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a b s t r a c t

In this paper, we present Knowledge4COVID-19, a framework that aims to showcase the power of
integrating disparate sources of knowledge to discover adverse drug effects caused by drug–drug
interactions among COVID-19 treatments and pre-existing condition drugs. Initially, we focus on
constructing the Knowledge4COVID-19 knowledge graph (KG) from the declarative definition of
mapping rules using the RDF Mapping Language. Since valuable information about drug treatments,
drug–drug interactions, and side effects is present in textual descriptions in scientific databases (e.g.,
DrugBank) or in scientific literature (e.g., the CORD-19, the Covid-19 Open Research Dataset), the
Knowledge4COVID-19 framework implements Natural Language Processing. The Knowledge4COVID-19
framework extracts relevant entities and predicates that enable the fine-grained description of COVID-
19 treatments and the potential adverse events that may occur when these treatments are combined
with treatments of common comorbidities, e.g., hypertension, diabetes, or asthma. Moreover, on top of
the KG, several techniques for the discovery and prediction of interactions and potential adverse effects
of drugs have been developed with the aim of suggesting more accurate treatments for treating the
virus. We provide services to traverse the KG and visualize the effects that a group of drugs may have
on a treatment outcome. Knowledge4COVID-19 was part of the Pan-European hackathon#EUvsVirus in
April 2020 and is publicly available as a resource through a GitHubrepository and a DOI.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In early December 2019, an outbreak of a novel virus, the sev-
re acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occu-
red in China, causing a rapid spread of the coronavirus disease
019 (COVID-19). SARS-CoV-2 can be transmitted during the
symptomatic phase of infection and poses a global health emer-
ency because of the intricacy of tracing mild or presymptomatic
hases. The disease spectrum of SARS-CoV-2 infection varies in
everity from asymptomatic to mild respiratory tract infection

∗ Corresponding author.
∗∗ Corresponding author.Leibniz Information Centre for Science and
echnology, Welfengarten 1 B, Hannover, Germany

E-mail addresses: fotis.aisopos@iit.demokritos.gr (F. Aisopos),
aria.Vidal@tib.eu (M.-E. Vidal).
ttps://doi.org/10.1016/j.websem.2022.100760
570-8268/© 2022 Elsevier B.V. All rights reserved.
and severe or fatal pneumonia. The virus infection landscape
poses serious challenges that have to be addressed by the re-
search community to come up with the tools that efficiently
combat the pandemic. Specifically, the aggregation of heterogen-
eous data (e.g., publications and open scientific databases) into a
common knowledge base will enable the development of data-
driven tools. Moreover, data governance, interoperability and
data quality issues, and efficient query processing and data explo-
ration are relevant challenges demanded to be solved efficiently.
More importantly, it is crucial to explore adverse effects of the
treatments commonly prescribed for pre-existing conditions and
the potential treatments for COVID-19.

Our Resource: We address the problem of data integration
and propose a resource named Knowledge4COVID-19, which
transforms COVID-19 and SARS-CoV-2 related data into a KG. The

https://doi.org/10.1016/j.websem.2022.100760
https://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2022.100760&domain=pdf
https://github.com/SDM-TIB/Knowledge4COVID-19
https://zenodo.org/record/4701817#.YH336-8zbol
mailto:fotis.aisopos@iit.demokritos.gr
mailto:Maria.Vidal@tib.eu
https://doi.org/10.1016/j.websem.2022.100760
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Knowledge4COVID-19 resource is composed of a data ecosystem
(DE) and the Knowledge4COVID-19 KG, both allow for a unified
view of the data sources in terms of the unified schema. The
different components of the Knowledge4COVID-19 DE enable
entity extraction and linking, data curation, and the resolution
of the heterogeneity conflicts across the data sources. Moreover,
they facilitate the integration of the heterogeneous data into
a uniform view. Mapping rules expressed in the RDF mapping
language (RML) describe these correspondences [1]. In addition,
knowledge extraction methods make use of knowledge encoded
in diverse sources for extracting drug–drug interactions. These
data sources include controlled vocabularies (e.g., Unified Medical
Language System-UMLS1), scientific publications (e.g., CORD-192)
and scientific open databases (e.g., DrugBank3). Machine learn-
ing methods are also employed to predict interactions between
drugs. The Knowledge4COVID-19 framework is publicly available
as a resource in GitHub4 and Zenodo.5 Additionally, diverse ser-
vices are offered to access and explore the KG (e.g., an API6 and a
public SPARQL endpoint7). The detailed instructions to access are
provided at the project repository.8 The Knowledge4COVID-19
KG can be created locally following the guidelines.9

In summary, the scientific contributions of this work are as
follows:

• A novel infrastructure to transform heterogeneous data
sources into a knowledge graph based on a unified schema.
The implementation of this infrastructure provides a soft-
ware pipeline that includes Named Entity Recognition and
Named Entity Linking methods, as well as novel mapping
rules for aggregating various data retrieved under a unified
KG. The resulting KG can be traversed following reference-
able resources or queried using SPARQL endpoints or a
federated query engine.

• A publicly available KG resource related to COVID-19 inte-
grating information from Scientific Open Data and Publica-
tions. This is a product of the aforementioned infrastructure,
and allows for the exploration of various sources and data.

• A deductive system to discover drug–drug interactions in
a COVID-19 treatment. This system is built on top of fine-
grained representation of Pharmacokinetics drug–drug in-
teractions extracted from scientific open data sources (e.g.,
DrugBank).

• A machine learning based drug–drug interaction predic-
tion method, identifying non-documented interactions for
treatments related to a specific disease. This produces the
predicted COVID-19 related drug–drug interactions that are
included in the Knowledge4COVID-19 Data Ecosystem.

• An analysis of the effectiveness and toxicity of COVID-19
treatments, providing drug–drug interactions deduced from
the Knowledge4COVID-19 KG and adverse effects of these
interactions.

This paper is structured in eight additional sections. Section 2 re-
ports the worldwide statistics that summarize the infection sit-

1 https://www.nlm.nih.gov/research/umls/index.html.
2 https://www.semanticscholar.org/cord19.
3 https://go.DrugBank.com/.
4 https://github.com/SDM-TIB/Knowledge4COVID-19.
5 https://zenodo.org/record/4702125#.YH4ACu8zaV4.
6 https://github.com/SDM-TIB/Knowledge4COVID-19/tree/main/Exploration-
PI.
7 https://labs.tib.eu/sdm/covid19~kg/sparql.
8 https://github.com/SDM-TIB/Knowledge4COVID-19/wiki.
9 https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-
nowledge4COVID-19-KG-locally.
2

uation and presents an overview of the preliminaries. Section 3
defines Knowledge4COVID-19 as a data ecosystem and Section 4
presents the process of knowledge graph creation from the declar-
ative definition using RML mapping rules. Section 5 describes the
Web APIs that enable the traversal of the Knowledge4COVID-19
KG, and the results of the empirical evaluations are reported in
Section 6. The state of the art is summarized in Sections 7 and 8
describes Knowledge4COVID-19 as a resource. Finally, Section 9
wraps up and outlines future work.

2. Context and preliminaries

Fig. 1 depicts world statistics available at Worldometer;10
umbers of infections by June 2020, April 2021, and November
021 are summarized. In all three snapshots, at least 98% of the
ctive infections reported develop mild symptoms, and at most
% can be in serious or critical conditions. As can also be observed
n the latter, nearly 97% of the patients who have suffered from
OVID-19 have been either categorized as those with a mild
ondition or have already recovered.
Worldometers11 also reports weekly new cases concerning the

ast week of November 2021. The perspective is different when
nalyzing these reports. The number of infections has increased
o 16% versus 12% of weekly recovered. Also, the number of new
eaths increases by 8%. The high mortality rate and new cases
f infections indicate the unexpected spreading of the virus, still
ack knowledge on the infection behavior of populations. Despite
he intensity of statistical analyses and related research efforts
edicated to studying the outcome of these infections in certain
ountries, COVID-19 progression is still unpredictable for most
atients, while being many times abrupt for the ones with a
evere or critical condition.
According to World Health Organization (WHO) statistics12 a

road spectrum of demographic, clinical, and molecular condi-
ions appear to affect the evolution of the disease. Although age
nd sex seem not to be associated with the infection rate, once
nfected, the mortality rate in men is much higher than in women.
oreover, significant percentages of deaths represent patients
bove certain ages, as could be expected. Lifestyle variables such
s smoking habits also play an essential role. Although regular
mokers occur to be significantly underrepresented among those
equiring hospital treatment for the illness, smoking emerges
o be associated with rapid progression and increased mortality
ates. Another factor that seriously affects the fatality rate for
OVID-19 seems to be comorbidities, such as cardiovascular dis-
ases, cancer, hypertension, etc. In particular, 80% of deaths are
elated to patients with at least one comorbidity, while COVID-19
atients suffering a serious disease (e.g., cancer) seem to develop
ore rapid progression and appear an increased mortality rate,

n contrast to those with no pre-existing chronic medical con-
itions. Furthermore, the WHO guidelines13 urge clinicians for
areful consideration of adverse effects of medications that may
e used in the context of COVID-19 and encourage medications
hat carry the least risk possible of drug–drug interactions with
ther medicines that a patient with specific comorbidities may
e receiving. Researchers should address this need by detecting
he risk of documented or even unknown interactions related to
pecific comorbidities and medications, though looking into big
ata and identifying relevant patterns.

