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Abstract

Scope: Blueberries are rich sources of bioactive polyphenols that may provide health benefits
when consumed regularly, leading to their increased marketing as dietary supplements. However,
the metabolic changes associated with consuming concentrated doses of purified polyphenols, as
may be present in dietary supplements, are unknown, especially when considering the colonic
metabolites formed. This study aimed to evaluate the pharmacokinetics of high doses of purified
blueberry polyphenols.

Methods and results: Five-month old, ovariectomized Sprague-Dawley rats were acutely
dosed with purified blueberry polyphenols (0, 75, 350, and 1000 mg total polyphenols/kg bw)

and #°Ca to measure calcium absorption. Blood and urine were collected for 48h after dosing

and phenolic metabolites measured via UPLC-MS/MS. The most prominent metabolites were
colonically generated cinnamic and hippuric acids. Smaller amounts of other phenolic acids,
flavonols, and anthocyanins were also detected. Most metabolites followed a dose-response
relationship, though several showed saturated absorption. Maximal metabolite concentrations were
reached within 12h for a majority of compounds measured, while some (e.g., hippuric acid)
peaked up to 24h post-dosing. Calcium absorption was significantly increased in the highest dose
group (p=0.03).

Conclusion: These results indicate that increased doses of blueberry polyphenols induce
changes in intestinal phenolic metabolism and increase calcium absorption.
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1. INTRODUCTION

Fruit and vegetable derived polyphenols may have beneficial health effects by reducing
the risk of developing many chronic diseases while also improving cardiovascular and
neurocognitive health.[1-4] Blueberries are a particularly rich source of polyphenols,
containing high amounts of anthocyanins, flavonols, and chlorogenic acid,[5] and
demonstrating many of these same health benefits.[6]

To elucidate the connection between blueberry polyphenols and their health benefits,

an understanding of their bioavailability and which forms are most biologically active

is necessary. To that end, much recent work has been performed on the absorption,
metabolism, and excretion of polyphenols. The metabolism of these compounds, in
particular, has been challenging, as polyphenols undergo phase Il metabolism (methylation,
glucuronidation, and/or sulfation) within small intestinal epithelial cells before being
absorbed or effluxed back into the intestinal lumen.[7-9] Small intestine-derived phase

I metabolites are poorly absorbed (<2% for many classes of polyphenols),[10, 11] as
evidenced by low plasma and urine concentrations (i.e., low Cp,ax Values) and rapid
excretion (Tmax 0.5-2h).[12] For years, researchers surmised that because the bioavailability
of polyphenols and their /n vivo residence time was low, they had a limited ability to exert
beneficial health effects.[13]

However, in recent years, the emergence of the gut microbiome as an important and active
part of the metabolic transformation of dietary phenolics has offered a new perspective. A
large majority of orally ingested polyphenols reach the lower intestine intact, allowing them
to interact extensively with the gut microbiota, in a bidirectional manner.[9, 14] Diets high in
polyphenols have been reported to shift the composition of the gut microbial communities,
often to a putatively healthier state, while also being efficiently metabolized and absorbed.
[15] During this process, polyphenols are catabolized to smaller molecular weight phenolic
acids that are more extensively absorbed (up to 10-fold higher) than in the small intestine
(i.e., higher Crhax and greater AUC) and persist longer in systemic circulation (i.e., later
Tmax)-[8, 16] This not only increases the overall bioavailability of polyphenols, but raises
the possibility that the colonic catabolites may be driving the observed health benefits.[10]
Thus, much recent work has focused on understanding these catabolic pathways and fully
characterizing the colonic metabolites produced from these interactions.

As knowledge of microbial metabolism of polyphenols continues to expand, there are
several areas that remain understudied, including the full pharmacokinetics of colonic
catabolites and the dose-response effects of elevated doses as may be found in dietary
supplements that may contain up to 100x the amounts typically consumed in the Western
diet.[17, 18] This is critical information for designing clinical trials. Most pharmacokinetic
studies on polyphenols are completed within 8h of dosing, which may not be long enough
to detect a number of colonic catabolites that may be produced as the ingested dose takes
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~20h to traverse the full length of the Gl tract.[19] Additionally, given the rapid rise — from
<2% to 30% of U.S. adults — in popularity of polyphenol-rich herbal and botanical dietary

supplements over the past 25 years,[20-23] expanding the range of doses studied is critical
to understand the full scope of the metabolism of these compounds.

