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Abstract
The automatic assignment of species information to the corresponding genes in a research article is a critically important step in the gene 
normalization task, whereby a gene mention is normalized and linked to a database record or an identifier by a text-mining algorithm. Existing 
methods typically rely on heuristic rules based on gene and species co-occurrence in the article, but their accuracy is suboptimal. We therefore 
developed a high-performance method, using a novel deep learning-based framework, to identify whether there is a relation between a gene 
and a species. Instead of the traditional binary classification framework in which all possible pairs of genes and species in the same article are 
evaluated, we treat the problem as a sequence labeling task such that only a fraction of the pairs needs to be considered. Our benchmarking 
results show that our approach obtains significantly higher performance compared to that of the rule-based baseline method for the species 
assignment task (from 65.8–81.3% in accuracy). The source code and data for species assignment are freely available.
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Introduction
With the rapid growth of biomedical literature, automatically 
extracting and summarizing the knowledge in the literature 
becomes increasingly important to biomedical research in 
areas such as biocuration assistance (1, 2) and COVID-19 
research (3). The gene is one of the most important key 
concepts in biomedical research and is relevant to genetic 
variation, pharmacogenomics, cancer research and precision 
medicine. Many text-mining studies (4–6) rely highly on the 
automatic extraction of gene names in the text. Because mul-
tiple genes may share the same name, mapping gene names to 
unique concept identifiers is a very important step. National 
Center for Biotechnology Information (NCBI) Gene is a major 
database for gene records. Many studies (7–9) focus on 
mapping the gene names to the gene identifiers, and this 
task is widely known as ‘gene name normalization (or gene
linking)’.

The ortholog gene in different species, however, is associ-
ated with different gene identifiers, which exacerbates the dif-
ficulty of the gene normalization task. One means to decrease 
ambiguity is to identify the corresponding species of each 
gene mention (termed ‘species assignment’) and aim to nar-
row down the candidates for the possible gene identifiers. 
Few existing tools (10–12), however, have sufficient accu-
racy in regard to the species name recognition task, and none 
was designed to disambiguate the genes to the corresponding 
species. Furthermore, few studies have developed rule-based 

methods (13–15) to disambiguate the corresponding species 
of the gene, based on co-occurrence in the same sentence 
or paragraph. The most popular strategies to determine the 
corresponding species include the use of (i) the most nearby 
species of the gene in the same sentence, (ii) the most frequent 
species in the same paragraph, (iii) the corresponding species 
of the gene prefix that is represented (e.g. ‘hCB1R’ to human) 
and (iv) the species in the title. One of our previous works, 
SR4GN (15), was designed to recognize the corresponding 
species by leveraging the rules noted above to obtain good 
performance. SR4GN was successfully embedded in a previ-
ous gene tagger, GNormPlus (7), and applied to the entire 
PubMed and PMC (6) databases for gene recognition and 
normalization. SR4GN, however, frequently failed to find the 
correct corresponding species of the gene mentions when no 
species was mentioned within the same sentence. In addition, 
SR4GN only utilized a subset of gene-related species, account-
ing for a small portion (<10%) of the entire NCBI taxonomy 
repository.

As we learned from previous studies, two main challenges 
remained. (i) Most of the existing species recognition methods 
were not designed for gene normalization. In particular, some 
species-sensitive concepts (e.g. cell line and species strain) that 
are also helpful to species assignment and gene normaliza-
tion were ignored. (ii) Although the rule-based method used to 
assign the species to gene mentions is straightforward, it does 
not work when the corresponding species is not in proximity 
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of the gene. This is especially the case when an article men-
tions multiple species as it increases the difficulty of the task. 
For example, when a study uses multiple animal models to 
observe the expression of the human gene under defined cri-
teria, this can cause difficulties even for manual assignment. 
To address the problem, we propose a novel species assign-
ment approach based on deep learning via a sequence labeling 
framework. To the best of our knowledge, this work is the 
first that explores deep learning methods to assign species to 
gene mentions. The main contributions of our work can be 
summarized as follows:

• We develop a dictionary-based species tagger with state-
of-the-art performance (94.3% in F-measure).