10 https://www.worldometers.info/coronavirus/.
11 Data from November 28th, 2021.
12 https://globalhealth5050.org/covid19/age-and-sex-data/.
13 https://www.who.int/publications-detail.

https://www.nlm.nih.gov/research/umls/index.html
https://www.semanticscholar.org/cord19
https://go.DrugBank.com/
https://github.com/SDM-TIB/Knowledge4COVID-19
https://zenodo.org/record/4702125#.YH4ACu8zaV4
https://github.com/SDM-TIB/Knowledge4COVID-19/tree/main/Exploration-API
https://github.com/SDM-TIB/Knowledge4COVID-19/tree/main/Exploration-API
https://labs.tib.eu/sdm/covid19~kg/sparql
https://github.com/SDM-TIB/Knowledge4COVID-19/wiki
https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-Knowledge4COVID-19-KG-locally
https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-Knowledge4COVID-19-KG-locally
https://www.worldometers.info/coronavirus/
https://globalhealth5050.org/covid19/age-and-sex-data/
https://www.who.int/publications-detail


A. Sakor, S. Jozashoori, E. Niazmand et al. Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100760

i

2

f
[
s
p
o
p
t
m
t
s
o
a
m
a
d

Fig. 1. SARS-CoV-2 Infections. Comparison of the severity of infections in June 2020, April 2021, and November 2021. Although the percentages of recovered cases
ncreases significantly, the percentage of new deaths still remains above 2%.
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.1. Basic concepts

Data Ecosystems Data ecosystems (DEs) are data-driven in-
rastructures that allow different stakeholders to exchange data
2]. DEs are furnished with various computational methods to
olve interoperability and integrate data while preserving data
rivacy, security, and sovereignty. DEs can be centralized, and
ne single node maintains all the data sources shared by the
roviders. The node also hosts all the services implemented on
op of the DE data sources. Contrary, whenever data cannot be
oved to a single node and data privacy regulations hinder

he materialized and complete data integration of the DE data
ources, DEs will be decentralized, i.e., they will be composed
f several nodes. Each DE node will be able to perform services
nd share data management and analytical results. Semantic data
odels or ontologies provide the meaning of the data sources in
DE. Moreover, mapping rules relating to how data sources are
efined in terms of the semantic data models are included.
Knowledge Graphs (KG): Knowledge graphs [3] are data struc-

tures that represent factual knowledge as entities and their rela-
tionships using a graph data model. Metadata is part of the KG,
as well as taxonomies of entities, relationships, and classes. A
KG contributes to the development of a common understanding
of the meaning of entities in a domain and provides a formal
 A

3

specification of the properties of these entities. A KG G can be
defined as a data integration system DISG = ⟨O, S,M⟩ where O
corresponds to the unified schema, S is a set of data sources, and
M corresponds to mapping assertions defining concepts in O as
conjunctive queries over sources in S. The instances of G are the
esult of the execution of the M rules over the data sources in S.

RDF Mapping Language - RML: The RDF Mapping Language
RML) [1] extends the W3C-standard mapping language R2RML
o manage heterogeneous data sources represented in various
ormats, e.g., CSV, XML, JSON, and relational tables. These rules,
amed as RML triples maps, define the instances of RDF classes
nd their properties in terms of a logical source. Attributes from
he logical data source of a triples map describe the resources of
he corresponding class. RML is an RDF triple-oriented mapping
anguage, where a triples map comprises mapping assertions [4]
hat define the instances of a class (a.k.a. subjectMap), and the
roperty and object (a.k.a. predicateObjectMap) of the RDF triples
here these instances participate as a subject. RML triples maps
re expressed in RDF. This allows the exploration and tracing of
he definition of the process of KG creation.

. The Knowledge4COVID-19 data ecosystem

The Knowledge4COVID-19 framework is a data ecosystem [5].

data ecosystem is defined as a 4-tuple DE=⟨Data Sources, Data
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Fig. 2. Knowledge4COVID-19 as a Data Ecosystem (DE). A Nested Data Ecosystem comprising the Scientific Open Data and Publication DEs. Each DE processes
comprises data sources, metadata, and operators to annotate their respective data sources.
Operators, Metadata, Mappings, Services⟩[6]. Data sources repre-
ent the collections from where data and knowledge are re-
rieved. Data operators correspond to functions used for data
anagement (e.g., entity recognition and linking). The metadata
omponent facilitates the specification of the meaning of the
ata collected from the data sources and the annotation with
ontrolled vocabularies; it also comprises a unified schema that
rovides an integrated view of the data sources. The mappings
lign the data sources with the unified schema and describe
heir meaning. Lastly, services exploit the knowledge encoded in
he metadata and data operators to satisfy user requirements.
ervices include federated query processing, interactions between
he drugs of a treatment, predicted drug interactions, or mapping
eneration.
Fig. 2 depicts the components of the Knowledge4COVID-19

E; it comprises two data ecosystems, one for scientific publi-
ations and another for scientific open data. The scientific publi-
ation DE includes COVID-19 related literature from PubMed,14
ioRxiv,15 medRxiv,16 and PubMed Central (PMC).17 Scientific
pen data DE collects data about COVID-19 drugs, their side
ffects and the adverse events generated by their interactions.
he scientific open data DE integrates data extracted from textual
escriptions from DrugBank3 and SIDER.18 This section describes
hese two DEs in detail, while Section 4 describes the pipeline
hat creates the Knowledge4COVID-19 knowledge graph from the
ata and knowledge extracted from these two DEs.

14 https://pubmed.ncbi.nlm.nih.gov/.
15 https://www.biorxiv.org/.
16 https://www.medrxiv.org/.
17 https://www.ncbi.nlm.nih.gov/pmc/.
18 http://sideeffects.embl.de/.
4

3.1. The scientific open data DE

This data ecosystem makes available data and knowledge
about drugs extracted from open data sources.

3.1.1. Data sources
The Scientific Open Data DE integrates medical concepts ex-

tracted from open scientific databases. Albeit structured, these
datasets may comprise textual attributes that encode relevant
entities and relations. For example, the drug–drug interaction
between Metformin and Hydroxychloroquine is described like
‘‘The therapeutic efficacy of Metformin can be increased when
used in combination with Hydroxychloroquine.’’.19 Additionally,
the indication of Hydroxychloroquine is presented like ‘‘Hydrox-
ychloroquine is indicated for the prophylaxis of malaria where
chloroquine resistance is not reported, treatment of uncompli-
cated malaria (caused by P. falciparum, P. malariae, P. ovale, or
P. vivax), chronic discoid lupus erythematosus, systemic lupus
erythematosus, acute rheumatoid arthritis, and chronic rheuma-
toid arthritis.‘‘20 These descriptions encode relevant facts that can
be read and understood by humans. However, further analysis
is required to make them understandable by machines. This DE
makes used of data operators for named entity recognition to
identify entities that correspond to drug related concepts. Table 1
describes the data collected from DrugBank [7], SIDER [8], and
UMLS [9].

DrugBank is a Web-accessible database containing informa-
tion about drugs and their administration routes, mechanisms,

19 https://go.DrugBank.com/drugs/DB00331.
20 https://go.drugbank.com/drugs/DB01611.

https://pubmed.ncbi.nlm.nih.gov/
https://www.biorxiv.org/
https://www.medrxiv.org/
https://www.ncbi.nlm.nih.gov/pmc/
http://sideeffects.embl.de/
https://go.DrugBank.com/drugs/DB00331
https://go.drugbank.com/drugs/DB01611
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Table 1
Data sources for the Scientific Open Data DE.
Data source Data type #Instances

DrugBank Pharmacokinetic DDIs 769,352

2022-01-04
Pharmacodynamics DDIs 503,700
Drug indications 2421
Drug toxicities 1533

SIDER 2021 Drug side effects 58,945
UMLS Nov 2021 Medical concepts 4,864,162
CRD Pair of drugs that target a CYP protein [10] 345,116
NCRD Pair of drugs that target a No CYP protein [10] 5513
Fig. 3. FALCON Recognizes Relevant Entities and Predicates. As a result, a Fine-Grained Representation of Drug–Drug Interactions is part of the Knowledge4COVID-19
KG.
proteins, and interactions. Drug–drug interactions can be Phar-
macodynamics and Pharmacokinetics. A pharmacodynamic drug–
drug interaction between drugs A and B indicates that both drugs
influence in their effects directly, e.g., ‘‘The risk or severity of
QTc prolongation can be increased when Hydroxychloroquine is
combined with Acetophenazine’’. On the other hand, if drug A has
a pharmacokinetic drug–drug interaction with drug B, A alters the
disposition (absorption, distribution, elimination) of B, and ends
up in the increase or the decrease of B plasma drug concentra-
tions. For example, Abatacept has a pharmacokinetic drug–drug
interaction with Hydroxychloroquine, because ‘‘The metabolism
of Hydroxychloroquine can be increased when combined with
Abatacept.’’. The Scientific Open Data DE has collected 769,352
and 503,700 Pharmacokinetic and Pharmacodynamics DDIs, re-
spectively. Moreover, 2421 drug indications and 1532 toxicities
have been collected and processed from DrugBank. SIDER is also
a Web-accessible database which makes available mechanisms
of actions of drugs and their possible adverse effects; 58,945
side effects are collected. UMLS is a controlled vocabulary that
comprises terminology, classification, and semantic types and
groups of biomedical concepts; 4,536,579 terms are collected
together with their definitions, and semantic types and groups.
Lastly, following the method proposed by Sridhar et al. [10], two
data sources with pairs of drugs that shared at least one protein
are computed. CRD are drugs from DrugBank that target at least
one protein of the family CYP, while the NCRD drugs also target
at least one protein, but it is not of the family CYP.

3.1.2. Data operators
The data operators enable the recognition of entities corre-

ponding to drugs, their side effects, and the adverse events
aused by their interactions. FALCON [11] recognizes the words
orresponding to the drugs that interact and the effect and im-
act of these interactions. Additionally, the extracted words are
inked to terms in UMLS. As illustrated in Fig. 3, ‘‘Metformin’’ and
‘Chloroquine’’ correspond to the extracted entities from the short
ext collected from DrugBank. At the same time, ‘‘excretion rate’’
nd ‘‘decrease’’ represent, respectively, the effect and impact of
he interaction of ‘‘Metformin’’ and ‘‘Chloroquine’’. The UMLS
dentifiers C0025598 and C0020336 are linked to ‘‘Metformin’’
nd ‘‘Hydroxychloroquine’’, while C2827741 and C0547047 are
5

related to ‘‘excretion rate’’ and ‘‘decrease’’, respectively. FALCON
also connects ‘‘Metformin’’ and ‘‘Chloroquine’’ to their corre-
sponding resources in DBpedia and Wikidata.

FALCON [12] is also used to extract the Drug–Drug Interactions
(DDIs) reported in DrugBank as short texts. We customize FAL-
CON for analyzing the DDI text. Since the DDI text is related to the
medical domain, UMLS is utilized as the background knowledge
for FALCON. In this case, in addition to recognizing words that
correspond to two drugs that interact, FALCON identifies the
effect and impact of an interaction. FALCON resorts to the catalog
of rules for extracting the previously mentioned types of entities;
additionally, a background knowledge base is utilized to deter-
mine the semantic type of the extracted entities. Since most of
the descriptions of the interactions share similar patterns, i.e., the
structure of the sentences is very repetitive, only few extra rules
are required to be added to the catalog of rules. The rules were
created by replacing each drug mention with a variable (DrugX,
DrugY). Out of 1,273,052 drug–drug interactions collected from
DrugBank, 320 patterns were recognized; Table 2 shows a sample
of the extracted patterns.

As a result of the knowledge extraction process executed by
FALCON, the Scientific Open Data DE makes available fine-grained
representation of DDIs. This representation enables the deduction
of new drug–drug interactions implemented as a service of this
DE. Moreover, these descriptions are also used to validate the
prediction tasks implemented in the Scientific Publications DE.