We evaluated the metabolism and dose-response of blueberry polyphenols. We accomplished
this by quantitating urinary and plasma phenolic metabolites for 48h after an acute dose

of blueberry polyphenols over a large range of doses. Given that women aged 51-70y are
the most frequent consumers of botanical dietary supplements and are also susceptible

to menopause-related bone loss,[20] we chose to use the ovariectomized (OVX) rat

model for this study because it mimics hormonal changes and bone loss occurring in
postmenopausal women.[24] With recent evidence suggesting that blueberry polyphenols
may mitigate menopause-associated bone loss and reduce the incidence of osteoporosis in
aging females by increasing calcium absorption,[25-27] we also evaluated the influence of
blueberry polyphenols on calcium absorption. We hypothesized that the colonic catabolites
of blueberry polyphenols would be absorbed much later than and to a much greater extent
than small intestinal metabolites and would exhibit a dose-dependent increase in calcium
absorption.

2. EXPERIMENTAL SECTION

2.1 Chemicals/Materials and vendors

Commercial standards of cyanidin-3-O-glucoside chloride, delphindin-3-O-glucoside
chloride, malvidin-3-O-glucoside chloride, gallic acid, caffeic acid, ferulic acid,

ethyl gallate, taxifolin, chlorogenic acid, hippuric acid, 3-hydroxyhippuric acid,
4-hydroxybenzaldehyde, isovanillin, p-anisic acid, 4-hydroxyphenylacetic acid, 3-
hydroxyphenylpropionic acid, 3-methoxyphenylacetic acid, isovanillic acid, homovanillic
acid, 3-hydroxy-4-methoxyphenylpropionic acid, syringic acid, quercetin, myricetin,
chlorogenic acid, quercetin-3-O-glucuronide, protocatechuic acid, p-coumaric acid,
catechin, epicatechin, 4-methoxyquercetin, and quercetin-3-O-glucoside as well as sodium
carbonate and Folin and Ciocalteu’s reagent (2N) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Caffeic acid glucuronide was supplied by Synthose (Concord, Ontario,
Canada). LC-MS grade solvents, including methanol, water, ACN, and formic acid as
well as trace metal grade concentrated nitric acid were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). 4°Ca was purchased from PerkinElmer (Waltham, MA,
USA). EcoL.ite (+) scintillation cocktail was purchased from MP Biomedicals (Santa Ana,
CA, USA).

2.2 Animal protocols

2.2.1 Study overview.—The study design is illustrated in Figure 1. Upon arrival,
animals were maintained on a polyphenol-free diet during a 1-week stabilization. Animals
were then randomized to treatment groups (n=8/gp), with all groups (except control)
switched to a 5% blueberry diet for the remainder of the study. After 1 week on the
blueberry diet, animals were dosed with blueberry phenolics and 4°Ca, with blood and
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urine collected over 48h for pharmacokinetics. Animals were then sacrificed via CO,
asphyxiation, both femurs harvested, and ovariectomy verified by visual inspection.

2.2.2 Animal care.—Animal experiments were conducted in adherence to Purdue
University Animal Care and Use Committee (PACUC) guidelines, following an approved
protocol (1612001508). Thirty-two 5-month old, virgin, ovariectomized, female Sprague
Dawley rats were purchased from Envigo (Indianapolis, IN, USA) and individually housed
in stainless steel, wire-bottom cages in a temperature and humidity-controlled room with a
12h light/dark cycle and ad libitum access to food and water.

2.2.3 Diets.—Polyphenol-free diets were based on the AIN-93M diet, using corn oil in
place of soybean oil to prevent confounding from soy isoflavones. The 5% blueberry chow
diet (5% BB) incorporated lyophilized blueberry powder (Wild Blueberry Association of
North America, Old Town, ME, USA) into the polyphenol-free base diet. To account for

the fiber and sugar content of berries, these components were adjusted in the base diet

to maintain isocaloricity with control group. Diets were prepared by Research Diets (New
Brunswick, NJ, USA). To minimize phenolic degradation, all diets were stored at —20°C and
changed daily for each animal.

