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ABSTRACT: Adiabatic connection models (ACMs), which interpolate
between the limits of weak and strong interaction, are powerful tools to
build accurate exchange−correlation functionals. If the exact weak-
interaction expansion from the second-order perturbation theory is
included, a self-consistent implementation of these functionals is
challenging and still absent in the literature. In this work, we fill this
gap by presenting a fully self-consistent-field (SCF) implementation of
some popular ACM functionals. While using second-order perturbation
theory at weak interactions, we have also introduced new generalized
gradient approximations (GGAs), beyond the usual point-charge-plus-
continuum model, for the first two leading terms at strong interactions,
which are crucial to ensure robustness and reliability. We then assess the
SCF−ACM functionals for molecular systems and for prototypical
strong-correlation problems. We find that they perform well for both the total energy and the electronic density and that the impact
of SCF orbitals is directly connected to the accuracy of the ACM functional form. For the H2 dissociation, the SCF−ACM
functionals yield significant improvements with respect to standard functionals also thanks to the use of the new GGAs for the
strong-coupling functionals.

■ INTRODUCTION
Kohn−Sham (KS)1 density functional theory (DFT) is the
most used electronic structure computational approach for
molecular and solid-state systems.2−4 Its accuracy depends on
the choice of the approximation for the exchange−correlation
(XC) functional5−7 which, at the highest-rung of the Jacob’s
ladder,8 involves all the occupied and virtual KS orbitals as well
as the eigenvalues. Then, the XC approximation is no more an
explicit functional of the density and, to stay within the pure
KS formalism, the optimized effective potential (OEP)
method9,10 must be employed. Early OEP approaches included
exact-exchange (EXX) and approximated the correlation using
the second-order Görling−Levy perturbation theory (GL2).11

However, this led to a large overestimation of correlation
effects and to convergence problems.12−18

Actually two different main approaches have been explored
to solve this issue: going beyond the second-order approx-
imation19−26 or using a semicanonical transformation.12,13,18

Another possible path is the adiabatic connection (AC)
formalism27−29 which is a general, powerful tool for the
development of XC functionals. For several decades, it has
been used to justify the introduction of hybrid30−32 and double
hybrid (DH) functionals33−35 and successively it has been
directly employed to construct high-level XC functionals based
on AC models (ACM) interpolating between known limits of

the AC integrand.36−43 Recently, it has also been employed in
the context of the Hartree−Fock (HF) theory44,45 to develop
corrections to the Møller−Plesset perturbation series.46

The XC functionals based on ACMs have the general form

E f WW W( ) ( )dxc
ACM ACM

0

1
ACM= =

(1)

where W W W WW ( , , , )0 0= , with W0 = Ex being the exact
exchange energy, W0′ = 2Ec

GL2 being twice the GL2 correlation
energy,11 and W∞ and W∞′ being the indirect part of the
minimum expectation value of the electron−electron repulsion
for a given density and the potential energy of coupled zero-
point oscillations around this minimum, respectively.39,47 The
model Wλ

ACM is designed to mimic the exact but unknown Wλ,
in particular by considering the known asymptotic expan-
sions11,39,40,47
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In recent years, several ACMs have been tested for various
chemical applications showing promising results,48,49 especially
in the description of non-covalent interactions.46,50 However,
most of these recent studies have been performed within the
HF−AC framework, that is, as post-HF calculations.
Conversely, little attention has been devoted to DFT-based
ACM functionals. The main reason for this is that in the HF
case, the ACM is applied on top of the HF ground state,44,45

which is a simple and well defined reference; on the contrary,
in the DFT framework, the ACM-based XC functional should
be in principle applied inside the KS equations in a self-
consistent-field (SCF) fashion. This requirement is not trivial
because ACM-based functionals are in general not simple
explicit functionals of the density but are instead complicated
expressions depending on KS orbitals and orbital energies as
well (through Ex and Ec

GL2). One notable exception are the
MCY functionals51 which use semilocal approximations to set
the interpolation points along the AC integrand, thus allowing
for a relatively straightforward SCF implementation. In the
most general case considered in this work, however, ACM
functionals are fifth rung functionals and thus, in practice, also
in the context of DFT, they are always applied in a post-SCF
scheme using precomputed DFT densities and orbitals.48,52 In
this way, the results depend significantly on the choice of the
reference density and orbitals, making the whole method not
fully reliable.48 On the other hand, an exploratory study of the
XC potential derived from ACM models has shown that this
possesses promising features, indicating that SCF calculations
with ACM-based functionals might be an interesting path to
explore.53