• We explore machine learning-based methods for the 
species assignment task. Instead of the traditional binary 
classification framework, we propose a novel species 
assignment approach based on a sequence labeling 
framework. We apply cutting-edge biomedical pretrained 
language models (PLMs) (i.e. PubMedBERT (16) and 
Bioformer (17)) for both frameworks and improve the 
performance from 65.8% to 81.3% in accuracy.

• We comprehensively compare the binary classification 
framework-based deep learning method, sequence label-
ing framework-based deep learning method and existing 
rule-based method in the species assignment task.

Methods
The workflow of the automatic species recognition 
and assignment
To address the two challenges, we proposed a new species 
tagger and a deep learning framework to optimize the per-
formance of the species assignment. Figure 1 shows the archi-
tecture of our method, with end-to-end steps including species 
recognition and assignment. The input data require free text 
with highlighted gene mentions. To precisely evaluate the 
performance of the species assignment but not the effect of 
another component, we provide the manually annotated gene 
mentions in the input. The species recognition first identi-
fies the species mentions with the corresponding identifiers 
(NCBI taxonomy ID); then, the species assignment links the 

Figure 1. The architecture of the species recognition and assignment.

corresponding species to gene mentions. Additional details are 
presented in the following section.

Species recognition
Machine learning-based named entity recognition methods 
always achieve much better performance than the dictionary-
based methods on most bioconcepts (i.e. gene, disease and 
chemical). Nevertheless, the performance of species recog-
nition, using dictionary-based methods, is competitive with 
machine learning-based methods (18). This is because the 
main challenge of species recognition is not term variation 
or ambiguity, as most of the species names in the text fol-
low the nomenclature of the Carl Linnaeus standard system 
(19) and the species names in the text are standardized. 
Rather, the volume of the species taxonomy is critical. More 
than 2 million unique species (>16 million species names) are 
recorded in NCBI taxonomy (https://www.ncbi.nlm.nih.gov/
taxonomy) as of 2022. The number of species names is larger 
than that of other popular bioconcepts (e.g. disease and chem-
icals). Such a supervised learning method may not be able to 
maintain coverage of a large-scale data set without support 
from a species lexicon. In addition, although species names are 
required to be linked to concept identifiers (NCBI taxonomy 
IDs), none of the existing supervised learning-based species 
taggers can map the species names to the specific concept 
identifiers.

Thus, we generated a dictionary-based species tagger using 
the species names recorded in the NCBI taxonomy repository. 
Based on the hierarchical structure of the taxonomy system, 
our tagger can better handle the large size of the species lex-
icon in an efficient way. More specifically, our species tagger 
was implemented by adopting a prefix tree to reorganize the 
species names within a highly efficient structure for a string 
search. In addition, such a structure maximizes the capacity 
to recognize name variations and the strain prefixes of the 
primary lesser ranks (e.g. ‘str’ and ‘substr’ in ‘E. coli str. K-
12 substr. MG1655’ presented the ‘strain’ and ‘sub-strain’). 
Every node in the prefix tree is a token of the species name. 
Every species name is recorded in the prefix tree as a path. 
The corresponding taxonomy id is stored in the terminal node 
of the path. For example, Tax:562 is stored in ‘coli’, which 
is the terminal node of ‘E. coli’. The children of a node are 
the next words in the species name. Thus, the same token 
in different species names shares the same node. For exam-
ple, ‘Escherichia’ and ‘coli’ are the shared prefix nodes of 
‘Escherichia coli K-12’ and the ‘Escherichia coli BL21’. ‘K-
12’ and ‘BL21’ are two individual child nodes under the 
node ‘coli’. As shown in the species name recognition module 
in Figure 2, the structure of the prefix tree-based dictionary 
perfectly presents a corresponding structure to the taxonomy 
hierarchical system.

Due to the flexible design of the dictionary, our tagger can 
also solve several common term variations. (i) The strain pre-
fixes (e.g. ‘str.’ and ‘substr.’) can be simply recognized and 
skipped. Thus, there is no need to have a separate branch for 
the same species name with strain prefix. This not only saves 
space on the tree but also decreases search complexity. (ii) 
The longer species name can be more easily recognized than 
that of another species with a shorter name. For example, ‘E. 
coli strain O157:H7’ would be retrieved from the text, ‘Using 
a similar approach, we show that E. coli strain O157:H7 
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Figure 2. The species name prefix tree and the name recognition in the 
text.