2.2.4 Dosing Regimen.—VitaBlue Pure American Blueberry Extract, containing 28.8%
total phenolics (w/w), was donated by FutureCeuticals (Momence, IL, USA) for use in this
study. Oral gavage slurries were prepared with water at the following doses: 0, 75, 350,

and 1000 mg phenolics/kg bw. The 75 mg/kg bw dose corresponds to an adult human
consuming approximately 1-2 cups of fresh blueberries per day (i.e., a “dietary dose”,
calculated using the FDA’s rat to human conversion factor).[28] The 350 and 1000 mg/

kg bw doses group were several-fold higher to mimic higher concentrations as may be
present in dietary supplements. Immediately prior to receiving the oral gavage, each animal
underwent a one-time, 8h fast.

2.2.5 Jugular catheter surgery, dosing, and blood/urine collection.—Two days
prior to beginning pharmacokinetics, jugular catheters were placed in the right jugular

vein of all animals as previously described.[29] Animals were anesthetized with isoflurane
and given bruprinex (i.p., 0.1 mg/kg bw) to minimize pain. Catheters were flushed with
heparinized saline (20 units/mL) every 12h to keep them patent.

Blood was collected via the implanted catheter immediately prior to (baseline) and every 6h
after oral gavage until sacrifice. In total, 9 blood draws were collected (0, 6, 12, 18, 24, 30,
36, 42, and 48h). Plasma was separated from whole blood via immediate centrifugation in
heparinized microfuge tubes at 4°C and 3500 g for 10 min. Plasma was acidified to a final
concentration of 0.1% formic acid, flushed with nitrogen, and frozen at —80°C until analysis.

Urine was collected in 12h increments throughout the study. To capture baseline phenolic
metabolites, 2x12h urine collections (0-12 and 12—-24h) were obtained from all animals
in the 24h leading up to the jugular catheter surgery. Then, after gavage, 4x12h

urine collections (0-12, 12-24, 24-36, and 36-48h) were obtained. Collected urine was
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centrifuged to remove particulates, acidified to a final concentration of 0.1% formic acid,
blanketed with nitrogen, and frozen at —80°C until analysis.

2.2.6 “45Ca absorption.—Immediately after gavaging animals with blueberry phenolics,
six animals per group were given a second oral gavage containing 20 uCi #°Ca and 100 mg
calcium acetate (equivalent to ~25% daily calcium intake to replace calcium missed during
fasting) in water. The remaining two animals in each group were also given a 500 L oral
gavage containing 100 mg calcium acetate and water, but were dosed with 10 pCi #°Ca via
jugular catheter. At sacrifice, both femurs were harvested, manually cleaned to remove soft
tissue, wrapped in saline soaked gauze, and stored at —80°C until analysis.

2.3 Polyphenol analyses

2.3.1 Extraction and purification of phenolics in starting materials.—
Lyophilized whole blueberries, VitaBlue Pure blueberry extract, animal diets, and individual
gavage doses were extracted in triplicate, as described elsewhere.[30] Extracts were
resolubilized with 2% formic acid in water and purified via solid phase extraction (SPE)
using Oasis HLB 1cc extraction cartridges (Waters, Milford, MA, USA), as described
elsewhere. [30]

2.3.2 Extraction and purification of phenolic metabolites.—Phenolics in plasma
and urine samples were extracted via SPE using the strataX, polymeric reversed phase
microelution 96 well plate with a capacity of 2 mg/well (Phenomenex, Torrence, CA, USA).
Wells were preconditioned with 200 uL 1% formic acid in methanol followed by 200 uL 1%
formic acid in water. Samples were then loaded as a mixture of the biological sample (100
pL plasma or 50 pL urine), 200 UL 1% formic acid in water, and 20 pL of 50 pM taxifolin
as an extraction efficiency control. Samples were washed with 2 x 200 uL 0.1% formic acid
in water, and then dried under nitrogen for 30 minutes. Samples were eluted with 100 pL
0.1% formic acid in methanol into a 96-well plate (350 uL Acquity 96-well plate, Waters,
Milford, MA, USA). All steps were aided by gentle, positive pressure nitrogen gas delivered
via Waters Positive Pressure-96 Processor. To the eluate was added 20 pL 50 uM ethyl
gallate as a volume control. Eluted samples were immediately capped with a pre-slit silicon
mat (Cap-mat 96 well 7 mm round plug pre-slit silicone/PTFE, Waters) and frozen at —80°C
until analysis.

