AUC 0.903–0.909).

Area under the curve by
electrocardiogram features
AUC characteristics stratified by ECG features are depicted in
Figure 3. Electrocardiogram features/findings were evaluated on an
individual basis as some ECG features are mutually exclusive (NSR
and atrial flutter for example). The overall evaluation for all analyzed
ECGs had an AUC of 0.903 (2948 of 44919 with LVSD), similar to
the AUC for detection of low EF in our original work (AUC=
0.91 for EF≤ 40%).7 Patients with an ECG rhythm of ‘normal sinus
rhythm’ exhibited an AUC of 0.91 for detecting EF≤ 40%. All other
ECG rhythms or ECG diagnoses had AUCs between 0.791 (for left
bundle branch block) and 0.91, as shown in Figure 3.

Discussion
We found that the AI ECG model for LVSD was robust without re-
training even for the less stringent definition of LVSD of≤ 40% EF.
Specifically, it was stable over time, and functionally invariant with re-
gards to patient sex and race. There was some minor variability in
performance based on age, ECG recording location, and ECG fea-
tures that may warrant further consideration.
Neural networks are susceptible to data shift errors when net-

works are applied to populations that differ from those initially
used for training.12 Although the LVSD AI ECG neural network
was trained on a large and broad population, and previous retro-
spective analysis had shown robustness with regards to patient
age and ethnicity,17 this is the first real-world prospective use
study to show temporal stability, and robustness over a wide
range of geographical usage (with inherently different popula-
tions), clinical environments (outpatient, inpatient, emergency de-
partment), and ECG features. Through each of these evaluations
we identified only minor variations in algorithm accuracy across
each clinically important variable. This non-invasive point-of-care
screening tool exhibits significant dataset stability on multiple
fronts.
The minimal variation of AUC over time in 2019 suggests that the

algorithm does not require recalibration on a monthly or annual ba-
sis. These data suggest that the AI ECG for LVSD is minimally suscep-
tible to temporal dataset shifts. However, an underlying assumption
is the use of a standard 12-lead ECG acquired using clinically ac-
cepted lead positions with the patient supine. The use of ECG signals
from mobile or other form factors requires additional validation, as
variations in cardiac position, adrenergic tone, resting and active
heart rates, and ECG morphology could impact algorithm function.
Although this evaluation indicates no anticipated performance deg-
radation over time, re-evaluation in future years ssmay be also mer-
ited in the event of shifting disease trends, population change, or
alterations in the ECG system.
The AI ECG is considered a black box, since the specific ECG fea-

tures used to make EF determination is unknown. Thus, there is a con-
cern for the introduction of implicit bias, especially as it relates to
underrepresented groups. Prior to using the model in practice, we de-
monstrated that in our testing cohort, the LVSD model worked well in
all races and ethnicities in the testing set.17 In this prospective validation,
we found that despite the known ECG features differences across races
and ethnicities, the LVSD algorithm works equally well in those that

Figure 1 Artificial intelligence-enhanced electrocardiogram for
left ventricular systolic dysfunction area under the curve by month
in the year of 2019.
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were tested. Similarly, we observed robust performance of the algo-
rithm for both male and female patients.

There was a modest drop in test performance with advanced age,
with an AUC of 0.87 for patients 80–90, and 0.84 for age above 90
(Figure 2A). Noteworthy is that the most clinically relevant age group
for LVSD (20–80 years of age) has the greatest test performance
(AUC .0.89). Irrespective of the performance degradation with ad-
vanced age, the test showed robust performance characteristics with
an AUC .0.8 for all age groups with values remaining in line with
other medical tests (typically AUC . 0.75). Although we observed
an acceptable AUC in patients 0–20 years, the number of patients
with disease (n= 13) was quite small in these groups, the sensitivity
for patients aged ,20 years was low (37.5–60.0%), and this experi-
mental data represented a first-time application of the AI ECG for
LVSD algorithm, in training or testing, to a paediatric patient popula-
tion. As a result of these limitations, no conclusions can be drawn re-
garding algorithm use in these low prevalence, paediatric populations.
Further investigation in a larger paediatric population must be com-
pleted to clarify appropriate application of this algorithm.