Stx prophage or prophage remnants invariably include par-
alogs of nanS often located downstream of the Shiga-like 
toxin genes’ (PMID: 27481927), rather than ‘E. coli’. In 
general, the biomedical literature uses abbreviations to rep-
resent the concept name, with multiple tokens, but this is rare 
for species. Instead, genus names and strain codes are fre-
quently used to represent parts of the species names. The genus 
name ‘Arabidopsis’ represents ‘Arabidopsis thaliana’ in PMID: 
31279220, and the species strain code (e.g. ‘MG1655’) can 
represent the specific strain of the species (e.g. ‘E. coli str. k-
12 substr. MG1655’). To handle the case, we built a mapping 
from the genus names and strain codes to their corresponding 
species. Once a species (e.g. ‘E. coli’) is found in the text, the 
tagger searches the strain codes and the genus names via the 
species hierarchical system.

In addition, a frequent case was observed in our previ-
ous work (6). Shortening the genus name by using the first 
capital letter (e.g. ‘Escherichia coli’ to ‘E. coli’) to represent 
the species occurs frequently. Sometimes, however, the genus 
is abbreviated by the first two letters (e.g. ‘Aedes aegypti’ to 
‘Ae. aegypti’). We expanded the species lexicon to cover such 
cases. We also recognize the cell line in the text as it usually 
represents the animal model in vitro and in vivo.

Species assignment
The traditional rule-based method of species assignment relies 
highly on the species that are mentioned together in the 
surrounding context. The species, however, may not be in 
proximity of the gene. In addition, the case of multiple sur-
rounding species is confusing in terms of the detection of the 
corresponding species of the gene name.

We deal with this task as a relation extraction between 
gene and species and establish a supervised machine learning-
based method using biomedical transformer-based PLMs (e.g. 
PubMedBERT (16) and Bioformer (17)) for this task. As an 
encoder to represent the input text, PLMs can measure the 
relevance between tokens (e.g. gene and species), which is 
then applied to various biomedical text-mining tasks and can 
significantly surpass state-of-the-art performance. A straight-
forward framework that can recognize the corresponding 
species to the gene spans is the binary classification, which 
classifies each pair of gene and species. A positive outcome 
means that the gene corresponds to the species, and a neg-
ative one means that it does not. The binary classification 
method, however, is required to process all the pairs between 
species and gene names, one by one, which is time-consuming, 
and it is difficult to handle large-scale data using advanced 
deep learning techniques. Moreover, these methods ignore the 

dependency between entity pairs, as it deconstructs the task 
into multiple independent entity pair classification subtasks.

Inspired by several previous works on relation extrac-
tion (20–22), we proposed a novel species assignment 
method based on the sequence labeling framework. As shown 
in Figure 3, we converted the task to a sequence labeling prob-
lem. Given an input text with the target entity (e.g. species 
entity of ‘mouse’), the goal of the model is to recognize all cor-
responding genes (e.g. ‘GSK-3’, ‘Keap1’ and ‘phosphoinositide 
3-kinase-protein kinase B’) at once. Therefore, the speed of the 
sequence labeling framework is significantly faster than that 
of the binary classification framework.