2.3.3 Quantification of total phenolics in starting materials.—Total phenolics
were quantified in crude extracts via the Folin method and corrected for water-soluble
interferences (e.g., sugars and ascorbic acid) as described elsewhere.[31, 32]

2.3.4 Quantitation of phenolics via UPLC-MS/MS.—After purification via SPE,
individual phenolics were quantified via UPLC-MS/MS using a Waters UPLC Acquity |
Class system equipped with a TQD detector. Samples were injected and phenolics separated
using an Acquity BEH C18 column (2.1 um, 1.7 mm id x 50 mm) with a flow rate of 0.5
mL/min. Samples were eluted using a biphasic gradient of solvent A (0.1% formic acid in
acetonitrile) and solvent B (2.0% formic acid in water (for ESI+ mode) or 0.1% formic acid
in water (for ESI-)) as follows: 0 min, 100% B; 0.5 min, 94% B; 2 min, 91% B; 3 min,
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87% B; 4.5 min, 65% B; 5.2 min, 100% B; 6 min, 100% B. MS conditions were as follows:
capillary voltage, 0.5 kV; probe temp, 150°C; source temp, 600°C; desolvation gas flow,
1000 L/hr; cone gas flow, 50 L/hr.

Identification and quantification of each compound was based on authentic standards,
using calibration curves ranging from 0.001-100uM. When standards were not available,
compounds (especially phase Il metabolites) were confirmed based on retention times and
the presence of multiple ion transitions consistent with each compound.[33] A complete
list of phenolic compounds and metabolites measured, including corresponding MRMSs and
standards used for quantitation, is shown in Table SI-1.

2.4 Fractional calcium absorption

Total femoral calcium deposition was used to determine fractional calcium absorption, as
described elsewhere.[34, 35] Briefly, each femur was ashed in a muffle furnace for 5d at
600°C, dissolved overnight in concentrated nitric acid, and diluted to 25 mL with ultrapure
water. 1 mL of the resulting solution was mixed with 15 mL Ecolite in a scintillation vial
and 45Ca quantified by liquid scintillation counting (Tri-Carb 2910 TR Liquid Scintillation
Analyzer, PerkinElmer, Waltham, MA, USA). Fractional absorption was calculated as a ratio
of oral:i.v. 4°Ca in femurs as previously described.[35, 36]

2.5 Statistics

Statistics were completed using SAS (SAS Institute, Raleigh, NC). When data were not
normal, appropriate transformations were performed before analysis to ensure normality.
Outliers were detected and removed using Tukey’s method. Plasma AUC was calculated
using the trapezoidal method and qualitatively observed levels for Cyax and Tax reported.
Comparisons for total excretion and AUC were made via one-way ANOVA, while individual
points on pharmacokinetic curves were analyzed via two-way ANOVA (factors: time and
dose). Post hoc analyses were carried out with Tukey’s HSD test and significance defined

as p<0.05 unless otherwise noted. Guidance in SAS coding was provided by the Statistical
Consulting Service at Purdue University.

3. RESULTS AND DISCUSSION

3.1 Phenolic profiles of raw materials, rat diets, and gavage doses.

3.1.1 Phenolic profiles of raw materials.—Two commercially available raw
materials were used in this study: lyophilized blueberry powder (FD) and concentrated
blueberry polyphenol extract (CE). Both materials were derived from commercially
available wild blueberries and contained 3.75% and 28.8% (w/w) total polyphenols,
respectively (Table 1). These raw materials were used to create the rat chow diets and gavage
doses.

To further characterize these materials, a total of 30 individual phenolics were quantified.
As shown in Table 1, anthocyanins were the most prevalent class of phenolics present,
comprising nearly half of the total phenolics. In both FD and CE, malvidin glycosides
were the most prevalent anthocyanins, followed by petunidin glycosides. Other classes of
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phenolics, including phenolic acids, flavan-3-ols, and flavonols, were quantified. The most
prevalent of these were chlorogenic acid and quercetin species, which collectively accounted
for ~20% of total phenolics assayed by LC-MS. Comparatively lower levels of benzoic acids
and flavan-3-ols were observed.

3.1.2 Phenolic profiles of rat diets.—The rat chow diets were created by
incorporating either 0% or 5% of the FD berries into the AIN-93M diet (denoted PPF and
5% BB diet, respectively). During the manufacturing of these diets, thermal and oxidative
degradation occur, resulting in phenolic losses. In preliminary experiments with several
vendors, we have observed significant differences in phenolic content and potential losses
(data not shown). For this study, we chose the manufacturer that demonstrated minimal
losses, though we note ~25% of total phenolics were lost in the creation of our 5% BB
diet (Table 1). When comparing the relative amounts of individual phenolics in the 5% BB
diet with those in the FD berries, the losses appear to occur evenly across all compounds
measured, indicating that the phenolic composition of the 5% BB diet is similar to the FD
berries.