In this work, we tackle this issue by introducing an SCF
implementation of the ACM potential and applying it to some
test problems in order to verify its ability to describe different
properties and systems. One important aim of this work is in
fact to measure and assess the capabilities of some of the most
popular ACM presently available in literature. To this purpose
the use of a proper SCF procedure is crucial as the level of
accuracy of such methods can be inspected independently of
an arbitrary reference ground-state as in previous works. In
fact, for any density functional, the energy error can be
decomposed into a contribution due to the approximate nature
of the functional (intrinsic error) and that due to the
approximate density used in the calculation (relaxation
error).54,55 When the functional is evaluated on an arbitrary
(non-SCF) density, the relaxation error may become
important and the whole performance can be influenced by
the choice of the density. Indeed, recent studies have shown
how this effect can be used to improve DFT results by
choosing accurate non-SCF densities.55,56 Nevertheless, within
this framework, it is difficult to really understand the accuracy
of the functional form itself and therefore to plan new
advances. On the other hand, the use of a proper SCF
procedure provides a well-defined reference for assessing the
intrinsic errors. This is an extremely important point to clarify
in view of future ACM developments. Note that such a
development of new and possibly more accurate ACMs will
instead not be covered in this work but left to upcoming
publications. The development work performed here will

instead focus on a second important goal aimed at solving
some open problems with the ACM potential that hinder its
straightforward SCF implementation. These problems origi-
nate mainly from the naive treatment used so far for the large-λ
contributions W∞ and W∞′ which causes an unphysical
behavior in the ACM potential. Hence, in this article, we
develop new approximations for both W∞ and W∞′ that
preserve the accuracy for energies and remove the limitations
on the potential side. As a byproduct of this work, we obtain
useful strong-correlation generalized gradient approximations
that prove to be very robust for the description of the
Harmonium atom and the H2 dissociation.
In the following, we present the theory behind SCF

implementation of ACM functionals and the construction of
new W∞ and W∞′ approximations. Afterward, we present some
interesting preliminary results obtained for model and real
systems.

■ THEORY
To perform SCF ACM calculations we need to deal with the
potential arising from the functional derivative of the energy of
eq 1, that is53
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where Dj = ∂fACM/∂j with j = Ex, Ec
GL2, W∞, W∞′ . As discussed

in ref 53, the potential in eq 4 requires a combination of OEP
(for Ex and Ec

GL2) and generalized gradient approximation
(GGA) approaches (for W∞ and W∞′ ). Thus, it resembles the
OEP−SCF implementation of the DH functionals reported in
refs 57 and 58. In more details, the v r( ) E

rx ( )
x= and

v r( ) E
rc ( )

c
GL2

= functional derivatives are obtained by solving

the OEP equation which reads9,10,12,59−61

X vr r r r r( , ) ( )d ( )A,
OEP

A,= (5)

with A = X, C denoting the exchange and correlation parts,
respectively. The inhomogeneity on the right hand side of eq 5
is given by
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and the static KS linear response function is

X r r
r r r r

( , ) 2
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i a a i

i a
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(7)

All quantities are evaluated using orbitals ϕpσ and
eigenvalues εpσ in a given cycle of KS SCF procedure (further
details can be found in refs 17, 57, 58, 62, and 63). We note,
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however, that there is a significant difference between ACM
and DH approaches: in the former, the coefficients DE

ACM
x

and
DE

ACM
c
GL2 are not fixed empirical parameters as in DH, but are

well-defined (non-linear) functions of Ex, Ec
GL2, W∞, W∞′ .53

Approximations for the Strong-Interaction Limit.
Another important issue to consider in the SCF implementa-
tion of the ACMs is related to the treatment of W∞ and W∞′ ,
which describe the λ → ∞ limit of the AC integrand. It can be
proven that both W∞ and W∞′ display a highly non-local
density dependence.64−68 This is accurately described by the
strictly correlated electron (SCE) formalism,39,47 which is
however computationally very demanding and nontrivial to
evaluate. Therefore, the λ → ∞ limit is usually approximated
by simple semilocal gradient expansions (GEA) derived within
the point-charge-plus-continuum (PC) model38

W d A sr (1 )w
PC 3 4/3 2[ ] = + (8)

W d C sr (1 )PC
w

3 3/2 2[ ] = + (9)

where s / 2(3 )2 1/3 4/3= | | [ ] is the reduced gradient of the
density, A = −9(4π/3)1/3/10, C = 1/2(3π)1/2, μw =
−31/3(2π)2/3/35 ≈ −0.1403, and μw′ = −0.7222 (slightly
different estimates are possible for μw′, see, e.g., refs 36 and
39). The GEAs of eqs 8 and 9 yield, at least for small atoms,
energies that are quite close to the accurate SCE values.
However, when s is large, for example, in the tail of an
exponentially decaying density, they fail, giving functional
derivatives that diverge.53 This is a severe drawback that does
not allow these approximations to be used directly in an SCF
implementation.
To remedy this limitation we consider here a simple GGA

approximation, named, harmonium PC (hPC) model, based
on the Perdew−Burke−Ernzerhof (PBE) exchange enhance-
ment factor69 that recovers the GEAs of eqs 8 and 9 in the
slowly varying regime, is well behaved everywhere, and
reproduces as close as possible the SCE values for both W∞
and W∞′ . Thus, we have
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where κW = −7.11 and κW′ = −99.11 have been fixed such that
W∞