Two strategies to predict the corresponding species for gene 
mentions include (i) targeting the species to reach its belong-
ing genes (S→G; species to gene) and (ii) targeting the genes to 
reach the corresponding species (G→S; gene to species). S→G 
is much more efficient than is G→S, about seven times faster, 
as the number of species is usually less than the gene mentions 
in the input text. In addition, S→G is slightly more accurate 
than is G→S. Next, we use the strategy of S→G to present the 
details of our sequence labeling framework. Specifically, to 
distinguish the gene and species from other tokens in the text, 
we inserted a pair of tags ‘<GENE>’ and ‘</GENE>’, in front 
of and at the end of the genes, and ‘<SPEC>’ and ‘</SPEC>’ 
in the same way for the species. In each iteration, we sequen-
tially selected a species and assigned a pair of tags (‘<ARG>’ 
and ‘</ARG>’) to distinguish the target species from the oth-
ers. We further translated the tokens of the input text into a 
sequence within two statuses: ‘I’ (inside) and ‘O’ (outside), as 
the predicted sequence. The example in Figure 3 shows the 
architecture of our model. The genes that correspond to the 
target species (including the surrounding tags) are in ‘I’ status, 
and other tokens and the genes that do not correspond to the 
target species are in ‘O’ status. In the example, the input docu-
ment contains two species (i.e. ‘mouse’ and ‘human’) and four 
gene mentions. The predicted sequence labels a gene to ‘I’ sta-
tus, indicating that the gene corresponds to the target species 
(‘mouse’). At the end of the model, we used the SoftMax classi-
fication layer to summarize the probability scores of the labels 
of each token. We applied PubMedBERT (16) and Bioformer 
(17) as the PLMs models. PubMedBERT is the biomedical ver-
sion of BERT and was recently created using only a biomedical 
vocabulary and data sets without transfer learning. Bioformer 
is a lightweight version of the traditional BERT model, which 
has been successfully applied in the biomedical domain. In 
most cases, each gene should be assigned to one species. Thus, 
we assigned the species with the highest predicted score to the 
genes, unless the two species with the highest score were in 
conjunction with each other (e.g. ‘human and mouse cDNAs 
of ABCB9’). We defined a simple regular expression to detect 
the species within the conjunction and assign both taxon-
omy IDs to the gene name. In addition, we assigned the most 
frequent species to the genes when no corresponding species 
could be reached by the model.

Results
Evaluation of the species recognition
To better understand the performance of our species tagger, 
we first compared it with two other species taggers [i.e. Lin-
naeus (10) and SPECIES (12)] by their proposed corpora. 
Although many other species taggers (18, 23–25) obtained 
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Figure 3. The formulated labeled sequence and the PLM model.

Table 1. Species normalization performance on Linnaeus and SPECIES corpora

Corpus No. of articles No. of species Our tagger Linnaeus SPECIES

Linnaeus 100 full texts 2851 94.3% 90.3% 92.0%
SPECIES 800 abstracts 3708 82.7% 79.6% 77.8%

The performances are in F-measures (the harmonic mean of the precision and recall)

good performance with regard to the recognition of species 
boundary mentions, they did not address the normalization of 
the species. In fact, the normalization of species mentions for 
the species concepts (i.e. NCBI taxonomy IDs) is important for 
the species assignment task. Table 1 shows the performance of 
recognizing the species concept identifiers of individual tag-
gers on Linnaeus and SPECIES corpora. The evaluation is 
at the document level, which means that, when one species 
appears multiple times, it should be counted only once. Our 
tagger attained the best performance as compared to the other 
two taggers on both corpora. 

Evaluation of the species assignment
For the benchmarking of the species assignment, we chose 
two well-known gene-rich corpora [i.e. GNormPlus (7) and 
National Library of Medicine (NLM)-Gene (26)]. Some arti-
cles, however, mentioned only one species (or no species). 
In such cases, all genes in the articles should link to the 
same species, without ambiguity (human is the species at 
default). To determine the extent of improvement with the 
new method, we need to focus on the articles’ ambiguity 
issues. In that regard, the articles qualified for benchmark-
ing require more than one species candidate for the gene 
mentions in the text. In addition, the two corpora were 
annotated in abstracts, but not full texts. However, the anno-
tation guideline allows the annotators to use the full text if 
the corresponding species of a gene is not asserted in the 
abstract. We excluded those abstracts that contained genes, 
for which the corresponding species is in the full text but 
not in the abstract. Table 2 shows the number of abstracts 
in GNormPlus and NLM-Gene corpora that are qualified 

Table 2. The corpora for benchmarking

Corpus No. of abstracts Training Test

GNormPlus 262 (694) 262 0
NLM-Gene 216 (550) 141 75
Total 478 (1245) 403 75

The numbers in parentheses are the original numbers of articles in individual 
corpus

for benchmarking. Based on the criteria, fewer than half of 
the articles are eligible. The GNormPlus corpus is primarily 
focused on human genes, such that if a gene in an article 
corresponds to two or more species, only human genes are 
annotated in the corpus. To ensure that the evaluation can 
reflect the actual species diversity of the genes, we thus ran-
domly selected the articles from the NLM-Gene corpus only 
for testing. The remaining eligible articles in the NLM-Gene 
and GNormPlus corpora were used for model development. In 
total, we collected 403 abstracts for training and 75 abstracts 
for evaluation. 

