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Abstract

Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in amyotrophic lateral sclerosis (ALS).
Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from
other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators
nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the
transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301.
Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene coexpression
network analysis (WGCNA) was used to investigate the association of the metabolic and clinical features. We found that the
sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2 and the controls.
Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to the antiinflammatory and antioxidant
pathways. WGCNA revealed that the ALS functional rating scale and metabotypes are associated with gene modules enriched for
the cell cycle, immunity, autophagy and metabolic genes, which are modified by EH301. The meta-analysis of publicly available
transcriptomic data from induced motor neurons by Answer ALS confirmed the functional associations of genes correlated with
disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease
progression. In conclusion, multiomic analyses highlighted the differential metabolic and transcriptomic profiles in patient-derived
fibroblast sALS, which translate into differential responses to the investigational drug EH301.

Introduction
Amyotrophic lateral sclerosis (ALS) is a rapidly progres-
sive neurodegenerative disease involving the upper and
lower motor neurons. Although only 10–15% of the total
cases are associated with known genetic mutations,
most ALS patients have no familial history and no
clear genetic alterations (sALS) (1). While familial ALS-
associated mutations are found in genes involved in
several key cellular mechanisms, such as RNA binding,
proteostasis, mitochondrial function and cytoskeletal
organization (2), the pathological mechanisms leading to
sALS are still largely unknown. Therefore, there remains
a lack of sALS biomarkers and specific therapeutic
targets. Although the clinical course in sporadic and
familial cases reaches a generally predictable outcome,
variability between patients has been recognized as an
important factor in ALS, whose onset and progression
are probably the result of complex interactions between
genome, epigenome and environment. Moreover, it is
plausible that the disease is triggered by a variety of
molecular abnormalities, ultimately converging onto

common pathogenic pathways that lead to motor neuron
death. Thus, the complexity and heterogeneity of sALS
pathogenesis are probable causes for the failure of
numerous clinical trials, so that currently there are
only two approved drugs, Riluzole and Edaravone, which
have modest clinical effects. As sALS heterogeneity
has become evident, precision medicine approaches
are gaining increasing attention. The ability to stratify
ALS patients could inform the design of more precisely
targeted therapeutic approaches and increase the
probability of finding effective treatments for specific
groups of patients. Understanding the differences and
similarities among sALS patients at the molecular level
could also contribute to the discovery of biomarkers
that would improve the reliability of trial endpoints and
potentially provide a foundation for patient stratification
and early intervention.

A recurring observation in ALS patients is the dys-
regulation of energy metabolism, with increased energy
consumption and loss of fat mass, which sometimes
even precedes disease onset (3). In addition, increased
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glucose metabolism has been described in the central
nervous system of ALS patients (4). Importantly, hyper-
metabolism in ALS is associated with greater functional
decline and accelerated mortality (5). Indeed, there is
mounting evidence that metabolic alterations in ALS
patients are common between the affected cells of
the nervous system and other cell types. Specifically,
we reported aberrantly increased energy metabolism
in sALS patient-derived primary skin fibroblasts (6,7).
Furthermore, our recent work showed that a sub-
set of sALS fibroblasts is characterized by a distinct
metabolic profile, which we defined as the ‘sALS1’
metabotype, associated with acceleration through the
transsulfuration pathway for glutathione synthesis and
glucose hypermetabolism (8). The sALS1 metabotype
was also identified based on targeted metabolomics
in human plasma, indicating a direct relationship
between skin fibroblasts and systemic metabolism (8).
These observations suggest that sALS patients could be
stratified based on metabotypes, which may correspond
to different pathogenic mechanisms and susceptibility
to therapeutic interventions targeting specific metabolic
alterations.

Energy metabolism alterations are often accompanied
by oxidative stress and a modification of the redox state
of the cell, which is largely controlled by the levels of
nicotinamide adenine dinucleotide (NAD). NAD func-
tions as an electron carrier in many redox reactions and
as a cosubstrate for poly (adenosine diphosphate (ADP)-
ribose) polymerases, ADP-ribosyl cyclases and sirtuins.
Therefore, NAD is a crucial element in the coordinated
signaling between DNA, proteins and metabolism (9).
NAD declines with age (10) and there is evidence of
NAD metabolism imbalance in ALS patients and animal
models (11). Boosting NAD availability is considered a
viable approach to restore or sustain cell metabolism,
and it has been shown to be protective in in vitro (12)
and in vivo ALS models (11). In particular, the NAD pre-
cursor nicotinamide riboside (NR) has been deemed safe
and effective in increasing the circulating NAD levels in
humans (13).

In addition to boosting NAD levels, another approach
to modulate metabolism is through the administration
of polyphenols, a class of molecules with known antiox-
idant properties and protective effects against diseases
associated with aging (14). Pterostilbene (PT) is a polyphe-
nol analog of resveratrol, but with improved bioavailabil-
ity (15), which has been shown to be protective in animal
models of metabolic diseases (16) and neurodegeneration
(17).

Recently, it was shown that the combination of NR and
PT increases survival and delays motor neuron degener-
ation in the SOD1G93A mouse model of familial ALS (18).
Further, the therapeutic potential of a NR and PT com-
bination (EH301) was suggested by a pilot clinical study,
showing slower decline and improved muscle function
in a small cohort of ALS patients (19). Based on these
promising early results, a larger two-dose, randomized,

double-blind one-year trial has been initiated [The NO-
ALS Study: a Trial of NR/PT Supplement in ALS (20)].