3.1.3. Data services
The Scientific Open Data DE implements a deductive system

that enables to deduce drug–drug interactions among a multi-
drug treatment whose interactions may reduce the effectiveness
of the treatment or increase the number of toxicities. The deduc-
tive system is defined in terms of Datalog rules; it exploits the
fine-grained representation of the DDIs interactions generated by
FALCON. The execution of this deductive system is grounded on
the results of deductive databases [13] to compute the minimal
model that includes the instances of the deduced drug–drug
interactions in a treatment. The minimal model corresponds to
the fixed-point of the assignments of the values of variables in the
deductive system rules. Since rules free of negations compose the
deductive system, the minimal model is computed in polynomial
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Table 2
Overview of extracted DDI patterns. Drugs mentions are in bold. Effect is in Italic. Impact is underlined.
DDI patterns

DrugY may increase the anticoagulant activities of DrugX.
The risk or severity of bleeding and hemorrhage can be increased when DrugX is combined with DrugY.
The risk or severity of gastrointestinal bleeding can be increased when DrugX is combined with DrugY.
The risk or severity of bleeding can be increased when DrugY is combined with DrugX.
The metabolism of DrugY can be decreased when combined with DrugX.
DrugX may decrease the vasoconstricting activities of DrugY.
DrugX may decrease the excretion rate of DrugY which could result in a higher serum level.
DrugY may increase the constipating activities of DrugX.
The risk or severity of gastrointestinal bleeding and gastrointestinal ulceration can be increased when DrugX is
combined with DrugY.
Table 3
Summary of datalog predicates. Extensional predicates are ddi(A,E,I,B), member(A,T), treatment(T), rule1(E,I), and rule2(E,I). Intensional predicates are ddi(A,E,I,B,T),
toxicity(A,increase,B,T), and effectiveness(A,decrease,B,T).
Predicate Explanation

ddi(A,E,I,B) Pharmacokinetic drug–drug interaction between A and B. Precipitant drug A generates effect E (e.g., absorption, excretion,
metabolism, serum concentration) with impact I (e.g., increase or decrease) in object drug B.

ddi(A,E,I,B,T) Pharmacokinetic drug–drug interaction between A and B in treatment T . Precipitant drug A generates effect E (e.g.,
absorption, excretion, metabolism, serum concentration) with impact I (e.g., increase or decrease) in object drug B.

rule1(E,I) Combinations of effect E with impact I that alter the toxicity of an object drug.
rule2(E,I) Combinations of effect E with impact I that alter the effectiveness of an object drug.
treatment(T) T is a medical treatment
member(A,T) A is a drug in the medical treatment T
toxicity(A,increase,B,T) The precipitant drug A increases the toxicity of object drug B in treatment T
effectiveness(A,decrease,B,T) The precipitant drug A reduces the effectiveness of object drug B in treatment T
time in the size of the number of treatments and drug–drug in-
teractions generated by FALCON. The approach proposed by Rivas
and Vidal [14] is followed to implement this data service. The
extensional database corresponds to statements about interac-
tions between drugs extracted by FALCON. On the other hand, the
intensional database comprises a set of Horn clauses that define
the conditions to be met by the drugs whose interactions may
reduce the effectiveness of a treatment or increase the number of
toxicities. This intensional database relies on the fact that phar-
macokinetic drug–drug interactions cause that the concentration
of one of the interacting drugs (a.k.a. object) is altered when it
is combined with the other drug (a.k.a. precipitant). Thus, the
rate of absorption, distribution, metabolism, or excretion of the
object drug is affected. Whenever the object drug absorption
is decreased (resp. increased) the bioavailability of the drug is
also affected. Furthermore, any alteration in the metabolism or
excretion of the object drug has consequences on the therapeutic
efficacy and toxicity of the drug. The following Datalog rules state
the effect of pharmacokinetic DDIs. Considering the predicates in
Table 3, the intensional database defines the toxicity effects of
drug–drug interactions in a treatment:

ddi(A, E, I, B), treatment(T ),member(A, T ),member(B, T ) →

ddi(A, E, I, B, T ).
ddi(A, E, I, B, T ), rule1(E, I) →

toxicity(A, increase, B, T ).
toxicity(A, increase, B, T ), toxicity(B, increase, C, T ) →

toxicity(A, increase, C, T ).
toxicity(A, increase, B, T ), ddi(B, E, I, C, T ) → ddi(A, E, I, C, T ).

The conditions to reduce effectiveness are defined as follows:
ddi(A, E, I, B, T ), rule2(E, I) →

effectiveness(A, decrease, B, T ).
effectiveness(A, decrease, B, T ), effectiveness(B, decrease, C, T ) →
effectiveness(A, decrease, C, T ).

6

The extensional database includes the following ground predi-
cates:

rule1(serum, increase).
rule1(metabolism, decrease).
rule1(absorption, increase).
rule1(excretion, decrease).

rule2(serum, decrease).
rule2(metabolism, increase).
rule2(absorption, decrease).
rule2(excretion, increase).

Additionally, a graph traversal method is implemented to com-
pute the drugs that affect the most the effectiveness or toxicity
of a treatment drug. The implemented method creates a directed
graph from drug–drug interactions with the extensional facts and
deduced of the Datalog rules. The direction of an edge from node
A to B denotes that A is the precipitant and B is the object of
the interaction. Drugs that affect the most the effectiveness or
toxicity of a treatment drug are defined in terms of the middle-
vertices in the wedges [14], or paths with two directed edges [15],
in the directed graph that represents the drug–drug interactions
among the drugs of a treatment. The middle-vertex of a wedge is
both the object drug of one interaction, and the precipitant drug
of the other interaction. Thus, drugs that correspond to middle-
vertices of N wedges in a treatment T , correspond to drugs that
cause 2 ∗ N different drug–drug interactions in that treatment.

Fig. 4 depicts an exemplar treatment composed of five drugs.
DDIs are represented by the predicates summarized in Table 3.
By evaluating the Datalog program, a new DDI is deduced and
represented in red. This evaluation deduces that doxycycline
decreases the metabolism of montelukast in the treatment T1
and that doxycycline increases toxicity of montelukast. For the
sake of simplicity, a single deduced DDI is depicted, even if the
Datalog program deduces five new DDIs. Computing the absolute

frequency of a drug being the wedges middle-vertex identifies the
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Fig. 4. COVID-19 treatment. Example of deducing DDIs and computing wedges. The red arrows represent the DDIs deduced, and the red node represents the drug
ith the higher absolute frequency of being the wedges middle-vertex.
Table 4
The full list of data sources and ontologies used for the Scientific Publications
DE.
Sources #publications Ontologies #annotations

PubMed 106,150 MeSH 1,356,578
PMC 26,105 Gene Ontology 125,629
CORD-19 460,772 Disease Ontology 5129

drugs that affect the most the effectiveness or toxicity of drug
treatment. In this case, azithromycin is the drug with the higher
absolute frequency of being the middle-vertex of the wedges in
the graph (i.e., absolute frequency of three); it is followed by
montelukast with a value of two and lovastatin with a value
of one. Note that after removing azithromycin from the treat-
ment, there is only one DDI between montelukast and lovastatin,
i.e., 83.3% of the DDIs are eliminated.

In Section 6.3, we compare the drug–drug interactions de-
uced by the previously described deduction system and exist-
ng tools that discover drug–drug interactions in a treatment.
he results of this evaluation suggest that middle-vertices, with
igh frequency in the directed graph of a therapy, correspond
o the drugs that produce more toxicities. Therefore, identifying
requent middle-vertices in the directed graph that models a
reatment provides a computational method for discovering toxic
edications in treatment.

.2. The scientific publications DE

The Data Ecosystem of Scientific Publications comprises the
omponents extracting relevant medical concepts from scientific
ublications.

.2.1. Data sources
The Scientific Publications DE collects data from the follow-

ng data sources: CORD-19 [16], PubMed,21 and PubMed Central
PMC),22 enriched with information from certain ontologies.
CORD-19 is a collection of scientific papers about COVID-19 and
related coronavirus; the version by 2021-03-01 includes 460,772
publications. PubMed is Web-accessible engine to primary access
scientific publications from the MEDLINE database. The Scientific
Publications DE has and harvested articles from PubMed and
PubMed Central (PMC) until April 2022, including the MeSH topic
‘covid-19’. Table 4 describes the full list of data sources and
ontologies used by the Scientific Publications DE.

21 https://pubmed.ncbi.nlm.nih.gov/.
22 https://www.ncbi.nlm.nih.gov/pmc/.
7

3.2.2. Data operators
The natural language processing (NLP) tools MetaMap,23 and

SemRep24 are utilized to recognize drugs and diseases from the
titles and abstracts of the integrated articles25 and also from
the full texts of articles that are available in PMC. The Unified
Medical Language System (UMLS) is used to describe the ex-
tracted medical entities using a controlled vocabulary of medical
terms. Moreover, the Medical Subject Headings (MeSH) the-
saurus, along with some Open Biological and Biomedical Ontology
(OBO) Foundry ontologies, are also harvested in order to retrieve
topic annotations and hypernymic relations of drugs and diseases.

In total, 542,672 publications are annotated with semantics re-
lations from UMLS26 (e.g., ASSOCIATED_WITH, TREATS, CAUSES),
adverse events (e.g., Dyspnea increase, Confusion increase), dis-
orders (e.g., Colorectal cancer, Bladder cancer), phenotypes
(e.g., Allergic Reaction, Hemorrhage), and drugs (e.g., Becapler-
min, Naloxone). Furthermore, metadata of the processed publi-
cations (e.g., title, authors, publication date, journal name, and
citation number) describes the main attributes of the scientific
publications.