In our experiments, we downloaded two biomedical PLMs 
(i.e. PubMedBERT and Bioformer) and evaluated them in 
both frameworks. The title and abstract are concatenated as 
an input instance. The models were trained using the Adam 
(27) optimizer to minimize categorical cross-entropy loss. For 
the parameter setting, we used PLMs with the default param-
eter settings and set the other hyper-parameters as follows: a 
learning rate of 5 × 10-6, a batch size of 16 and a max input 
length of 512 tokens (truncated if the length of text is over the 
maximum length). Due to the small size of the training data, 
we did not split a validation subset for early stopping. Instead, 
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Table 3. The performance of the species assignment

 Processing time (seconds per 100 abstracts)

PLM model Framework Strict-ACC Relax-ACC GPU CPU

PubMedBERT Sequence labeling 81.3% 85.4% 16 50
Bioformer (S→G) 80.7% 83.7% 10 25
PubMedBERT Sequence labeling 79.7% 83.2% 90 740
Bioformer (G→S) 78.1% 82.5% 60 320
PubMedBERT Binary classification 79.8% 83.6% 140 1580
Bioformer 78.1% 82.7% 80 674
GNormPlus Rule-based 65.8% 71.7% 4 4

Note that all models were trained and evaluated on the same GPU (Tesla V100-SXM2-32GB) and CPU (Intel(R) Xeon(R) Gold 6226 CPU at 2.70 GHz, 24 
Cores). Some genes may correspond to more than one species. Strict-ACC denotes strict accuracy, which requires that all the corresponding species of the 
gene should be extracted. Relax-ACC denotes relax accuracy, which accepts that only one corresponding species is extracted.

we set up the patience parameter (patience = 5) to stop the 
training if no improvement within five epochs is observed. We 
focused on evaluating the performance on species assignment, 
using the resampled corpus, and the manually curated gene 
mentions are given.

To explore the effectiveness of our sequence labeling frame-
work, we compared the performance of PLMs in classifica-
tion and sequence labeling frameworks on the test. We also 
used the species assignment module (a rule-based method) of 
GNormPlus as a baseline. Table 3 shows the results of dif-
ferent methods in terms of accuracy and processing time. As 
expected, deep learning methods provide better performance 
than does the rule-based method. Compared with the binary 
classification framework, our sequence labeling framework 
achieves similar or better performance. For processing time, 
our sequence labeling framework is more efficient. Specifi-
cally, it is 10–20 times faster than the binary classification 
framework when tested on graphics processing unit (GPU) 
and central processing unit (CPU), respectively. Furthermore, 
when comparing the two sequence labeling strategies (S→G 
and G→S), we found that S→G is more efficient and accurate 
than is G→S for both PLM models (PubMedBERT (16) and 
Bioformer (17)). The highest performance (sequence labeling 
framework with the PubMedBERT model, using the S→G 
search strategy) increased about 16% compared to the base-
line (GNormPlus), from 65.8% to 81.3%. Even though Pub-
MedBERT achieved a slightly higher performance than did 
Bioformer, Bioformer is more efficient than is PubMedBERT 
in terms of both GPU and CPU environments (around two 
times faster) and may be a better option for processing the 
large-scale data sets (e.g. entire PubMed abstracts or PMC 
full texts). 