No significant difference in food consumption or food efficiency ratio was found between
groups (data not shown). Based on total diet consumption while on the 5% BB diet, rats
consumed 50-60 mg total polyphenols/kg bw/d from their diets (data not shown). This is
nearly as much as the low dose received via oral gavage.

3.1.3 Phenolic profiles of gavage doses.—Gavage doses were created using the CE,
with target doses of 75, 350, and 1000 mg total polyphenol/kg bw. As shown in Table 1,

our actual doses were quite close to these targets. And, as expected, the relative amounts of
individual phenolics in the gavage doses mirrored the amounts in the CE.

3.2 Urinary excretion of phenolic metabolites.

3.2.1 Summary of urinary phenolic excretion.—A total of 43 phenolic metabolites
were detected in the urine, including 17 anthocyanins, 19 phenolic acids, 2 hippuric acids,
and 5 flavonols. A majority of the metabolites demonstrated dose-dependent excretion and
were maximally detected within 12h of dosing (Table 2). Blueberry polyphenols were
extensively metabolized, with <5% of total urinary metabolites being detected in their
unmetabolized forms. The most prominent metabolites were #rans-cinnamic acids, followed
by hippuric acids, with smaller amounts of other phenolic acids, flavonols, and anthocyanins
also detected (Figure 2). These metabolites exhibited a dose-dependent shift in excretion,
with higher doses showing increased proportions of cinnamic and phenylpropionoic acids
and a concomitant decrease in the proportion of hippuric acids.

3.2.2 Urinary excretion of phenolic acids.—Of the phenolic acids quantitated in

the urine, 7 were maximally excreted within 12h after dosing, with pharmacokinetic curves
similar to the one shown in Figure 3a. For the other phenolic acids, 4 exhibited similar
excretion in both the 0-12h and 12-24h urine collections (exemplified in Figure 3c), while
the 3 remaining metabolites did not have a clear peak excretion time. (Cpax and Tpax Values
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can be found in Table 2; Pharmacokinetic curves for all phenolic acids can be found in the
Supporting Information, Figures SI-1-14.)

Cinnamic acid derivatives accounted for more than half of all urinary metabolites observed.
These metabolites can come from a variety of parent compounds, though their main
precursors are thought to be anthocyanins [9] and chlorogenic acids.[37, 38] Additionally,
cinnamic acid derivatives have been observed in other studies using polyphenol-rich berries.
In a recent clinical study of cranberries, for example, a total of 24 cinnamic acid derivatives
were observed, including ferulic and caffeic acid glucuronides and sulfates. The authors note
that the cinnamic acids are most likely derived from both chlorogenic acid and anthocyanins
present in the cranberries.[39] Similar results were observed after blueberry intake in healthy
adults, as cinnamic acid derivatives (especially glucuronidated and sulfated forms) were
prominent metabolites.[40-42] However, in contrast to our results, in which cinnamic acid
derivatives accounted for up to 75% of total urinary metabolites, cinnamic acid derivatives in
these studies accounted for <20% of total urinary metabolites. This may be due to a number
of factors, though the most likely are the large amounts of hippuric acids observed in these
studies (see below) or the lack of authentic standards for all cinnamic acid derivatives, which
can significantly alter the quantitation of these metabolites.[8]

Other phenolic acids, including benzoic acids, phenylacetic acids (PAA), and
phenylpropionic acids (PPA), are commonly reported as colonic metabolites of polyphenols,
though their total contribution to phenolic metabolism varies widely. In previous studies of
blueberries, phenolic acid metabolites varied considerably, with different studies reporting
benzoic acids,[40, 43] PAA,[41, 42] or benzaldehydes and PAA [44] as the most prominent
phenolic acid metabolites. In contrast to these studies, we found higher amounts of PPA in
urine than PAA or benzoic acids.

3.2.3 Urinary excretion of flavonoids.—Flavonol metabolites observed in urine
followed similar excretion patterns observed for phenolic acids, with 3 maximally excreted
within 12h of dosing and 1 having similar excretion in the 0-12h and 12-24h urine
collections (Figure S1-15-18).