3.2.3. Data services
Despite the wide adoption of MetaMap and SemRep tools,

their effectiveness is far from perfect [17]. Thus, triples resulting
from applying those NLP tools on publications tend to be the
most noisy part of the knowledge graph. To overcome this quality
challenge, we need to apply some kind of error detection mech-
anism for the Scientific Publications Graph refinement [18,19].
In our case, we have experimented with various approaches,
such as graph embeddings [20], path ranking solutions (PaTy-
BRED) [21] and a hybrid approach called PRGE (Path Ranking
Guided Embeddings) [22]. PRGE method uses the PaTyBRED path
ranking technique, in order to produce confidence scores for all
the triples of a graph. It then uses those scores in order to guide
the TransE embedding method focusing on the probably correct
triples, during the graph embedding creation. This is realized
by incorporating triple confidence scores in the embedding Loss
function, guiding thus the training procedure to put less emphasis
on noisy triples. The selected approach results in a final confi-
dence score for each triple of the graph in the range of [0-1].
Deciding a cut-off confidence threshold below which all triples
will be considered as erroneous provides a trade-off between
quality and the amount of data that will be produced. In our

23 https://metamap.nlm.nih.gov/.
24 https://semrep.nlm.nih.gov/.
25 https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/CORD-19-
Publication-Processing.
26 https://www.nlm.nih.gov/research/umls/META3_current_relations.html.

https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/
https://metamap.nlm.nih.gov/
https://semrep.nlm.nih.gov/
https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/CORD-19-Publication-Processing
https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/CORD-19-Publication-Processing
https://www.nlm.nih.gov/research/umls/META3_current_relations.html
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Fig. 5. An example of (a) a semantic path between drugs Hydroxychloroquine and Enalapril, (b) transformation into a feature vector.
ase, we selected a median threshold of 0.5, in order to keep
he majority of the graph triples. Applying this method to the
cientific Publications DE Graph resulted into a 40% of the total
riples identified as possibly erroneous.

cientific Publications DE analysis: As a next step, we apply
predictive analysis on the Scientific Publications DE, in order

o identify previously unknown adverse effects of drug combi-
ations, in the form of drug–drug interaction relations. For this
urpose, a machine learning method that exploits patterns un-
eiled from contextual information of the Scientific Publications
E to predict potential drug–drug interactions is implemented.
his method is based on the analysis of the Scientific Publications
raph [23] that results from the natural language processing and
emantic indexing of biomedical publications and open resources,
s described above. The Scientific Publications Graph constitutes
n integral part of the Knowledge4COVID-19 KG, representing
he structured information extracted from relevant publications
n the form of triples. Drugs included in DrugBank are also con-
idered a part of this graph, relating these with specific targets,
iseases, and other biomedical entities identified in literature
ext, through a set of semantic relations from the UMLS Semantic
etwork26.

Prediction of new DDIs: The problem of predicting new drug–
rug interactions is addressed as a binary classification problem
or interacting/non-interacting drug pairs in the Scientific Publi-
ations Graph. The result of this classification provides a set of
rug pairs with none previously known interaction, marked as
alse Positives, that our classifier identifies as interacting with
certain confidence score. These predictions can provide an

ndication of potential interactions to pharmaceutical experts that
ave not been previously documented. To this end, the afore-
entioned machine learning technique focuses on the analysis of

he undirected semantic paths connecting different pairs of drugs
n the Scientific Publications Graph. This method is called Drug–
rug Interaction prediction on a Biomedical Literature Knowledge
raph (DDI-BLKG) [24]. Each one of these paths includes a se-
uence of semantic relations of length n that are aggregated into
eature vectors representing the frequency of each relation in
specific position (1, n). As an example, if Hydroxychloroquine
nd the Diabetes-related Enalapril both interact with the tar-
et Angiotensin-converting enzyme, this provides the undirected
ath and the respective feature vector (Fig. 5).
Let D be the number of relevant drugs examined, where rele-

ance is determined by the existence of such drugs in COVID-19
elated publications. Aggregating all possible paths between pairs
f drug nodes, we generate a big dataset of (D− 1)! feature rows
hat denote relations’ frequency in specific positions, as illus-
rated above. Each feature row is of size (n x r), where r denotes
he number of different relation types. In our case, maximum path
ength is set to 3 (n = 3), as this has provided the best trade-off
etween data size and accuracy. Also, 35 unique relation types
8

are used from the UMLS Semantic Network (r = 35). Therefore.
(3 x 35) features are calculated for every pair and are used to train
a Random Forest classifier that is able to effectively discriminate
between two classes: interacting and non-interacting pairs, based
on the respective label extracted from a gold dataset.

In order to generate the final set of predictions, the Random
Forest classifier is trained using all COVID-19 related pairs (where
at least one of the two drugs is mentioned in Drugbank as COVID-
19 experimental treatments27), denoted as positives in DrugBank.
Testing the classifier for all possible remaining COVID-19 related
drug pairs, which are not known to be interacting, produces
8925 unknown drug–drug interaction predictions in total, with
a certain confidence score within a range of [0,1]. The critical
threshold of this score is considered to be 0.5, meaning that drug
pairs with a score < 0.5 are less possible to be interacting, while
pairs with a score > 0.5 represent the most possible interactions.

4. The Knowledge4COVID-19 knowledge graph

This section the Knowledge4COVID-19 DE in terms of the pi-
peline for the creation of Knowledge4COVID-19 knowledge graph
(KG), the linking to existing KGs (e.g., DBpedia and Wikidata),
and the techniques of federated query processing implemented
on top of Knowledge4COVID-19 KG. The Knowledge4COVID-19
DE relies on annotations from UMLS, DBpedia, and Wikidata
to solve entity alignment. The execution of 221 RML mapping
assertions – manually defined by two knowledge engineers and
curated by two more – transforms the structured representation
of the data sources, annotations, and alignments into the Know-
ledge4COVID-19 KG.

Fig. 6 depicts the steps of the KG creation process. Steps 1
and 2 are done at the level of Scientific Open Data and Publi-
cations DEs, while steps 3 and 4 are conducted at the level of
Knowledge4COVID-19 DE (Fig. 2) to create the Knowledge4-
COVID-19 KG. First, data is ingested and described in terms of
metadata (step 1), e.g., title and abstract of the publications,
and drug–drug interactions. Knowledge extraction methods
recognize biomedical entities from textual data and link them
to UMLS, and to resources in DBpedia, Wikidata, Uniprot, and
DrugBank. A total of 12,223,409 UMLS annotations have been
extracted by FALCON. These annotations are used for solving
entity alignment and semantic data integration of biomedical
entities in the Knowledge4COVID-19 KG (e.g., drugs, phenotypes,
side effects, and adverse events). Moreover, there are 3,739,445
links to DBpedia, 3,476,435 links to Wikidata, 5248 links to the
Uniprot RDF KG, and 3427 links to DrugBank.

The shared data sources are mapped to the Knowledge4-
COVID-19 unified schema. SDM-RDFizer [25] transforms these sh-
ared data into an RDF graph by executing the RML mapping rules.
SDM-RDFizer implements optimized data structures that are

27 https://go.drugbank.com/covid-19#drugs.

https://go.drugbank.com/covid-19#drugs
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Fig. 6. The Knowledge4COVID-19 KG Pipeline. Steps followed during the transformation of heterogeneous data into the Knowledge4COVID-19 KG. UMLS annotations
provide the basis for entity alignment and data integration.
exploited during the execution of RML mapping rules to speed
up the KG creation process [25]. The Knowledge4COVID-19
KG is published following the Linked Data principles. A linked
data interface using Pubby28 is provided; thus, all the URIs
an be dereferenced. Additionally, a SPARQL endpoint allows
or querying processing on top of the Knowledge4COVID-19
G, while the federated query engine, DeTrusty [26], evaluates
PARQL queries over the federation of the Knowledge4COVID-19
G, DBpedia, Wikidata, and UniProt RDF. Additionally, various API
EST services are offered to traverse the Knowledge4COVID-19
G, and analyze drug–drug interactions and side effects (step 4).

.1. The Knowledge4COVID-19 unified schema

The Knowledge4COVID-19 unified schema comprises concepts
hat provide abstract representations of the entities present in the
ata sources. Each generic concept of a type or category is defined
s a Class in OWL. These concepts represent annotations from
ontrolled vocabularies, drugs, COVID-19 treatments and drugs,
isorders, phenotypes, adverse events, enzymes, targets, side
ffects, scientific publications, and interactions between drugs,
rugs and side effects, and drugs and their targets. The current
ersion of the unified schema is composed of 67 classes, 37
bject properties, 49 data type properties, and eight annotation
roperties. Fig. 7 shows examples of classes and properties of the
nowledge4COVID-19 unified schema. The inner circle in Fig. 7

28 https://github.com/cygri/pubby.
9

displays 17 classes of the unified schema; each class is shown in
a different color. The outer circle, however, illustrates examples of
the properties categorized by the classes. Each group of properties
shown in the same color as one class represents all the properties
which domains are the same class; in average, a class has in
3.7 properties. Following the Global as View (GAV) modeling
approach [27], we define the classes in the unified schema such
that they involve all the concepts represented in data sources
and recognized by a domain expert. Similarly, the properties are
defined considering the domain specific relations between the
concepts residing in different data sources.

In defining the unified schema concepts, we exploit two
available unified schemas corresponding to two different biomed-
ical knowledge graphs: iASiS.29 and BigMedilytics30 Additionally,
the Knowledge4COVID-19 unified schema concepts (i.e., classes
and properties) are related via the owl:equivalentClass and
owl:equivalentProperty predicates to concepts in DBpedia,
Wikidata, Uniprot, the Open Biological and Biomedical Ontology,
the Semanticscience Integrated Ontology, and Dublin Core. In
total, 17 concepts are mapped to at least one concept in these
ontologies.

The unified schema is publicly available as a VoCol reposi-
tory supported by TIB.31 VoCol [28] provides a loose coupling
of components for validation, querying, analytics, visualization,

29 http://ontology.tib.eu/iasis/.
30 http://ontology.tib.eu/bigmedilytics/.
31 http://ontology.tib.eu/K4COVID-19/.

https://github.com/cygri/pubby
http://ontology.tib.eu/iasis/
http://ontology.tib.eu/bigmedilytics/
http://ontology.tib.eu/K4COVID-19/
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Fig. 7. The Unified Schema. Classes and properties.
Fig. 8. The Knowledge4COVID-19 unified schema. VoCol Visualization of the classes, and data and object properties.
nd documentation on top of a standard Git repository. VoCol
lso provides an interface for specifying queries against the uni-
ied schema and ontology management features that enable the
isualization and exploration of the ontology. Finally, the docu-
entation describing the metadata of each class and property can
e consulted, as well as basis analysis describing the number of
10
classes and properties that comprise the unified schema. Fig. 8(a)
depicts the Knowledge4COVID-19 unified schema visualized by
VoCol. The metadata describing each of the depicted concepts can
be accessed at VoCol.32 Fig. 8(b) presents the description of the

32 http://ontology.tib.eu/K4COVID-19/documentation.

http://ontology.tib.eu/K4COVID-19/documentation
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Fig. 9. Mapping Assertions in RML Triples Maps. Number of Mapping Assertions (i.e., subject and object maps) per classes.
Fig. 10. SPARQL Query to retrieve the RML rules that define COVID-19:Publication.
lass covid-19:CovidTreatment, which groups of COVID-19
rugs and the drugs of common comorbidities.