When validating LVSD accuracy by echocardiography, the AUC sig-
nificantly decreased when the EF was measured by visual estimation
(AUC,0.8). All othermodes ofmeasuring EF by echocardiography ex-
hibited AUC greater than 0.9 (except 2D; AUC= 0.889), suggesting
that the accuracy EF by visual estimation may be limited. This is consist-
ent with previous reports describing the variability of EF measurement
via visual estimation.18 User variability and clinical context (i.e. severely ill

in emergency department with point-of-care echocardiogram) likely
contribute to the variation in test performance. This raises the possibil-
ity that the AI ECG may, at times, be a more powerful predictor of
LVSD than echocardiography when ventricular function is visually esti-
mated, particularly in acute environments and clinical situations in which
echocardiographic images may be challenging. However, given the lim-
ited number of patients in this subgroup (n= 133), it is difficult to draw
definite conclusions without further investigation.
Location analysis reveals that the AUC was higher in the out-

patient setting than in the emergency department or inpatient set-
ting. This heightened test performance may reflect fewer
confounding factors present in the clinic setting. A number of hy-
potheses may explain this phenomenon: (i) ambulatory patients
may be less likely to have multiple active medical issues or an acute
exacerbation of another disease, either of which might impact the
ECG; (ii) ambulatory patients typically do not have external factors
impacting clinical haemodynamics (i.e. intubation, positive pressure
ventilation, use of intravenous vasoactive medications); (iii) there is
likely less variation between ECG machines used in the clinic (i.e. lim-
ited number of machines at an outpatient location rather than next
available ECG tech within the hospital/unit).
Finally, we hypothesized that variations in ECG rhythm and

morphological features likely used by the model may impact its
performance. In this analysis we sought to determine whether
the presence of a paced rhythm or an intrinsic left bundle branch
block (LBBB) are significantly used by the model to identify LVSD

Figure 2 Forest plot for artificial intelligence electrocardiogram subgroup performance. Location abbreviations in 2G are as follows:
MN-Minnesota, AZ-Arizona, FL-Florida. Odds ratios (ORs) are ‘diagnostic odds ratio’ defined as the ratio between the odds of test positivity in
a patient with disease and the odds of test positivity in a patient without disease.
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(in which case, the AUC would approximate 0.5 in the context of
LBBB, as not all individuals with LBBB actually have LVSD).
However, irrespective of the absence or presence of specific
ECG features, the model continued to perform with an acceptable
AUC .0.8. This indicates that the model continues to effectively
identify left ventricular dysfunction despite the presence of bundle
branch blockade, hypertrophy, or other features listed in Figure 3.
Similarly, model performance persisted in the presence of ar-
rhythmias (Figure 3). While patients with ‘completely normal
ECGs’ (i.e. absence of any arrhythmia, conduction delay, or other
electrophysiologic abnormality) exhibited an AUC of 0.803, the
sensitivity was quite low (19.4%) with very high specificity
(99.1%) indicating the algorithm may have significant limitation
as a screening tool in this subset of patients without adjusting
the model threshold to have a higher sensitivity and lower speci-
ficity for patients with completely normal ECG.

Limitations
The overall number of underrepresentedminorities was small. Patients
from across the United States seen at all three main Mayo Clinic cam-
puses and the Midwest health system were included to mitigate this
risk. Owing to the study size, although proportionally underrepre-
sented, individuals in each minority group numbered in the hundreds
to thousands (see Supplementary material online, Table S1). We ac-
knowledge that while the preliminary performance across race and
ethnicity shows promise, further evaluation is required.

Conclusions
The AI ECG is robust screening tool for ventricular dysfunction, with
strong performance over time, geography, clinical location, patient
age, and ECG features. We similarly observed strong AI ECG per-
formance with respect to variable race/ethnicity while acknowledg-
ing the limited diversity of this study population. The change in
model performance with method of EF estimation emphasizes the
need for objective, reproducible EF calculation methods.
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Figure 3 Forest plot for artificial intelligence electrocardiogram performance with respect to electrocardiogram features. Odds ratios (ORs) are
‘diagnostic odds ratio’ defined as the ratio between the odds of test positivity in a patient with disease and the odds of test positivity in a patient
without disease.
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wearable and handheld devices which hold implications for both
at-home medical care and acute, emergent settings.
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