hPC and W∞′hPC recover exactly the corresponding SCE values
for the harmonium atom at ω = 0.5:70 with this value, the
degree of correlation resembles that of the He atom and a
simple analytical density is obtained. We note that a previous
attempt to develop GGAs for W∞ and W∞′ , the modified PC
(mPC) model of ref 71, yields results that are quite far from
both the PC and the SCE values, in particular W∞′ does not
even recover the PC model in the small s limit. In fact, the
mPC GGAs have been derived for the quasi-two-dimensional
density regime71 and their application in three-dimensional
systems, for example for the total correlation of atoms, is highly
based on an error cancellation between the quite inaccurate

values of W∞ and W∞′ .71 In particular, W mPC has been
designed to compensate the inaccuracies of W∞

mPC for the ISI
functional, but this error compensation cannot work for other
ACMs (especially those, as SPL, using only W∞).
To understand the performances of the different approx-

imations for the strong-interaction functionals, we report in
Figure 1 the differences between the values of W∞ and W∞′

computed with the two GGAs and the PC model, for the
Hooke atom at different confinement strengths ω. The
corresponding values for those instances of ω for which
exact SCE reference data are available are also reported in
Table 1.

We see that, unlike mPC, the hPC model reproduces very
well both the W∞ and W∞′ accurate SCE values,70 being
comparable to and even superior to the original PC model.
This performance is not trivial because hPC was parameterized
only on a single instance of the Hooke’s atom (ω = 0.5) but
turns out to be very accurate for the whole range of
confinement strengths. In particular, Figure 2 shows that in
the small ω range (strong interaction limit of the Hooke’s

Figure 1. Differences between the values of W∞ and W∞′ computed
with hPC and mPC formulas and the corresponding W∞

PC and W∞′PC
data (ΔW∞

method = W∞
method − W∞

PC; ΔW∞′method = W∞′method − W∞′PC) for
the harmonium atom at various values of the confinement strength ω.
For reference, some available accurate SCE values are also reported.70

Table 1. W∞ and W∞′ Energies (in Ha) for Three Values of
ω for Which Hooke’s Atom has Analytical Solutions72 and
Exact SCE Reference Data Are Available70a

ω SCE PC hPC mPC

W∞

0.0365373 −0.170 −0.156 −0.167 −0.191
0.1 −0.304 −0.284 −0.303 −0.344
0.5 −0.743 −0.702 −0.743 −0.841
MARE 6.78% 0.70% 12.90%

W∞′
0.0365373 0.022 0.021 0.021 0.060
0.1 0.054 0.054 0.053 0.146
0.5 0.208 0.215 0.208 0.562
MARE 2.64% 2.13% 171.10%

aHooke’s atom is usually considered to be in the strong correlation
regime when the density displays a maximum away from the center of
the harmonic trap, which happens73 for ω ≲ 0.0401. The last line of
each panel reports the MARE.
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atom) hPC yields the best estimation of the XC energy Exc =
W∞ + 2W∞′ , being slightly better than PC, while the mPC
method fails completely.

An additional assessment is provided in Table 2 and Figure 3
where real atoms are considered both for SCE energies and
SCE potentials. Also in this case the results of the hPC
functional are in line with or better than the PC model, that
was originally parametrized against the He atom, indicating
once more the robustness of the hPC method. As anticipated,
the mPC is instead quite far from the reference, especially for
W∞′ .

■ COMPUTATION DETAILS
All calculations have been performed with a locally modified
ACESII74 software package. As in our previous stud-
ies,17,53,57,58,62,63,75,76 in order to solve OEP equations, we
have employed the finite-basis set procedure of refs 77 and 78.
In calculations, we employed the basis sets detailed below and

tight convergence criteria (SCF: 10−8). In general, the
convergence criteria were met within several cycles of the
SCF procedure.
In order to solve algebraic OEP equations, the truncated

singular-value decomposition (TSVD) of the response matrix
was employed. The cutoff criteria in the TSVD procedure were
set to 10−6. For technical details on this type of calculations, we
refer the reader to refs 17 and 63.
As reference data, we have considered the coupled-cluster

single double and perturbative triple [CCSD(T)]79 results
obtained in the same basis set in order to make a comparison
on the same footing and to reduce basis set related errors. In
particular, we have considered a comparison with CCSD(T)
relaxed densities, the corresponding KS potentials obtained via
KS inversion,80 and the total CCSD(T) energies. In the
assessment, we have considered several properties, that is:

• total energies: the total energies have been calculated
for the systems listed in Table 1 in ref 63 using an
identical computational setup as in the same paper. A
summary of the employed basis sets is also reported in
the Supporting Information. We remark that, although
total energies are not very important in practical
chemical applications, they are important observables
and are especially useful as indicators of the quality of
the ACM interpolation.

• Dipole moments: for selected systems (H2O, HF, HCl,
H2S, and CO), we have calculated the dipole moments
using SCF densities for various methods. This is a direct
test of the quality of self-consistent densities obtained
within all approaches. The uncontracted aug-cc-pVTZ
basis set of Dunning81 was used for all systems together
with geometries taken from ref 82.