Anthocyanins and anthocyanin metabolites (i.e., glucuronidated and sulfated anthocyanins)
were also detected in the urine. Of those quantitated, 12 were maximally excreted within 12h
of dosing (exemplified in Figure 3b), 3 had similar excretions during the 0-12h and 12-24h
time points (exemplified in Figure 3d), and 2 did not exhibit a discernable peak excretion.
(See Table 2 for Crpax and Tinax as well as Figures SI1-19-35 for pharmacokinetic urinary
excretion.) The relative excretion of unmetabolized 3- O-glucoside and 3- O-galactoside
anthocyanins vs. the phase Il glucuronidated and sulfated forms varied based on the
aglycone (Figure S1-36). Cyanidins and malvidins were observed almost exclusively as
unmetabolized 3- O-glucoside and 3- O-galactoside anthocyanins, while delphinidins and
peonidins were extensively metabolized to the glucuronidated and sulfated forms; petunidins
were a mixture of both unmetabolized and metabolized forms.

Although observed in small amounts, anthocyanin and flavonol derivatives were detected in
the urine. This is noted in other studies,[40, 44] though it is rare for others to report the
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presence of unmetabolized anthocyanin glucosides and galactosides in the urine, especially
in the dose-dependent manner observed here. However, despite the lack of reporting on these
metabolites in the literature, it is known that small amounts of unmetabolized anthocyanins
are present in systemic circulation, though the mechanism for their absorption is currently
unknown.[45]

3.2.4 Urinary excretion of hippuric acids.—The two hippuric acid metabolites did
not follow the excretion patterns exhibited by other metabolites. These metabolites were
maximally excreted during the 12—24h urine collection (Figures 3e and SI-37-38). There
was no difference in the amount of hippuric acid excreted after dosing with either the
medium or high dose.

Hippuric acids were the second most prominent urinary metabolite observed in the current
study. Hippuric acid and its derivatives are frequently noted as a major metabolite in studies
of polyphenol metabolism, and they can be derived in large quantities from flavanols,[46]
anthocyanins,[9, 47] and chlorogenic acids.[37, 38] In studies on polyphenol-rich berries,
hippuric acids are often observed as the most prominent metabolite, accounting for up to
half of total metabolites quantitated.[41, 48-51] We found hippuric acid to be a major
metabolite, but as shown in Figures 3e and SI-37-38, there appears to be a saturation

effect, whereby urinary excretion of hippuric acid is no different between the medium

and high dose groups. As a result, hippuric acid accounts for a smaller portion of total
polyphenol metabolites as the dose increases (Figure 2). This may indicate that hippuric acid
production is reaching a point of saturation by the medium dose. It could also be the result
of hippuric acid being one of the end stage metabolites formed in the microbial metabolism
of polyphenols, meaning that, at higher doses, the total polyphenol content may be too high
for the colonic microbes to fully metabolize prior to fecal excretion (see section 3.2.5 for
details).

3.2.5 Metabolic sinks in colonic metabolism of blueberry polyphenols.—A
summary of colonic metabolism of polyphenols is shown in Figure 4. Although not
commonly discussed in relation to polyphenol metabolism, the ideas of rate limiting steps in
metabolism, competition for metabolites, and “metabolic sinks” where various metabolites
may accumulate are common to many metabolic pathways. Given the large quantities of
cinnamic acid sulfates and glucuronides, it appears that the phase Il metabolism of cinnamic
acids occurs more readily than the conversion to PPA. However, once converted to PPA, the
metabolites appear to be rapidly metabolized through the rest of the chain, being converted
to different phenolic acid metabolites and accumulating as hippuric acids. As the dose
increases, the decreasing proportion of hippuric acids (accompanied by the relative increases
in PPA and cinnamic acids) suggests that this conversion is the rate limiting step. This may
also slow the production at earlier steps of the process, which would cause an accumulation
of other forms (in this case, PPA). Additionally, this notion of competition and diversion

of metabolites at the cinnamic acid step is supported by the timing of peak production of
metabolites. As shown in Table 2, cinnamic acids and the phase Il metabolites are observed
most prominently within the first 12h after dosing, while other phenolic acids (PPA, PAA,
and benzoic acids) were generally observed somewhat later, with hippuric acids not peaking
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until 12-24h after dosing. This indicates that cinnamic acids were formed in large amounts
and were largely diverted to phase Il metabolism rather than being further metabolized into
phenolic and hippuric acids. However, of those that were shuttled through the phenolic acid
pathway, it appears that most went all the way to the terminal hippuric acid step until the
saturation point was reached.