.2. Mapping the data sources into the unified schema

Classes and properties in the unified schema are defined in
erms of the attributes in the data sources by means of RML
riples maps. The Knowledge4COVID-19 KG is defined using 57
ML triples maps that comprise 223 mapping assertions (i.e., sub-
ect or object Map). Fig. 9 presents the number of mapping
ssertions of the RML triples maps that define each of the uni-
ied schema classes and their properties. For example, the class
OVID-19:DrugDrugInteractionPrediction is defined us-
ng 22 mapping assertions, and COVID-19:Publication is the
lass with the greater number of properties and is defined by 33
apping assertions. A SPARQL endpoint with the unified schema
nd the triples maps is publicly available.33
Fig. 10 presents a SPARQL query that collects the informa-

ion about the mapping rules that define the class COVID-
9:Publication. The results of this query evaluation include
he data source from where the data is collected, and per predi-
ate of the class, the attribute(s) of the corresponding data source
sed to populate the predicate.

33 https://labs.tib.eu/sdm/covid19~kg-mappings/sparql.
11
4.3. The Knowledge4COVID-19 KG in numbers

The current version of the Knowledge4COVID-19 KG compri-
ses 80,570,440 RDF triples. Fig. 11 depicts the number of resou-
rces per class in the Knowledge4COVID-19 KG. As observed,
covid-19:Annotation comprises 4,536,579 resources, 542,672
resources in covid-19:Publication, 503,700 for covid-
19:PharmacokyneticDrugDrugInteraction. The Knowle-
dge4COVID-19 KG includes 87 COVID-19 drugs; 68 drugs are
from DrugBank.34 and the rest have been extracted from the
Mayo Clinical website35 Additionally, the Knowledge4COVID-19
KG integrates 216 COVID-19 treatments that comprise COVID-19
drugs and drugs for the most common comorbidities that imp-
act on the survival of COVID-19 patients [29]: hypertension,
depressive syndrome anxiety, obesity, cardiopathy, diabetes me-
llitus, hepatitis disease, chronic obstructive pulmonary disease,
renal disease, asthma, dyslipidemia hypercholesterolemia, neuro-
degenerative disorder, gastrointestinal disease, vascular disease,
benign prostatic hyperplasia, and obstructive sleep apnea. There
are 923 deduced DDIs (a.k.a. DeducedDDIs). In average, each

34 https://go.drugbank.com/covid-19.
35 https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-
answers/coronavirus-drugs/faq-20485627.

https://labs.tib.eu/sdm/covid19~kg-mappings/sparql
https://go.drugbank.com/covid-19
https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/coronavirus-drugs/faq-20485627
https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/coronavirus-drugs/faq-20485627
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Fig. 11. Knowledge4COVID-19 KG. Number of Resources per classes; 4,864,162 annotations encode the meaning of 542,672 scientific publications and open data.
COVID-19 treatment has 10.63 drugs, 1.58 COVID-19 drugs, and
9.11 comorbidity drugs. Additionally, COVID-19 treatments have
in average two comorbidities and 121.43 DeducedDDIs; the
same DDI can produce different effects, and they are counted
as different DDIs. Moreover, the Knowledge4COVID-19 KG
integrates 345,116 CRD and 5513 NCRD pairs of drugs, and
124,537 instances of predicted DDIs (i.e., instances of the class
covid-19:DrugDrugPrediction). Specifically, 8925 of the
redicted DDIs are generated by the DDI-BLKG method, 5907
ave a score equal or greater than 0.5 (a.k.a. DDI-BLKG-0.5).
he rest of the DDIs are discovered by state-of-the-art methods;
hey are included in the KG to provide a baseline for future
enchmarking. These DDIs are predicted from the DDIs extracted
rom DrugBank, and are as follows: (i) TransE [30] 28,752 DDIs
enerated by TransE. (ii) RESCAL [31] 28,752 DDIs generated
y RESCAL. (iii) HolE [32] 28,752 DDIs generated by HolE.
iv) DistMult [33] 28,752 DDIs generated by DistMult.

. Exploring the Knowledge4COVID-19 KG

This section describes the services implemented to facilitate
he traversal and data retrieval on top of the Knowledge4COVID-
9 KG.

.1. Relevant adverse effects detected on Knowledge4COVID-19

This service aims at providing the support for analyzing
elevant adverse effects that may be produced as a result of
nteractions among drugs to treat COVID-19 and conditions. As
proof of concept, we illustrate the results of the analysis of

he most common comorbidities, i.e., hypertension, asthma, and
iabetes. These comorbidities are linked to the ACE-2 receptor
xpression and may facilitate the entry of the virus into the host
ells as a consequence of releasing the proprotein convertase.
ore importantly, this effect may fire a ‘‘vicious infectious circle’’
hich may result in the increase of morbidity and mortality [34].
evertheless, a more detailed analysis of the impact of the com-
ination of drugs can be executed on the public available Jupyter
12
Notebook.36 Exemplar drug–drug interactions represented in the
Knowledge4COVID-19 KG can also be visualized.37

Figs. 12, 13, and 14 depict adverse effects that can be triggered
in COVID-19 patients who receive treatments for hypertension,
asthma, or diabetes. Each plot reports a labeled directed graph,
nodes represent drugs and an edge between two drugs, represent
an interaction. The label of an edge, denoted by the line color and
the figure legend, indicate the type of side effect.

Fig. 12 presents 14 types of drug–drug interactions that may
occur among the COVID-19 drugs Hydroxychloriquine, Zinc, and
Chloroquine, and asthma drugs. The pharmacokinetic drug–drug
interactions between a pair of drugs A and B indicate that A
impacts B’s absorption, metabolism, excretion when both drugs
are administrated together. As a result, A may reduce the ef-
fectiveness or increase toxicities. The rest of the interactions
are pharmacodynamic, i.e., their pharmacological outcome may
be affected. Six out of the 14 reported drug–drug interactions
are pharmacokinetic. Chloroquine may reduce the metabolism of
Zafirlukast, Mometasone, and Fluticasone; it can also decrease
the excretion rate of Levosalbutamol. Hydroxychloriquine also
impacts the metabolism of Theophylline. Furthermore, the serum
concentration of Chloroquine may be increased with asthma
drugs by Methylprednisolone, Prednisone, and Budesonide. Thus,
the effectiveness of the treatment was negatively affected. Four
drugs may increase the severity of the side effects of Hydroxy-
chloriquine. At the pharmacodynamic level, it can be observed
that Montelukast and Chloroquine may increase the risk of my-
opathy, and Salmeterol and Hydroxychloriquine may increase the
risk of QT prolongation. Since the risk of cardiac events during QT
syndrome is high, these results suggest that the combinations of
the treatments need to be administrated with great precaution.
Similarly, Fig. 13 reveals a more significant number of interac-
tions among the drugs Hydroxychloriquine, Zinc, and Chloroquine
and the drugs typically prescribed to Type 2 diabetes patients.
All the drugs affect the efficacy of Hydroxychloriquine and the

36 https://colab.research.google.com/drive/146-oQTxDpZQoOifKY6iafaEwuupH
7q3t?usp=sharing.
37 https://youtu.be/7YsTYJzRfR0.
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Fig. 12. The adverse effects generated as the result of the interactions among COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for
Asthma. Relations retrieved from the Knowledge4COVID-19 KG.

Fig. 13. The adverse effects generated as the result of the interactions among COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for Type
2 Diabetes. Relations retrieved from the Knowledge4COVID-19 KG.

Fig. 14. The adverse effects generated as the result of the interactions among COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for
Hypertension. Relations retrieved from the Knowledge4COVID-19 KG.
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combination of Rosiglitazone in treatments with Insulin Deter-
mir or Insulin Glargine. Additionally, the therapeutic efficacy of
Rosiglitazone can be increased when used in combination with
Hydroxychloroquine, and Chloroquine may reduce the effective-
ness of Metformin. They should be administrated with precaution
because their therapeutic efficacy may be reduced. Drug inter-
actions of hypertension treatments based on drugs Angiotensin
converting enzyme, with the drugs Hydroxychloriquine and Zinc
are reported in Fig. 14. As reported, the combination of these
drugs may cause pharmacodynamic interactions that can crit-
ically affect the function of nerve and muscle cells, including
those in the heart. The above results suggest that COVID-19
patients receiving treatments for pre-existing conditions need to
be carefully treated.

5.2. Web APIs to traverse the Knowledge4COVID-19 KG

The Knowledge4COVID-19 KG can be explored by executing
PARQL queries against the public SPARQL endpoint7. Addition-
lly, specific Web Application Programming Interfaces (APIs)6
llow for the execution of specific requests. They include
i) the Publications related to drugs; (ii) the Drug–Drug Interac-
ions between two or several drugs; (iii) the Predicted Drug–Drug
nteractions between two or several drugs. The source code and
he description of how to use the API is available on our GitHub
epository6. The Web APIs were executed 20 times, and the
average execution time is reported.

Publications related to drugs retrieves the scientific publica-
ions annotated with UMLS Concept Unique Identifiers (aka CUIs)
f the input drugs.
Input: CUI ids for one or several drugs.
Output: All the properties of the publications annotated with

nput drugs.
Pre-conditions: Publications are correctly annotated with CUIs.
Post-conditions: Returned publications have mentions of the

nput drugs with respect to the CUI annotations in the abstract
r title.
Average response time: 50 ms.
Example SPARQL Query: Appendix A.1.
Drug–Drug Interactions (DDI) retrieves the DDI of the input

drugs.

Input: Drug CUIs and a variable ‘‘target’’ to indicate the output
mode.

Output: Drug–Drug Interactions related to the input drugs with
all the properties defined in the KG. Interactions of the related
drugs are returned as an output. Each interaction includes the
effector drug, the affected drug, the effect, and the impact of the
effect. If the variable target = DDI, then return the DDI of each
input drug individually. If target = drug–drug interactions, then
return the DDI of all the possible pairs of the input drugs.

Pre-conditions: Drugs have interactions in the KG; these interac-
tions are extracted from DrugBank or the literature.

Post-conditions: Returned interactions are related to the drugs in
the input.

Average response time: 62 ms.
Example SPARQL Query: Appendices A.2.1 and A.2.2.
Predicted Drug–Drug Interactions retrieves predicted DDI of

input drugs.

Input: Drug CUI and a variable ‘‘target’’ to indicate the output
mode.

Output: Predicted Drug–Drug Interactions related to the input
drugs with all the properties defined in the KG. Predicted in-

teractions of the related drugs are returned as an output. Each

14
interaction consists of the effector drug, the affected drug, a
confidence score of the interaction, and the provenance. If tar-
get = DDIP, then the API returns the predicted DDI of each
drug individually. If target = DDIPS, then the API returns the
predicted DDI of all the possible pairs of the input drugs.

Pre-conditions: Drugs have predicted interactions in the KG.