• HOMO and HOMO−LUMO gap energies: as in refs
63 and 83, we have computed the HOMO and
HOMO−LUMO gaps, respectively, for the same set of
systems as in the case of total energies. In the case of
HOMO energies, the reference data have been taken
from ref 83, whereas the HOMO−LUMO gap energies
have been obtained from applying the KS inversion
method80 taking as a starting point the CCSD(T)
relaxed density matrix as in ref 63.

• correlation potentials and densities: as in our previous
studies,17,63,84,85 here we also investigate the quality of
correlation potentials and densities17,86,87 looking at
their spatial behavior. Both quantities are obtained from
fully SCF calculations. The densities are analyzed in
terms of correlation densities defined as Δρc = ρmethod −
ρX, where ρX is the density obtained from the exact
exchange only (X = EXX)60 or Hartree-Fock (HF) (X =
HF) calculations for DFT and WFT methods,
respectively. The Ne atom OEP calculations have been
performed in a fully uncontracted ROOS-ATZP88 basis
set, whereas for the CO molecule, the uncontracted cc-
pVTZ89 basis sets were employed.

• dissociation of H2: fully self-consistent and post-SCF
calculations, using OEP EXX orbitals, have been
performed in the spin restricted formalism using the
uncontracted aug-cc-pVTZ basis set. For comparison,
PBE, MP2, GL2@EXX, and FCI data are also reported.

• correlation energies of Hooke’s atoms: as previ-
ously,52,90,91 we have performed the calculation for
various values of ω in the Hooke’s atom model92 ranging

Figure 2. Comparison of the leading term of the XC energy
E W W( 2 )xc = + in the strong interacting regime of the Hooke’s
atom calculated using different models with FCI data.52

Table 2. Values of W∞ and W∞′ for the He, Be, and Ne
Atoms Obtained from Different Models and Using EXX
Densities; We Use Atomic Unitsa

SCE PC hPC mPC

W∞

H −0.3125 −0.3128 −0.3293 −0.4000
He −1.500 −1.463 −1.492 −1.671
Be −4.021 −3.943 −3.976 −4.380
Ne −20.035 −20.018 −20.079 −21.022
MARE 1.15% 1.81% 13.31%

W∞′
H 0 0.0426 0.0255 0.2918
He 0.621 0.729 0.646 1.728
Be 2.59 2.919 2.600 6.167
Ne 22 24.425 23.045 38.644
MARE 13.71% 3.05% 130.67%

aThe results which agree best with SCE values39,47 are highlighted in
bold. The last line of each panel reports the MARE [for W∞′ the H
results are excluded]. The W∞′SCE reference data are reported with the
same precision of as in ref 39.
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between 0.03 (strong interaction) and 1000 (weak
interaction) using a even-tempered Gaussian basis set
from ref 93. For comparison, the ACM correlation
energies have been calculated at both @EXX and @SCF
reference orbitals.

■ RESULTS
We have performed a series of SCF ACM calculations to
investigate the performance of these methods in the KS
framework. In particular, we have considered the interaction−
strength−interpolation (ISI)36 and Seidl−Perdew−Levy
(SPL)40 ACMs. Unless explicitly stated, the hPC model has
been used to describe the strong-interaction limit in all
calculations. Moreover the bare GL2 (for SCF calculations
OEP-GL212) approach is also reported. The ISI model for Wλ
has in general a larger deviation from linearity than SPL (which
does not depend onW∞′ too), whereas GL2 corresponds to the

linear approximation Wλ = 2EGL2 λ. Thus, the comparison of
ISI with SPL and GL2 gives information on the importance of
the shape of the ACM interpolation form.
In Table 3, we show the total energies computed with the

various methods for a test set of 16 closed-shell atoms and
small molecules, namely, He, Be, Ne, Mg, Ar, HF, CO, H2O,
H2, He2, Cl2, N2, Ne2, HCl, NH3, and C2H6.
We see that ISI@SCF and SPL@SCF perform quite well,

giving errors roughly half that of OEP−GL2. For comparison,
we acknowledge that the PBE functional69 yields a mean
absolute relative error (MARE) of 0.11%, which is twice as
large as that of ISI@SCF.
Nevertheless, we have to acknowledge that the performance

has further margins of improvement. For example the MAEs of
MP2 and OEP2-sc (not reported) for the same test are 20 and
17 mHa, respectively. We can trace back most of this difference
to the fact that the use of KS eigenvalues, as in ISI, SPL, and
OEP−GL2, requires a quite large AC curvature (i.e., second

Figure 3. Comparison between (a) vxc∞(r) = δW∞/δρ(r) and (b) vxc′∞(r) = δW∞′ /δρ(r) potentials computed from different models for the Ne atom
(using EXX densities).