Discussion
Despite our best efforts, there are still errors in the results 
of the species assignment. We examined all the errors of the 
S→G sequence labeling framework using the Bioformer model 
(i.e. 83.7% accuracy) in the test set and grouped them into 
several major categories, as shown in Figure 4. In most cases, 
the nearest species have the highest probability to be the cor-
responding species of the gene spans. Thus, it is confusing to 
the machine if the surrounding species does not correspond 
to the gene. This situation causes 44% of our errors and is 
the major category of errors for our results. As the example in 
PMID: 25277705, the species names of the respiratory syn-
cytial virus (RSV) are glutted in the article, but the article 

Figure 4. The species assignment error types.

concerns RSV infection, not the genetics of the virus. Thus, 
the corresponding species of the genes is human but not RSV. 
As we learned from this type of error, the genes of humans and 
viruses can be confused when there are two different research 
topics. In the first topic, the human gene function is relevant 
to the virus infection. In PMID: 35238065, the human CLIC3 
gene is a potential indicator of poor prognosis of hepatitis 
B virus-related acute-on-chronic liver failure. The other arti-
cle, however, focuses on the variants of the virus sequence. In 
PMID: 35416390, SARS-CoV-2 with E484K mutation in the 
spike gene is expressed in lower expected inhibitory activity 
of antibodies. To better address the issue, it is necessary to 
recognize the topic of the research.

The second error category is caused by a confusion of the 
species names within the higher level of the animal class. As 
an example, in PMID: 23195221, the ‘mammalian’ repre-
sents human, mouse and other mammals. The NLM-Gene 
corpus annotated the genes to mouse, however, as the full 
text analyzed the genes in the mouse model. Such an ortholog 
gene, which represents all the belonging genes, exists widely 
in various literature studies. No existing NCBI gene identifier, 
however, can represent those ortholog genes.
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The third error type occurs when the corresponding species 
is far from the gene, and even the species is not in the same 
(or nearby) sentence(s). Sometimes, a closed species does not 
correspond to the gene. Such an example is seen in PMID: 
20644716, the experiment in vitro/vivo that used a mouse 
model (cell line RAW 264.7) to understand the expression of 
the human ortholog gene. Unfortunately, our method cannot 
always handle the cases well. The other error type occurs when 
the number of the corresponding species in the article is much 
less than that of the other species. In such a case, our method 
may incorrectly assign the most frequently occurring species 
to the genes instead. For instance, the species of Caenorhab-
ditis elegans appears four times, which is significantly higher 
than that of the human (which appears only once) in PMID: 
18627611. The case led some human genes to be wrongly 
assigned to C. elegans. The remainder of the errors are rel-
atively small and are caused by various factors, e.g. one gene 
mention for multiple species.

Furthermore, as shown in Table 2, 767 (1245 − 478 = 767) 
documents in GNormPlus and NLM-Gene corpora were not 
used to benchmark, as the deep learning approach is not appli-
cable. These articles can be grouped into three types: (i) no 
species can be found in the article, and thus, the straightfor-
ward method is to assign all the genes to humans; (ii) only 
one species is found in the article, and thus, all the genes can 
be assigned to the species without using the deep learning 
method and (iii) the corresponding species of the genes are 
not in abstract, and thus, we can assign the remaining species 
in the article only to the genes, but none is correct. When we 
apply simple rules, we attain a comparable accuracy of 85.4% 
on these documents.

Conclusion
In this article, we first proposed a species tagger with state-
of-the-art performance and further presented a novel idea to 
address species assignment, which is the biggest challenge of 
the gene normalization task. The task of recognizing the corre-
sponding species from various candidates for gene mentions is 
more relevant to information-retrieval or relation-extraction 
tasks, but we rephrased the problem into a sequence labeling 
task, which is normally applied to a named-entity recognition 
task. The new method raised the performance accuracy of the 
species assignment (from 65.8% to 81.3%) within an accept-
able process speed for large-scale data processing. Based on 
these promising results, we believe that the sequence labeling 
framework of species assignment can work with other rele-
vant topics as well (e.g. the corresponding genes/species of 
variants and the corresponding variants of the phenotypes). 
Nevertheless, the tool is currently being developed and evalu-
ated only on abstracts. Because more detailed information is 
recorded in the full text, in the future, we would like to further 
improve our methods to be able to handle full-length articles 
with multiple passages as well as the highly unstructured parts 
(e.g. tables) of the text.
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