Table 2.
Accuracy metrics of the four classifier networks for three-class tissues
| Architecture | Accuracy | Size | Precision | Recall | Dice | AUC | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cancer | Fat | Muscle | Cancer | Fat | Muscle | Cancer | Fat | Muscle | Cancer | Fat | Muscle | |||
| GoogLeNet | 46.88 | 0.96 | 69.02 | 86.30 | 11.52 | 62.02 | 25.54 | 63.18 | 60.34 | 37.16 | 18.21 | 91.28 | 89.70 | 84.82 |
| Inception-ResNet-v2 | 52.36 | 1.00 | 69.32 | 82.88 | 12.94 | 67.26 | 29.46 | 59.62 | 67.71 | 40.74 | 20.49 | 91.60 | 89.24 | 86.18 |
| ResNet-50 | 50.58 | 1.00 | 68.02 | 84.40 | 13.30 | 65.86 | 28.02 | 63.04 | 65.50 | 39.79 | 20.84 | 91.01 | 89.88 | 86.30 |
| Siamese | 54.64 | 1.21 | 67.26 | 83.44 | 12.94 | 76.74 | 28.96 | 46.34 | 70.23 | 39.84 | 18.84 | 40.42 | 28.55 | 33.80 |