Table 3. Total Energies (Ha) Calculated with Different Methods Self-Consistently (@SCF) or on top of EXX Orbitals (@
EXX), for Several Functionalsa

@SCF @EXX

system ISI SPL GL2 ISI SPL GL2 CCSD(T)

He −2.90089 −2.90043 −2.90780 −2.90191 −2.90148 −2.90925 −2.90253
Be −14.67318 −14.67551 not. conv. −14.67102 −14.67278 −14.69013 −14.66234
Ne −128.93274 −128.94313 −128.98863 −128.92733 −128.93628 −128.97770 −128.89996
Mg −199.86915 −199.86937 −199.88275 −199.86560 −199.86569 −199.87826 −199.82815
Ar −527.51661 −527.53309 −527.58461 −527.51478 −527.53095 −527.58181 −527.45748
H2 −1.17039 −1.16972 −1.18107 −1.17019 −1.16953 −1.18060 −1.17273
He2 −5.80177 −5.80086 −5.81560 −5.80167 −5.80075 −5.81539 −5.80506
N2 −109.58263 −109.61715 −109.75090 −109.56105 −109.58609 −109.68725 −109.47628
Ne2 −257.86564 −257.88644 −257.97751 −257.85475 −257.87266 −257.95552 −257.80003
HF −100.43787 −100.45019 −100.50368 −100.43148 −100.44188 −100.48965 −100.39579
CO −113.35397 −113.38496 −113.51191 −113.32766 −113.34760 −113.43484 −113.25738
H2O −76.42686 −76.44091 −76.50285 −76.42076 −76.43270 −76.48790 −76.38692
HCl −460.58531 −460.58876 −460.61411 −460.58227 −460.58550 −460.61020 −460.50933
Cl2 −919.93674 −919.94378 −919.99349 −919.92413 −919.93022 −919.97763 −919.77032
NH3 −56.55283 −56.56435 −56.62446 −56.54859 −56.55876 −56.61412 −56.52332
C2H6 −79.80517 −79.82045 −79.92279 −79.79876 −79.81239 −79.90830 −79.76414
ME −50.00 −61.08b −120.85 −43.14 −52.09 −99.17
MAE 50.91 62.25b 120.85 43.96 53.16 99.17
MARE 0.055% 0.071%b 0.162% 0.048% 0.062% 0.150%

aCCSD(T) results are given as a reference. The last rows report the mean error (ME, in mHA), MAE (in mHA), and the MARE (in percent). For
OEP−GL2, all the averages exclude the Be atom that for this functional has not converged. Not. conv.�not converged. bWithout Be.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00352
J. Chem. Theory Comput. 2022, 18, 5936−5947

5940

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00352?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00352?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00352?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00352?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00352?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


derivative with respect to λ) to yield accurate results, whereas
this is not the case for MP2 and OEP2-sc that employ HF-
quality eigenvalues. Then, KS-based methods need much more
accurate ACMs to compete with HF-based ones. This is also
confirmed observing that in Table 3, ISI is generally better
than SPL, as the former is a more advanced ACM than the
latter.
A second, related observation is that the ISI and SPL results

suffer from a small relaxation error that worsens slightly the
performance (with respect to using EXX orbitals). This effect
might be related to the fact that the considered ACMs were
developed in the context of post-SCF calculations and, as a
result, may include some inherent error cancellation which is
lost when they are evaluated using a (more accurate) SCF
density. To better understand this trend, we define the
quantity

E E E E E@SCF @EXXref ref[ ] = | | | | (12)

which considers the absolute error difference [with respect the
reference, i.e., CCSD(T)] going from EXX orbitals to SCF
orbitals (a negative value means that SCF orbitals give better
accuracy than EXX orbitals). The values of Δ[E] for ISI, SPL,
and OEP−GL2/GL2 are 7.0, 9.1, and 16.9 mHa, respectively.
Despite the Δ[E] values all being positive (i.e., calculations
using EXX orbitals are more accurate) they decrease going
from GL2 to SPL and then from SPL to ISI, showing again that
increasing the complexity/accuracy of the ACM can yield
better SCF potentials and relaxed total energies.
Interestingly, an opposite effect of the density relaxation is

found in the harmonium atom, as shown in Figure 4, where if

we look at small values of the confinement strength, where the
relaxation becomes more important, the SCF results are better
with respect to the ones obtained using EXX orbitals and
density (for both ISI and SPL). This depends on the fact that
at these regimes, the true density is very different from the
EXX one, and thus, the SCF procedure produces a significant
improvement on the density. This also traces back to the use of
hPC which yields accurate strong-correlation potentials; we
note in fact that the accuracy of both ACMs with the hPC

model is very high (compare, e.g., with Figure 3 of ref 52).
Conversely using the mPC model only ISI results are rather
accurate because of error compensation effects between the
W∞

mPC and the W mPC terms, while SPL ones, where only W∞
mPC

is used, are rather poor (see Figure S2 in the Supporting
Information). This is an important indication of the
importance of using proper strong-correlation approximations,
delivering both good energies and potentials.
In Table 4, we report the dipole moments of some selected

systems, from the SCF density. The results for CO are
reported separately because they are qualitatively different and
deserve a distinct analysis.
For H2O, HF, HCl, and H2S, a comparison with the