Post-conditions: Returned predicted interactions have a confi-
dence score greater than zero wrt the CUI of the drugs in the
input.

Average response time: 58 ms.

Example SPARQL Query: Appendices A.3.1 and A.3.2.

5.3. Federated query processing on top of the Knowledge4COVID-19
KG

DeTrusty [26] is a federated query engine for RDF sources.
Hence, it allows querying the Knowledge4COVID-19 KG in con-
junction with external sources like DBpedia, Wikidata, and
Uniprot.38 This in turn is only possible because entities in the
Knowledge4COVID-19 KG are linked to those datasets. Fig. 15
shows an example of a federated query; providing information
about treatments that involve drugs for COVID-19 and Asthma.
DeTrusty contacts both KGs to retrieve the complete answer to
the query. The Knowledge4COVID-19 KG delivers data about the
treatments fulfilling the conditions; including owl:sameAs links
or both drugs. DeTrusty also contacts DBpedia to get additional
nformation about the COVID-19 drugs, e.g., the route of adminis-
ration. DeTrusty decomposes the SPARQL query into star-shaped
ub-queries around the subjects [35], i.e., each triple of a sub-
uery has the same variable or constant in the subject position.
or source selection in the presence of a SPARQL query without
he SERVICE clause, DeTrusty uses a semantic source description
ith information about the classes and their predicates, like
ULDER [36].

. Evaluation of Knowledge4COVID-19

In this section, we report on the evaluation of the quality of
he integrated data and the patterns discovered by exploiting
he knowledge encoded in the Knowledge4COVID-19 KG. We
im to answer the following research questions: (Q1) What is
he accuracy of the named entity recognition (NER) and named
ntity linking (NEL) performed over data from DrugBank to ex-
ract drug–drug interactions and the effects of these interactions?
Q2) What is the accuracy of the prediction methods that enhance
he knowledge about drug–drug interactions? (Q3) What is the
uality of the knowledge discovery methods implemented on top
he Knowledge4COVID-19 KG to uncover drug–drug interactions
mong the multi-drug COVID-19 treatments?

.1. Effectiveness of NER and NEL methods

Data about drug–drug interactions is collected from DrugBank
elease 2022-01-04 with 1,273,052 entries composed of pairs of
rugs and the textual description of the effects of each inter-
ction. In order to evaluate the performance of FALCON in this
se case, 1198 DDI descriptions were manually annotated by
welve annotators; annotations correspond to CUIs from UMLS
nd constitute the gold standard of the evaluation. For example,
or the DDI description: ‘‘The serum concentration of Lepirudin
an be decreased when it is combined with Tipranavir’’; Lepirudin
nd Tipranavir correspond to the extracted entities from the

38 https://labs.tib.eu/sdm/k4covid-query-engine/sparql.

https://labs.tib.eu/sdm/k4covid-query-engine/sparql
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Fig. 15. Example of a Federated Query.
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bove record, while decrease and serum concentration represent,
espectively, the effect and impact of the interaction of Tipranavir
ith Lepirudin. One of the annotators was a senior researcher,
wo were experts in the biomedical domain, and the rest were
omputer Science Ph.D. students. Disagreements among the an-
otators were solved by majority voting. A 2-fold cross-validation
as followed. The evaluation indicates a precision of 98%. The
% where FALCON failed to extract and link the terms correctly,
re interactions which contain more than one interaction in the
ame sentence, where FALCON was only considering one inter-
ction (Table 2 last pattern). All the drug–drug interactions, that
ollowed this pattern, were corrected manually before integrating
hem into the Knowledge4COVID-19 KG.

.2. Effectiveness of the predictive tasks for DDI identification

As explained, DrugBank presents an adequate source for
etrieving potential adverse effects of treatments received by
OVID-19 patients in combination with other medications, ex-
licitly providing the interactions of each drug with other drugs
n a structured way. However, many drug interactions observed in
veryday practice are not currently recorded in medical databases
ike DrugBank that are continuously evolving and extended
ith new drugs and relevant information.39 Thus, a Knowledge
raph completion challenge arises, for adding new drug–drug
nteraction links in the Knowledge4COVID-19 KG.

The effectiveness of the Random Forest classifier presented
reviously in Section 3.2, for predicting new interactions is as-
essed following a 10-fold cross-validation (cv) procedure, and

39 https://go.DrugBank.com/release_notes.
15
DrugBank v5.0.3 is our gold dataset for drug–drug interactions.
Existing techniques for knowledge graph embeddings available in
the TorchKGE40 library (i.e., TransE, RESCAL, HolE, and DistMult)
re used as baselines. Each model is trained for a maximum of
00 epochs while early stopping was used, utilizing 10% of the
ata for validation. For each model, 100-sized embeddings were
sed, since an increase of the embedding size did not provide
etter results. The performance of the predictive models is mea-
ured using the area under the receiver-operating characteristic
ROC-AUC), as well as the macro-average of Precision, Recall and
1-score for the positive class. Fig. 16 suggests that our approach
DDI-BLKG) outperforms all mainstream embedding-based meth-
ds tested. DDI-BLKG can exploit knowledge encoded in the
ine-grained representation of the publications in the Knowledge
raph. As a result, the DDI-BLKG prediction accuracy is enhanced
ompared to the baseline methods.
Moreover, Fig. 17 reports on the overlap between the DDIs

educed on the drugs of the COVID-19 treatments (a.k.a. De-
ucedDDIs), DDI-BLKG, DDI-BLKG-0.5 (DDI-BLKG with a predic-
ion score equal or greater than 0.5), CRD, and NCRD. It is essential
o highlight that CRD and NCRD are computed from the whole
rugBank dataset of drugs, while DDI-BLKG and DeducedDDIs
re limited to COVID-19 drugs. The percentages of overlap of
educedDDIs, DDI-BLKG, and DDI-BLKG-0.5 with CRD are 24.70%,
7.51%, and 22.60%. Thus, both methods (i.e., the deductive sys-
em and DDI-BLKG) can identify DDIs between drugs mediated by
he CYP enzyme family, i.e., CRD pairs of drugs. CYP enzymes play
n important role in catalyzing the metabolism of pharmaceuti-
als and their inhibition or induction causes clinically significant

40 https://torchkge.readthedocs.io.

https://go.DrugBank.com/release_notes
https://torchkge.readthedocs.io
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Fig. 16. Results of the 10-fold cross validation, comparing the current DDI prediction approach (DDI-BLKG) with various graph embedding methods. Only the TransE
approach outperforms our approach in ROC-AUC and Precision, while in terms of the F1 score, DDI-BLKG outperforms all embeddings by far.
Fig. 17. Venn Diagram. It depicts the overlap among five sets of DDIs. 345,116 CRD pairs of drugs targeting at least one protein of the family CYP. 5513 NCRD are
pairs of drugs targeting a No CYP protein. 8925 DDI-BLKG are DDIs predicted by the DDI-BLKG method, while 5907 DDI-BLKG-05 represents the subset of DDIs in
DDI-BLKG with score equal or greater than 0.5. 923 DeducedDDIs generated by the deductive system.
pharmacokinetic drug–drug interactions [37]. Thus, these results
suggest that even though these methods do not exploit any
information about the drug’s target enzymes, they can identify
a good proportion of DDIs that are part of the CRD group.

6.3. Impact on the effectiveness and toxicity of COVID-19 treatments

The Knowledge4COVID-19 KG is a unique source of knowledge
to identify patterns in the integrated networks of interactions,
16
biomedical entities, and publications, e.g. adverse events gen-
erated by combining COVID-19 drugs and drugs prescribed for
pre-existing conditions. Note that existing tools (e.g., COVID-19
Drug Interactions for University of Liverpool41) only identify pair-
wise interactions. In this section, we evaluate the drug–drug
interactions that can be deduced over the Knowledge4COVID-19

41 https://www.covid19-druginteractions.org/.

https://www.covid19-druginteractions.org/
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Table 5
Five COVID-19 treatments. Frequency distribution of wedges with knowledge capture. Treatments are evaluated in four interaction
checker tools: COVID-19, WebMD, Medscape, and DrugBank (May 2nd, 2022). For each tool, it is shown the DDI-Reduction percentage
that indicates how many DDIs are avoided in a treatment when the middle-vertex drug is removed. The DDI-reduction percentage
is a higher-is-better metric. Middle-vertex drugs reduce DDIs, suggesting, thus, wedges and their middle vertices are part of DDIs
that affect treatment effectiveness and toxicities. Best values in bold.
T Knowledge capture D DDI-R rcentage

Middle-Vertex F COVID-19 WebMD Medscape Drugbank

T1 Azithromycin 9 45.45 100.0 100.0 100.0 42.9
Montelukast 4
Lovastatin 4
Hydroxychloroquine 0
Doxycycline 0

T2 Ciprofloxacin 12 52.17 33.3 75.0 75.0 44.4
Metoprolol 12 33.3 25.0 25.0 33.3
Hydroxychloroquine 9
Azithromycin 9
Linagliptin 7

T3 Hydroxychloroquine 5 33.33 100.0 25.0 25.0 60.0
Glyburide 5 0.0 50.0 50.0 60.0
Simvastatin 3
Azithromycin 3
Ramipril 0

T4 Propranolol 8 15.38 100.0 50.0 50.0 60.0
Hydroxychloroquine 5
Azithromycin 5
Theophylline 4
Ramipril 1

T5 Timolol 11 38.89 50.0 50.0 50.0 44.4
Cyclophosphamide 11 0.0 0.0 0.0 44.4
Azithromycin 7
Hydroxychloroquine 7
Bupropion 6
KG and the effects of these interactions. We consider five COVID-
19 treatments and the effects of including in these treatments
drugs for comorbidities. The treatment for COVID-19 used in
these five cases is recommended by the official guidelines.42 The
concomitant drugs used in the first treatment T1 are for the
comorbidities asthma, high cholesterol, and pneumonia and for
the second treatment T2 are diabetes, hypertension, and pneu-
monia. The comorbidities in the third treatment T3 are diabetes,
high cholesterol, hypertension. The comorbidities in the fourth
treatment T4 are asthma and hypertension, and for the fifth
treatment, T5 are renal diseases, obesity, and hypertension.

Table 5 shows the percentage of DDIs deduced (D) and wedge
absolute frequency (F ) for each middle-vertex by the method [14]
in existing treatments.