3.3 Plasma pharmacokinetics.

A total of 16 metabolites (6 anthocyanins, 6 phenolic acids, 3 flavonols, and hippuric acid)
were detected in the plasma (Table 3). Anthocyanin responses were low and inconsistent,
which is not surprising given their rapid metabolism and short half-lives in vivo. Of the
remaining 10 metabolites, 7 were quantitated, with most demonstrating a dose-dependent
response and exhibiting peak plasma concentrations 6h after dosing (Table 3 and Figures
S1-39-45). Most plasma metabolites had Ty, Values consistent with urinary excretion.
Metabolites that had early Tax Values in the urine were detected early in the plasma, and
later appearing metabolites tended to appear later in both urine and plasma.

3.4 Calcium absorption.

To link phenolic absorption to physiological effects, fractional calcium absorption was
measured using 4°Ca, an isotopic tracer. When comparing all groups to control (using
Dunnett’s test), fractional calcium absorption was significantly higher in the highest dose
group (p = 0.034, Figure 5). This relationship was demonstrated for both the right and left
femurs when analyzed separately and together. Additionally, when comparing all groups to
each other (using Tukey’s test), fractional calcium absorption was nearly significantly higher
for the high dose compared to control group (p = 0.058) and high dose compared to medium
dose (p = 0.056).

Maintaining bone health throughout the lifespan is key to preventing osteoporosis, and

this can be accomplished through either increasing calcium absorption, increasing bone
formation, or inhibiting bone resorption.[52] Our results indicate that calcium absorption is
only increased with the highest dose of blueberry polyphenols; the control, low, and medium
dose groups exhibit 4°Ca absorption levels that are typically observed for this animal

model (~35%).[35, 53, 54] Our results agree with a previous study of grape polyphenols

in rats, where, at low doses of polyphenols, calcium absorption was not acutely altered

by administration of a grape-enriched diet.[55] These studies indicate that polyphenols
consumed at dietary doses do not acutely alter calcium absorption.

Although grape and blueberry polyphenols did not to alter calcium absorption at low doses,
a recent study found that repeated administration of low doses of blueberry polyphenols
increased bone calcium retention.[56] Low doses of polyphenols may improve bone quality
through pathways other than increased calcium absorption. This should direct future
mechanistic studies aimed at understanding the effects of polyphenols on bone health.

4. CONCLUDING REMARKS

The strength and innovation of this study is the unique perspective it provides on the
dose-dependent shift in the production of colonic metabolites after an acute dose of
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purified blueberry polyphenols as may be present in dietary supplements. Given the growing
popularity and use of botanical dietary supplements, our approach of using a concentrated
phenolic extract at elevated doses is directly relevant to dietary supplement consumption.

By focusing on the pharmacokinetics and colonic metabolism of elevated doses, this

study provides a novel glimpse into metabolic shifts that may occur when consuming
botanical dietary supplements. Additionally, by not only measuring dose-dependent phenolic
metabolism but also measuring the influence on calcium absorption, we have demonstrated
that shifts in phenolic metabolism can have physiological effects.

However, there were also several limitations to the current study. First, the lack of

authentic standards for some of the metabolites may have caused inaccurate estimates of

the actual amounts present, as certain metabolites (e.g., sulfates) ionize more and may
easily be overestimated.[8] This is a challenge that many studies of phenolic metabolism
face, as commercially available standards are rarely found for specific metabolites and

are challenging to synthesize. Second, the time points chosen to sample and measure
plasma metabolites likely missed peak plasma concentrations for many metabolites, as many
phenolics are absorbed and excreted quickly (Tmax <2h).[12] Our original hypothesis was
that many of the colonic metabolites would be observed at later times in the plasma, leading
us to select later times for blood collection. Our hypothesis appears to hold true for the
urinary appearance of metabolites, but we were unable to detect many of these metabolites
in appreciable amounts in the plasma. Finally, using metabolic cages to collect urine
samples from animals presents two important challenges in measuring phenolic metabolites:
oxidation and contamination. Because urine was collected continuously in 12h increments,
samples were exposed to oxygen for several hours and small food particles and debris were
observed. We judged this to be the best method for collecting urine from the animals and,
because none of the major phenolic metabolites observed are present in the chow diet, this
had a minimal impact on the results and their interpretation.