CCSD(T) data shows that ISI is quite effective in predicting
the dipole moments being slightly better than SPL and twice as
good as GL2 [for comparison PBE gives in this case a mean
absolute error (MAE) of 0.092 Debye with respect
CCSD(T)]. Anyway, as already observed for the total energies,
there are important margins of improvement as testified by the
OEP2-sc performance that is definitely better than the ISI one.
As already discussed, we can trace back the limitations of ISI
and SPL not only in part to relaxation effects but also on the
fact that, working in a pure SCF KS framework, it is very hard
for the ACM to provide a proper curvature of the AC
integrand curve as to get accurate KS orbital energies;
consequently, the orbital-dependent energies are also neg-
atively affected. For the case of CO, these effects are even more
evident. In this case, in fact, OEPx predicts a qualitatively
wrong dipole moment but GL2 largely over-corrects it,
indicating that the linear behavior of the AC integrand needs
to be significantly improved. Both ISI and SPL can partially
achieve this task, halving the error with respect to GL2, but still
they yield quite overestimated dipole moments.
As a next step, we consider in Table 5 the highest occupied

molecular orbital (HOMO)−lowest unoccupied molecular
orbital (LUMO) gaps obtained from different methods. As it
could be expected both ACMs correct the general over-
estimation of gaps given by the OEPx but in doing so, they
overestimate the correlation effects yielding gaps that are too
small in most cases. Thus, we obtain MAEs of 0.68 and 0.52 eV
for SPL and ISI, respectively, to be compared with the OEP2-
sc MAE of 0.21 eV. We note anyway that the ISI and SPL
results are clearly better than conventional semilocal func-
tionals (PBE gives a MAE of 0.97 eV). Moreover, we note that
by improving the quality of the ACM (GE2 → SPL → ISI) the
description of the HOMO−LUMO gap is also significantly
improved. Similar considerations apply as well for the HOMO
energies (see Table 6). At the ISI level, the HOMO is shifted
to higher energy with the almost the same MARE as OEPx
(which is shifted to lower energy). Again, the ISI approach is
better than SPL and much better than GL2 (as well as PBE
with a MARE of 38.3%).
Then, we consider the correlation potentials for two typical

systems, the Ne atom and the CO molecule. In the top panels
of Figure 5, we see that the ACMs provide a quite good
description of the correlation potential for the two systems,
improving significantly over GL2. Nevertheless, with respect to
reference data there are still some limitations, for example, a
moderate overestimation of the correlation potential in valence
regions. This characteristic corresponds to an overestimation
of shell oscillations in the SCF density, as indicated in the
bottom panels of Figure 5, where we report the correlation

Figure 4. Relative error on correlation energies of harmonium atoms
for various values of ω computed at @SCF and @EXX orbitals for ISI
and SPL functionals using the hPC model for the strong-interaction
functionals. The errors have been computed with respect to FCI data
obtained in the same basis set.93 The exact ISI and SPL values are
taken from ref 70 and are obtained by inserting exact densities into
the ISI and SPL functionals, including the exact treatment (SCE) of
the strong-interaction limit.
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density ρc, that is, the difference between the density obtained
with a correlated method and its exchange-only version.
In the central panels of Figure 5, we report the values

Δ[vc(r)], which is defined, in analogy to eq 12 as

v v v v vr r r r r( ) @SCF( ) ( ) @EXX( ) ( )c c c
ref

c c
ref[ ] = | | | |
(13)

These show, point-by-point whether or not the SCF
procedure improves the correlation potential with respect to
EXX orbitals. As we found for energies, the SCF correlation
potentials are less accurate, but the error reduces with more
accurate ACM functionals. This feature is also evident for the
correlation density, see bottom panels. In this context, we
should however also point out that the ACM-SCF density does
not correspond to the exact linear response density.94−96

As a final case, we consider in Figure 6 the potential energy
surface for the dissociation of the H2 molecule, in a restricted
formalism,97 which is one of the main DFT challenges,97,98 and
was previously investigated in the ACM framework.43,99,100

While both MP2 and GL2@EXX diverge at large distances,
ISI@SCF nicely reproduces the exact FCI curve, much better
than ISI@EXX, see also ref 48. Thus, the SCF procedure turns
out to be quite important showing that, despite some
limitations discussed above, it is crucial to include important

correlation effects into the orbitals. For SPL (see Figure S1 in
the Supporting Information), similar trends are found; the
SPL@SCF curve for R/R0 > 2.5 first increases and then
decreases asymptotically, a behavior which is clearly incorrect
and depends on some drawbacks of the SPL functional to
describe the limit for large distances, which is more influenced
by the strong correlation.
The limit for very large distances, well beyond R/R0 > 5, is

numerically tricky, but it can be computed exactly using the
hydrogen atom with fractional spins, H(1/2,1/2), that is, with
half spin up and half spin down.101 For this system, we have
EGL2 → −∞ so that the ISI XC energy reduces to36

E W W
q

q2 1
1

ln(1 )xc
ISI i

k
jjjjj

y
{
zzzzz+ +

(14)

with q E W W( )/x= . The potential is thus a simple
linear combination of the EXX potential and the GGA
potential from W∞ and W∞′ . For the SPL approach, we have
simply that Exc

SPL → W∞ and thus the potential is just
δW∞/δρ(r).
The errors for different methods and orbitals are reported in

Table 7.