The middle-vertex of a wedge is highly important because the
middle-vertex is both the object drug for one interaction and the
precipitant drug for another interaction. Thus, drugs that corre-
spond to the middle-vertex of wedges, represent drugs whose
presence in the treatment may negatively impact effectiveness
and toxicity. We can observe in Table 5 that over 15% of new
DDIs are deduced in all the treatments. Table 5 shows the DDI-
Reduction percentage for the drugs with higher wedge absolute
frequency (F) for each treatment. The DDI-Reduction percentage
was evaluated in four interaction checker tools on May 2nd, 2022,
Liverpool COVID-19 Interactions,43 WebMD,44 Medscape,45 and
Drugbank.46 The validation was done on the versions of Liverpool

42 https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-
herapy/chloroquine-or-hydroxychloroquine-and-or-azithromycin/.
43 https://www.covid19-druginteractions.org/checker.
44 https://www.webmd.com/interaction-checker/default.htm.
45 https://reference.medscape.com/drug-interactionchecker.
46 https://go.drugbank.com/drug-interaction-checker.
17
COVID-19 Interactions and Drugbank which correspond to 2022-
04-13 and 2022-01-04, respectively. DDI-Reduction percentage is
measured, and it indicates how many DDIs are avoided in a treat-
ment when the middle-vertex drug is withdrawn. The evaluation
suggests that withdrawing the middle-vertex with higher abso-
lute frequency reduces most interactions. Thus, wedges and their
middle-vertex represent DDIs that affect treatment effectiveness
and toxicities. When more than one drug contains the higher
wedge absolute frequency (F) in treatment, the clinicians have to
decide which drug is withdrawn. The first COVID-19 treatment
reported contains concomitant drugs for the comorbidities of
asthma, high cholesterol, and pneumonia. The method proposed
by [14] indicates Azithromycin as the drug with the highest
absolute frequency of being the wedges middle-vertex. Therefore,
it represents the DDIs that affect treatment effectiveness and
toxicities, and withdrawing it reduces most interactions.

7. Related work

Data Ecosystems and Spaces The International Data Space
(IDS) [38] exemplifies DEs where various W3C standards, tech-
nologies, and governance models allow for the description of
the data sources to secure and standardize data exchange and
integration. Data ecosystems provide reference architectures that
comprise components to enable the description of the data
sources to be exchanged and mappings between data sources
with integrated views or unified schemas. Specifically, the net-
works of knowledge-driven data ecosystems (by Geisler and
Vidal, et al. [6]) enable the nested definition of data ecosystems
in terms of other data ecosystems whose connections induce
a network. Metadata of each data ecosystem is described us-
ing controlled vocabularies and domain ontologies. Additionally,
services are part of data ecosystems and can exploit metadata

https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/chloroquine-or-hydroxychloroquine-and-or-azithromycin/
https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/chloroquine-or-hydroxychloroquine-and-or-azithromycin/
https://www.covid19-druginteractions.org/checker
https://www.webmd.com/interaction-checker/default.htm
https://reference.medscape.com/drug-interactionchecker
https://go.drugbank.com/drug-interaction-checker
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to enhance interoperability, traceability, data quality assessment,
and integrity constraint validation. The Knowledge4COVID-19
data ecosystem implements the reference architecture proposed
by Geisler and Vidal, et al. [6]; it comprises the data ecosystem
for Scientific Open Data and Scientific Publications. Mappings
between data sources and the unified schema are defined using
RML, and the execution of these mappings results in the material-
ized Knowledge4COVID-19 KG. Services for knowledge extraction
and prediction are implemented at each data ecosystem. A de-
ductive system, developed on top of the Knowledge4COVID-19
KG, facilitates discovering new drug–drug interactions and their
effects on treatment toxicities and effectiveness.

Knowledge Graphs have gained momentum as data structures
able to model the convergence of data and knowledge as factual
statements [39]. Despite being coined by the research community
for several decades, KGs are playing an increasingly relevant
role in scientific and industrial areas [40]. The research com-
munity has actively contributed to the problem of automatic
knowledge graph creation. As a result, declarative specification
of a KG creation process [25,41,42], techniques for semantic data
integration [43,44], and virtualization of KGs [45,46] enable to
merge data silos and provide an integrated view of data and
metadata. Existing KG construction methods vary from crowd-
sourced (e.g., Wikidata [47]), extraction from existing knowledge
bases (e.g., DBpedia [48] and YAGO [49]), and automatic gener-
ation (e.g., KnowledgeVault [50] and AI-KG [51]). Moreover, KG
refinement includes methods for predicting relations, completing
type assertions, and finding erroneous relations, external links,
and values [52]. The creation process of Knowledge4COVID-19
KG is declarative using RML mapping rules, facilitating, thus,
extensibility, modularity, and reusability of the KG creation
process.

Knowledge Graphs and COVID-19: Several authors have pro-
osed using knowledge graphs to make available expressive
ources of data and knowledge about COVID-19. Specifically,
everal knowledge bases have been developed to provide an
ntegrated view of COVID-19-related data. Exemplar approaches
nclude COVID-19 Knowledge Graph,47 Drugs4Covid [53]. Simi-
arly, Knowledge4COVID-19 integrates CORD-19 scientific publi-
ations, but in addition, it models a fine-grained representation
f drug–drug interactions and their adverse effects in the treat-
ents of comorbidities. Additionally, Queralt-Rosinach et al. [54]
resent a knowledge graph that integrates clinical data collected
n the context of the BEAT-COVID project.48 These approaches
ut in perspective the protagonist role of knowledge graphs in
nderstanding COVID-19. Similarly, Knowledge4COVID-19 aims
o provide a resource that clinicians and patients can explore
o understand the effects of interactions in a COVID-19. Thus,
iven the impact that pre-existing conditions seem to have on
he outcome of a SARS-CoV-2 infection, Knowledge4COVID-19
epresents a resource that can be linked to existing COVID-19
nowledge graphs to empower their analytical capacity.
Chatterjee et al. [55] present an exploratory review of recent

orks constructing knowledge graphs from different sources. For
nstance, Wang et al. [56] have produced a literature knowl-
dge graph construction and drug repurposing approach, also
orking on the fine-grained text entity extraction, while more
ecently authors in [57] also construct a knowledge graph
rom scientific literature, focusing on cause-and-effect relations.
nowledge4COVID-19 follows the best practices of FAIR [58] and

47 https://covidgraph.org/.
48 https://www.izi.fraunhofer.de/en/about-us/united-against-corona/beat-
ovid.html.
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Linked Data principles,49 and makes available a KG that integrates
COVID-19 related data from various sources. UMLS is used to
annotate biomedical entities; links to KGs (e.g., DBpedia and
Wikidata) enhance interoperability.

Reese et al. [59] describe a knowledge graph for COVID-
19 where biomedical concepts and publications are repre-
sented at symbolic and subsymbolic levels. Complementary,
Knowledge4COVID-19 provides a fine-grained representation of
biomedical concepts and publications. Well-known tools like
MetaMap and SemRep are used to extract relevant biomedical en-
tities and relations from scientific publications. At the same time,
drug indications, side effects, and adverse events of drug–drug
interactions are recognized by FALCON2.0. The extracted entities
are linked to equivalent resources in existing KGs (i.e., DBpedia,
Wikidata, DrugBank, and Uniprot) and annotated using UMLS
terms and relations; networks of drug–drug, drug–target, and
drug–side effect interactions predicted using diverse methods are
also merged. This makes the Knowledge4COVID-19 KG a comple-
mentary source of knowledge that can be connected to existing
COVID-19 KGs (e.g., the one implemented by Reese et al.) using
the linking techniques implemented by FALCON2.0.

8. Knowledge4COVID-19 as a resource

8.1. Discussion of the Knowledge4COVID-19 framework

This section describes our resources and discusses our contri-
butions:

The Knowledge4COVID-19 DE integrates data sources from
the Scientific Open Data and Publications DEs. The pipeline for
KG creation and management is available as a Docker container.
It includes the Knowledge4COVID-19 unified schema, the RML
triple maps, and the data sources processed by the NLP tools
implemented by Scientific Open Data and Publications DEs. In
addition, to create the Knowledge4COVID-19 KG, the pipeline
uploads the KG to a Virtuoso endpoint and makes each resource
available in the Knowledge4COVID-19 KG, following the Link Data
principles. Moreover, the required configurations of the federated
query engine DeTrusty are generated. DeTrusty is also available
via its HTTP API like a regular SPARQL endpoint.

The Knowledge4COVID-19 KG comprises COVID-19 related
data about drugs, DDIs (predicted and known), scientific publi-
cations, drugs’ side effects, and interactions with targets. The KG
can be explored through three APIs, a SPARQL endpoint, and a
federated query engine.

DDI Prediction Methods employ machine learning techniques
to identify previously unknown potential COVID-19 related drug–
drug interactions with a certain confidence score. Predicted DDIs
are not documented in open drug databases, such as Drugbank,
and clinicians can use them as an indication of possible toxicities,
during the treatment of a patient suffering from COVID-19.

Benchmarks of DDIs include known, deduced, and predicted
DDIs. The known DDIs are extracted from DrugBank, while CRD,
NCRD, and DeducedDDIs are deduced. Finally, a set of DDIs
predicted by state-of-the-art machine learning methods is also
part of the Knowledge4COVID-19 KG. These DDIs can be used to
reproduce our reported results or for future comparisons.

8.2. The Knowledge4COVID-19 resource characteristics

Novelty: Knowledge4COVID-19 introduces a novel infrastructure
to transform heterogeneous data sources into a KG. The mappings
among the data sources and the unified schema are defined as

49 https://www.w3.org/TR/ld-bp/.

https://covidgraph.org/
https://www.izi.fraunhofer.de/en/about-us/united-against-corona/beat-covid.html
https://www.izi.fraunhofer.de/en/about-us/united-against-corona/beat-covid.html
https://www.w3.org/TR/ld-bp/
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RML mapping assertions. Moreover, the methods implemented in
SDM-RDFizer allow for the efficient execution of the KG creation
process. The Knowledge4COVID-19 KG occupies 13 GB and is cre-
ated from 2.8 GB of raw data. Knowledge4COVID-19 KG executes
57 RML triples maps (comprising 223 mapping assertions) over
the raw data in 82 min 55 s. Additionally, novel prediction meth-
ods are utilized to predict interactions between drugs. We hope
that these results encourage the community to create declarative
pipelines for KG creation that are able to scale up to the avalanche
of data expected in the next years.