In conclusion, we have shown that increasing doses of blueberry polyphenols result in
dose-dependent shifts in phenalic metabolite profiles and increased calcium absorption.
Taken together, these results indicate that high doses of blueberry polyphenols may alter
gut function. Future studies examining the consequences of these metabolic changes with
repeated dosing will help determine if these changes have systemic effects. Repeated
dosing studies with high doses of purified polyphenols mimics typical dietary supplement
consumption and will help elucidate the safety and potential health consequences — both
positive and negative — of this consumption modality.
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List of Abbreviations:

5% BB 5% blueberry chow diet

CE concentrated blueberry polyphenol extract
FD lyophilized blueberry powder

MRM multiple reaction monitoring

OvX ovariectomized

PAA phenylacetic acid

PPA phenylpropionic acid

PPF polyphenol-free chow diet

SPE solid phase extraction
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Figure 1 -,

St?de design and timeline. All animals were ovariectomized (OVX) by the vendor prior
to shipping (day -4). Upon arrival (day 1), animals were stabilized for one week on a
polyphenol-free diet. Randomization took place on day 8, with control animals remaining
on the polyphenol-free diet and all others placed on a 5% blueberry diet for the remainder
of the study. Jugular catheters were placed on day 14, with animals receiving blueberry
phenolics and 4°Ca via oral gavage two days later. Blood and urine were collected for 48h
until sacrifice.
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Low Medium High

Figure 2 —.

Dgse dependent excretion of phenolics over 48h. For all doses, cinnamic acids were the
predominant metabolite found in urine, followed by hippuric acids. As dose increased,
hippuric acids decreased as a percentage of total metabolites excreted, while cinnamic acids
and phenylpropionic acids increased. (Antho = sum of all anthocyanins excreted; PPA =
sum of phenylpropionic acids and phase-Il metabolites excreted; Hippuric = sum of hippuric
acids excreted; Cinnamic = sum of cinnamic acids and phase-11 metabolites excreted; Other
= sum of benzoic acids, phenylacetic acids, and flavonols excreted.)

Mol Nutr Food Res. Author manuscript; available in PMC 2022 October 13.

© Antho

H PPA

W Hippuric
B Cinnamic
m Other



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Cladis et al.

>

O  Syringic acid (nmol exc.)

Ferulic acid (nmol exc.)

m

Hippuric acid (nmol exc.)

Page 17

B
m
>
[J)
3
£
L
®
%0
(¢0]
>
=
>
D
S 25
)
< 20
£ 15
[0}
:“E 10
S
?
o
e N
S N P
xS XS vV O © ")
& & & 0¥ WS
800
—e— High
600
—a— Medium
400
—a— Low
200
- Control
0
Figure 3 -

Urinary excretion pharmacokinetics of selected metabolites. Most phenolic acid, flavonol,
and anthocyanin metabolites demonstrated a dose-response relationship and were maximally
excreted within 12h of dosing (exemplified by syringic acid (A) and malvidin-3-O-
galactoside (B)), while others had similar levels of excretion at both the 0-12h and 12-24h
urine collections (e.g., ferulic acid (C) and delphinidin sulfate (D)). Hippuric acid (E), one of
the last metabolites formed in colonic metabolism, exhibited maximal excretion during the
12-24h urine collection and appeared to have saturated absorption at the medium dose. Data
shown as mean + SEM. Bsln 1 = Baseline 0-12h; BslIn 2 = Baseline 12-24h.
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Figure 4 —.

Sugmmary of colonic catabolism of major blueberry polyphenols. Chlorogenic acids are
hydrolyzed to cinnamic acids, while the heterocyclic ring of flavonoids (anthocyanins and
flavonols in blueberries) is cleaved, producing two, smaller molecular weight phenolic acids
from the A and B rings. These smaller phenolic acids can then be further metabolized via
glucuronidation or sulfation (phase Il metabolism) or to other phenolic acids. Hippuric acids
are formed by conjugation with glycine, and are the terminal step in the metabolic chain.
Various metabolites within each family are formed by different substitutions on the benzene
ring (represented by —-R).
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Figure 5 —.

Frgactional 45Ca absorption. Fractional calcium absorption was significantly higher in the
high dose group for both the right and left femurs separately and when analyzed together.
*p<0.05 significantly different from respective control, using Dunnett’s test. Data shown as
mean + SEM.
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