Table 4. Dipole Moments (in Debye) for Some Selected Systems Calculated Using Self-Consistent Densitiesa

MAE

method H2O HF HCl H2S CCSD(T) exp. CO

OEPx 2.043 1.954 1.279 1.171 0.121 0.180 −0.265
GL2 1.616 1.531 1.061 1.004 0.187 0.145 1.703
SPL 1.758 1.654 1.085 1.024 0.110 0.080 0.940
ISI 1.809 1.699 1.093 1.030 0.083 0.060 0.692
OEP2-sc 1.885 1.786 1.185 1.094 0.018 0.073 0.355
CCSD(T) 1.904 1.809 1.170 1.079 0.065 0.153
Exp. 1.855 1.820 1.080 0.970 0.122

aExperimental data are taken from ref 82. The MAE of H2O, HF, HCl, and H2S with respect to CCSD(T) and experimental results is also reported.

Table 5. HOMO−LUMO Energy Gap (eV) for Different Systems as Obtained from Several Methodsa

@SCF

system OEPx GL2 OEP2-sc SPL ISI KS[CCSD(T)]

He 21.60 20.95 21.32 21.23 21.23 21.21
Be 3.57 not. conv. 3.63 3.40 3.47 3.61
Ne 18.48 14.12 16.45 15.17 15.60 17.00
Mg 3.18 3.40 3.33 3.38 3.38 3.36
Ar 11.80 10.95 11.43 11.08 11.17 11.51
H2 12.09 12.03 12.13 12.12 12.12 12.14
He2 21.28 20.64 21.02 20.81 20.81 20.56
N2 9.21 6.73 8.37 7.68 7.99 8.55
Ne2 17.84 13.49 15.75 14.41 14.83 16.23
HF 11.36 7.80 9.84 8.70 9.08 10.30
CO 7.77 5.87 7.22 6.68 6.90 7.29
H2O 8.44 5.99 7.49 6.73 7.03 7.75
HCl 7.82 7.10 7.52 7.11 7.14 7.55
Cl2 3.90 2.65 3.35 2.74 2.78 3.29
NH3 6.97 5.30 6.35 5.78 5.98 6.54
C2H6 9.21 8.24 8.85 8.51 8.62 8.95
ME +0.54 −1.13b −0.11 −0.64 −0.48
MAE 0.52 1.15b 0.21 0.68 0.52
MARE 6.49% 12.16%b 1.86% 7.49% 5.71%

aThe last column reports the reference CCSD(T) data obtained from inverse method. The last lines report the MAE, and the MARE with respect
to the CCSD(T) results. Not. conv.�not converged. bwithout Be.
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At the exact density (ρ(r) = exp(−2r)/π) SPL−PC gives an
extremely accurate total energy but the same method fails for
the SCF calculation. The SPL-mPC approach strongly

underestimates the total energy, while the SPL-hPC gives a
much lower error, both for the exact and the SCF densities. At
the ISI level, all the energies are higher and the ISI-hPC@SCF
is the most accurate approach. Note, however, that ISI-PC can
be made exact with a proper choice of the parameters.38 Note
also that EXX fails for this system and PBE is also quite
inaccurate.
When SCF effects are considered, PBE, EXX, ISI-mPC, and

ISI-hPC yield a slight improvement with respect to the case
when the exact density is used. Because the integrated density
difference (IDD) is not zero in all cases, this is a clear signature
that all methods display some error compensation effect.
Moreover, some methods give important convergence issues:
the simple PC model does not converge, as explained above;
the mPC model converges but the errors are very large, about
twice the PBE ones. Instead, the ISI-hPC is very good for both
the considered densities, having the best accuracy among all
functionals and performing even better than all the functionals

Table 6. HOMO Orbital Energies (eV) for Different Systems as Obtained from Several Approachesa

@SCF

system OEPx GL2 OEP2-sc SPL ISI CCSD(T)

He −24.98 −24.23 −24.55 −24.46 −24.39 −24.48
Be −8.41 not. conv. −8.89 −9.47 −9.32 −9.31
Ne −23.38 −17.66 −20.14 −18.98 −19.48 −21.47
Mg −6.88 −8.04 −7.33 −7.93 −7.91 −7.57
Ar −16.08 −14.94 −15.34 −15.11 −15.20 −15.63
H2 −16.17 −16.34 −16.30 −16.25 −16.13 −16.41
He2 −24.92 −24.14 −24.47 −24.38 −24.30 −24.48
N2 −17.17 −11.32 −15.65 −13.09 −13.78 −15.51
Ne2 −23.05 −17.45 −19.98 −18.80 −19.31 −21.34
HF −17.48 −12.16 −14.57 −13.52 −14.03 −15.96
CO −15.02 −10.64 −13.21 −12.18 −12.70 −13.94
H2O −13.69 −9.01 −11.27 −10.39 −10.87 −12.50
HCl −12.92 −11.94 −12.28 −12.04 −12.08 −12.59
Cl2 −12.06 −9.92 −10.85 −10.14 −10.22 −11.45
NH3 −11.56 −8.37 −9.91 −9.34 −9.65 −10.78
C2H6 −13.21 −11.39 −12.20 −11.93 −12.07 −13.01
ME −0.65 +1.97b +0.59 +1.15 +0.93
MAE 0.89 2.49b 0.62 1.22 0.98
MARE 6.12% 13.68%b 4.36% 8.28% 6.67%

aIn the last column, we report reference HOMO energies from ref 62. The last lines report the MAE, and the MARE calculated with respect to the
CCSD(T) results. Not. conv.�not converged. bWithout be.