Availability: Knowledge4COVID-19 is released publicly by the
Scientific Data Management (SDM) group at TIB, Hannover. TIB
is one of the largest libraries for science and technology in the
world. Following its policy of engaging open access to scientific
artifacts, it will support Knowledge4COVID- 19 as a source of kn-
owledge for SARS-CoV-2 and other viruses. The Knowledge4-
COVID-19 DE is open source, written in Python 3, and uses RML;
it is available under the Apache License 2.0 license in an open
GitHub repository4. It will be regularly updated with new data
ources, triples maps, and APIs for exploration. More importantly,
especting open science good practices, Knowledge4COVID-
9 is registered at Zenodo. Thus, users can use and cite a
pecific version, ensuring reproducibility and traceability of any
xperimental evaluation.
Utility: A docker image of Knowledge4COVID-19 is available

t;50 it enables accessing the KG locally. The GitHub repository
f the resource provides a detailed explanation of how to run the
ocker container. From 24 to 26 April 2020, Knowledge4COVID-
9 participated in the Pan-European hackathon #EUvsVirus51
rganized with the aim of connecting experts, investors, and
ivilian organizations to devise together innovative solutions to
he coronavirus outbreak.52

Predicted Impact: Open pharmaceutical databases such as
rugbank or drugs.com are periodically updated, manually add-
ng drug–drug interactions, since new unknown DDIs are fre-
uently reported by clinicians and health institutions. Our meth-
ds can potentially deduce or predict such interactions for
ew or experimental drugs by analyzing contextual informa-
ion in biomedical publications before being observed in practice
nd documented. This could support treatment decision-making,
voiding unnecessary side effects of drug combinations. More-
ver, given the number of scientific publications and open data
bout drugs, disorders, and adverse events integrated into the
nowledge4COVID-19 KG, we are optimistic that it will be the
tarting point of future developments and benchmarking in the
emantic Web community. Lastly, the pipeline for KG manage-
ent is domain agnostic, but there are still many opportunities

o make it fully transparent. We hope this paper encourages the
ommunity to develop traceable and interpretable methods for
ransparent KG management.

Adoption and Reusability: We are reusing the same DE and
ore concepts of the unified schema and mapping rules in projects
ike EU H2020 projects like iASiS,53 BigMedilytics - lung cancer
ilot,54 and P4-LUCAT.55 As in Knowlege4COVID-19, the gener-
ted KGs include fine-grained representations of publications, and
iomedical entities (e.g., drugs, side effects, targets, and interac-
ions); the mapping rules that defined these core concepts have
een reused with minor changes. This opens the spectrum of

50 https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-
nowledge4COVID-19-KG-locally.
51 https://www.euvsvirus.org/.
52 https://devpost.com/software/COVID-19-kg.
53 http://project-iasis.eu/.
54 https://www.bigmedilytics.eu/.
55 https://p4-lucat.eu/.
19
possibilities of reusability and adoption, and puts in perspective
the relevance of DEs where KG creation is defined declaratively
through mapping rules.

9. Conclusions and future work

This paper addresses the problem of providing an integrated
view of heterogeneous sources of COVID-19 data. Following
the reference architecture of networks of knowledge-driven
data ecosystem (by Geisler and Vidal et al. [6]), we presented
the Knowledge4COVID-19 framework as a data ecosystem (DE)
where mappings among data sources and a unified schema are
described in terms of RML. The Knowledge4COVID-19 DE uses
the SDM-RDFizer to execute the RML mappings and create the
Knowledge4COVID-19 KG. Tasks of Natural Language Processing
enable recognizing relevant entities and predicates in the text
describing drug–drug interactions and side effects. Additionally, a
deductive system and KG predictive models allow the discovery
and prediction of patterns to explain the impact of drug–drug
interactions on treatment effectiveness and toxicity. As a result,
the Knowledge4COVID-19 KG comprises factual statements about
drugs, adverse events, and drug–drug interactions harvested from
COVID-19 data sources and scientific publications.

A repertoire of Web APIs over the Knowledge4COVID-19
KG is made available. They enable exploring entities through
their connections and discovering associations to enhance un-
derstanding of a SARS-CoV-2 infection and its progression. Thus,
Knowledge4COVID-19 broadens the portfolio of semantic web
technologies and provides the basis for developing interpretable
analytical methods. In the future, we plan to connect the
Knowledge4COVID-19 KG to other KGs that maintain COVID-19
related data. Additionally, we would like to extend the KG clinical
data about COVID-19 patients and empower Knowledge4COVID-
19 DE with the capacity of detecting patterns that can explain
the correlation between survival, drug interactions, and adverse
events.
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ppendix. KG exploration API queries

All the following queries are available on our GitHub reposi-
ory.56

.1. Publications related to drugs

PREFIX k4covid : <http : / / research . t ib . eu / covid−19/vocab/ >
PREFIX k4covide : <http : / / research . t ib . eu / covid−19/ent i ty / >
SELECT DISTINCT ?pub ?year ? journal ? t i t l e ?ur l ?drug ?drugLabel where {

?drug a k4covid :Drug .
?drug k4covid : hasCUIAnnotation ?drugCUI .
F i l t e r (?drugCUI in ( k4covide :C0031623 ,
k4covide :C0751995 ,
k4covide :C0030106 ) )
?drugCUI k4covid : annLabel ?drugLabel .
?ann a k4covid : ConceptAnnotation .
?ann k4covid : hasSemanticAnnotation ?semAnn .
?semAnn k4covid : hasCUIAnnotation ?drugCUI .
?ann k4covid : annotates ?pub .
?pub <http : / / purl . org / dc / terms / t i t l e > ? t i t l e .
?pub k4covid : year ?year .
?pub k4covid : journal ? journal .
?pub k4covid : externalLink ?ur l .

}

56 https://github.com/SDM-TIB/Knowledge4COVID-19/blob/main/Exploration-
PI/SPARQL/README.md.
20
A.2. Drug-drug interactions (DDI)

A.2.1. Get interactions of a drug

PREFIX k4covid : <http : / / research . t ib . eu / covid−19/vocab/ >
PREFIX k4covide : <http : / / research . t ib . eu / covid−19/ent i ty / >
SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ? e f f e c t AS ? e f fec tLabe l
?impactLabel WHERE {

? interac t ion k4covid : precipitantDrug ?effectorDrugCUI .
? interac t ion k4covid : objectDrug ?affectdDrugCUI .
?effectorDrugCUI k4covid : annLabel ?effectorDrugLabel .
?affectdDrugCUI k4covid : annLabel ?affectdDrugLabel .
? interac t ion k4covid : e f f e c t ? ef fectCUI .
? ef fectCUI k4covid : annLabel ? e f f e c t .
? interac t ion k4covid : impact ?impactLabel .

FILTER (? affectdDrugCUI in ( k4covide :C0000970 ) ) }

.2.2. Get all the interaction among the provided drugs

PREFIX k4covid : <http : / / research . t ib . eu / covid−19/vocab/ >
PREFIX k4covide : <http : / / research . t ib . eu / covid−19/ent i ty / >
SELECT ∗ {
{SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ? e f f e c t AS ? e f fec tLabe l ?impactLabel
HERE {

? interac t ion k4covid : precipitantDrug k4covide :C0000970 .
? interac t ion k4covid : objectDrug k4covide :C0028978 .
k4covide :C0000970 k4covid : annLabel ?effectorDrugLabel .
k4covide :C0028978 k4covid : annLabel ?affectdDrugLabel .
? interac t ion k4covid : e f f e c t ? ef fectCUI .
? ef fectCUI k4covid : annLabel ? e f f e c t .
? interac t ion k4covid : impact ?impactLabel .

} } UNION
{SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ? e f f e c t AS ? e f fec tLabe l ?impactLabel
HERE {

? interac t ion k4covid : precipitantDrug k4covide :C0028978 .
? interac t ion k4covid : objectDrug k4covide :C0000970 .
k4covide :C0028978 k4covid : annLabel ?effectorDrugLabel .
k4covide :C0000970 k4covid : annLabel ?affectdDrugLabel .
? interac t ion k4covid : e f f e c t ? ef fectCUI .
? ef fectCUI k4covid : annLabel ? e f f e c t .
? interac t ion k4covid : impact ?impactLabel .

} } }

.3. Predicted drug-drug interactions

.3.1. Get the predicted interactions of a drug

PREFIX k4covid : <http : / / research . t ib . eu / covid−19/vocab/ >
PREFIX k4covide : <http : / / research . t ib . eu / covid−19/ent i ty / >
SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ?confidence ?provenance WHERE {

? interac t ion a k4covid : DrugDrugPrediction .
? interac t ion k4covid : hasInteractingDrug ?effectorDrug .
? interac t ion k4covid : hasInteractingDrug ?affectedDrug .
FILTER (? effectorDrug != ?affectedDrug )
?affectedDrug k4covid : hasCUIAnnotation ?affectdDrugCUI .
?effectorDrug k4covid : hasCUIAnnotation ?effectorDrugCUI .
?effectorDrugCUI k4covid : annLabel ?effectorDrugLabel .
?affectdDrugCUI k4covid : annLabel ?affectdDrugLabel .
? interac t ion k4covid : confidence ?confidence .
? interac t ion k4covid : predictionMethod ?provenance .

FILTER (? affectdDrugCUI in ( k4covide :C0000970 ) ) }

.3.2. Get all the interaction among the provided drugs

PREFIX k4covid : <http : / / research . t ib . eu / covid−19/vocab/ >
PREFIX k4covide : <http : / / research . t ib . eu / covid−19/ent i ty / >
SELECT ∗ {
{SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ?confidence ?provenance WHERE {

? interac t ion k4covid : hasInteractingDrug ?effectorDrug .
? interac t ion k4covid : hasInteractingDrug ?affectedDrug .
FILTER (? effectorDrug != ?affectedDrug )
?effectorDrug k4covid : hasCUIAnnotation k4covide :C0995188 .
?affectedDrug k4covid : hasCUIAnnotation k4covide :C0765273 .
k4covide :C0000970 k4covid : annlabel ?effectorDrugLabel .
k4covide :C0009214 k4covid : annlabel ?affectdDrugLabel .
? interac t ion k4covid : confidence ?confidence .
? interac t ion k4covid : predictionMethod ?provenance .

} } UNION
{SELECT DISTINCT ?effectorDrugLabel ?affectdDrugLabel ?confidence ?provenance WHERE {

? interac t ion k4covid : hasInteractingDrug ?effectorDrug .
? interac t ion k4covid : hasInteractingDrug ?affectedDrug .
FILTER (? effectorDrug != ?affectedDrug )
?effectorDrug k4covid : hasCUIAnnotation k4covide :C0765273 .
?affectedDrug k4covid : hasCUIAnnotation k4covide :C0995188 .
k4covide :C0009214 k4covid : annLabel ?effectorDrugLabel .
k4covide :C0000970 k4covid : annLabel ?affectdDrugLabel .
? interac t ion k4covid : confidence ?confidence .
? interac t ion k4covid : predictionMethod ?provenance .

} } }

https://github.com/SDM-TIB/Knowledge4COVID-19/blob/main/Exploration-API/SPARQL/README.md
https://github.com/SDM-TIB/Knowledge4COVID-19/blob/main/Exploration-API/SPARQL/README.md
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