Figure 5. Correlation potentials (top panels), Δ[vc] (middle), and
correlation density (bottom) for the Neon atom (left) and CO
molecule (right) obtained using several ACM−SCF methods.
Reference means the CCSD(T) data using the method from ref 80.

Figure 6. Total energy of the H2 molecule as it is stretched calculated
with the various methods. The inset presents the same data around
the equilibrium distance.
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considered in Table 5 of ref 97. Note that the good accuracy of
the ISI-hPC with respect to ISI-mPC is not related to the
previously mentioned error cancellation between an incorrect
SCF density and an incorrect energy. In fact, the IDD error is
significantly smaller going from ISI-hPC to ISI-mPC.
Interestingly, the same arguments hold when comparing
SPL-hPC to SPL-mPC, thus confirming the high quality of
the hPC functional. Note that the almost vanishing IDD value
for the SPL-hPC approach is a particular case, and all methods
with IDD ≲ 0.1 show a quite accurate density. The accuracy of
the ISI-hPC@SCF approach for the H2 dissociation limit is
thus quite significant, considering that it uses full exact
exchange and a combination of GL2 and a GGA functional
without empirical parameters, in contrast to other approaches
that use more complex constructions or extensive fitting on
molecular data.98,102

■ CONCLUSIONS
In this paper, we have shown that it is possible to use ACM-
based XC functionals in a full SCF procedure. This solves a
long-standing issue in DFT as all the previous calculations with
ACM functionals had been done in a post-SCF fashion using
GGA or EXX orbitals. This opens the way to new applications
and even basic studies in this context, removing the need for a
post-SCF procedure and all the related sources of inaccuracy.
Of course, despite the ACM−SCF procedure presented here is
well defined, conceptually clean and fully capable of producing
important results, is it fair to state that the whole method is not
yet optimized and straightforward to apply especially because it
is strictly related to the OEP approach used for the treatment
of the GL2 component, which requires itself some expertise to
be handled. Nevertheless, several tricks and improvements can
be used to make the OEP calculations simpler and more
reliable,103 thus various upgrades can be easily seen from the
practical point of view for the SCF−ACM method. Anyway,
these are left for future works, as in this paper we wanted to
focus only on the core of problem without adding too many
technical details.
Having been able to perform SCF ACM calculations on

various systems, we could perform a thorough assessment of
the functionals, finding important results. For strongly
correlated systems, such as the harmonium atom and the
hydrogen molecule at the dissociation limit, the ACM SCF
calculations yield very accurate results taking advantage of the

incorporated strong-correlation limit and also thanks to the
novel hPC functional for W∞ and W∞′ that proved to be very
accurate for these cases. For molecular systems, we found that
the overall accuracy using SCF orbitals depends on the quality
of the underlying ACM, in line with the refs 24 and 25. In any
case, the ISI-hPC yields already quite correct SCF potentials
and total energies: nevertheless, its accuracy needs to be
further verified for reactions and atomization energies.
Thus, we can finally conclude that, despite some limitations,

the overall accuracy of the ISI functional (and partially also of
the SPL one), when the full SCF solution is taken into account,
is overall satisfactory, especially considering the following: (i)
it does not employ any parameter obtained from molecular
systems, and (ii) the approach is within a pure KS formalism
with a local potential. These results and the availability of a
working SCF procedure for general ACM formulas now open
to the application and testing on other systems beyond the
simple ones considered in this work. Moreover, it paves the
path toward the development of more accurate ACM
functional forms (see e.g. ref 46) as well as to further
development of W∞ and W∞′ approximations, with improved
accuracy for molecular systems.

■ INTERPOLATION FORMULAS
In the following, we report the ISI and SPL interpolation
formulas.
ISI formula38
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SPL formula40
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The SPL XC functional reads
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Note that this functional does not make use of the
information from W∞′ .

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00352.

Table 7. Total Energy Error for H(1/2,1/2) in kcal/mol for
Different Methods and Orbitals, Using a Geometric Series
Basis-Set with 17 Uncontracted Gaussian Functions, 104 as
the Maximum Exponent, and 2.5 as the Geometric
Progression Factora

@EXACT @SCF IDD

PBE 54.7 51.5 0.103
EXX 196.1 178.6 0.260
SPL-PC −0.4
SPL-mPC −109.8 −114.9 0.125
SPL-hPC −21.0 −21.4 0.024
ISI-PC 27.4
ISI-mPC 90.2 83.7 0.151
ISI-hPC 23.6 19.4 0.107

aThe last column reports the IDD error, that is, ∫ dr4πr2|ρ(r) −
ρexact(r)|. Note that self-consistent PC calculations do not converge.
The best two ACM results are reported in boldface.
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