In this study, to better understand the molecular bases
of sALS metabotypes and the impact of EH301 on sALS
metabolism, we analyzed the metabolome and transcrip-
tome of fibroblasts from patients with different sALS
metabotypes and control individuals, before and after
the treatment with EH301. Furthermore, we performed
weighted gene coexpression network analysis (WGCNA)
in transcriptomic data from sALS fibroblasts. These anal-
yses identified specific gene modules that correlated
with clinical features and were modified by EH301 treat-
ment. To confirm the fibroblast results in cell types
affected by the disease, we performed WGCNA on a
publicly available transcriptomic dataset from induced
motor neurons (iMNs) from Answer ALS (21). Finally,
we performed a proof-of-concept experiment to test the
ability of a machine learning model to predict disease
progression based on the expression of a few genes dif-
ferentially expressed in sALS fibroblasts.

Results
Transcriptomic analysis reveals more
differentially expressed genes in sALS1 than
sALS2 fibroblasts and different transcriptional
responses to EH301
To characterize the gene expression profiles of sALS
subgroups, we performed 3’RNAseq analysis on fibrob-
last lines from control, sALS1 and sALS2 subjects (n = 6
per group). In sALS1, there were 281 differentially
expressed genes (DEGs) (Padj. <0.05) relative to the
controls (Supplementary Material, Table S1) whereas
only one gene reached statistical significance in the
comparison between sALS2 and controls (Fig. 1A, Supple-
mentary Material, Table S2). Interestingly, several genes
relevant to neuronal function and development were
differentially expressed in sALS1. For example, stathmin
2 (STMN2) was downregulated in sALS1 by ∼80%. STMN2
has been linked to transactive response DNA-binding
protein (TDP)-43 dysfunction (22) and a novel STMN2
genetic variant has been associated with ALS risk, onset
and progression (23). Furthermore, the most upregulated
gene in sALS1 was an antisense RNA for the kinesin
family member 5C (KIF5C-AS1). KIF5C is highly expressed
in the brain and enriched in motor neurons (24), where
it regulates axonal transport (25), and alterations of
KIF5C are associated with intellectual disabilities and
cortical development malformations (26,27). In addition,
Yip1 interacting factor homolog A (YIF1A), which was
upregulated in sALS1, interacts with the ALS8 related
protein vesicle associated membrane protein associated
protein B (VAPB) (28) involved in neuronal ER–Golgi
interactions (29). Histone cluster 1 H4 family member
C (HIST1H4C), a replication-dependent component of the
nucleosome, was among the top downregulated genes
in sALS1. Mutations affecting lysine 91 in HIST1H4C
have been associated with a syndrome characterized by
developmental anomalies and intellectual disabilities,
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indicating the importance of chromatin organization for
the correct development and function of the nervous
system (30). Sex determining region Y-box transcription
factor 9 (SOX9), a transcription factor (TF) that controls
several aspects of neurodevelopment (31) and is highly
expressed in astrocytes and neural progenitor cells (32),
was downregulated in sALS1. Spectrin repeat containing
nuclear envelope protein 2 (SYNE2) (nesprin), involved
in the organellar subcellular organization (33) and
associated with muscular dystrophy (34), was also
downregulated in sALS1. The only gene significantly
downregulated in sALS2 compared with the controls
was meiotic recombination 11 homolog 1 (MRE11), which
encodes a double-strand break repair protein implicated
in DNA damage response (35).

In addition to examining individual gene expression
profiles, we performed pathway analysis of biological
processes (BPs) and molecular function (MF) of sALS1
DEGs by Webgestalt (36), which revealed that upregu-
lated genes are involved in vesicular and protein trans-
port and in extracellular matrix organization (Fig. 1B,
Supplementary Material, Table S3). Among the downreg-
ulated genes, the most enriched pathways in sALS1 were
linked to cell cycle progression and cytoskeletal function
(Fig. 1B).

Next, we evaluated the effects of EH301 on fibroblast
transcriptomic profiles. Cells were exposed to EH301
(NR 1 mM, PT 10 μM) for 48 h before RNA extraction.
Interestingly, we found that EH301 affected a larger
number of genes in sALS1 and sALS2 fibroblasts than
in the controls (233 genes in sALS1, 202 genes in
sALS2 and 77 genes in controls), with a little overlap
between groups (Fig. 1C, Supplementary Material, Tables
S4–S6). In control fibroblasts, pathway analysis of
the DEGs between vehicle- and EH301-treated cells
indicated that EH301 modified the expression of genes
involved in mRNA processing (Fig. 1D, Supplementary
Material, Tables S7–S9). For example, synaptotagmin
binding cytoplasmic RNA interacting protein (SYNCRIP),
a ribonucleoprotein involved in RNA stabilization and
editing, which has been associated with intellectual
disabilities (37–39), was downregulated by EH301. CWC
22 spliceosome associated protein homolog (CWC22) and
CWC 27 spliceosome associated cyclophilin (CWC27),
which cooperate during spliceosome assembly and
are linked to developmental defects (40), were also
downregulated in control fibroblasts by EH301. In sALS1
fibroblasts, EH301 influenced downstream steps of
protein biosynthesis by modifying the expression of
genes involved in ribosome organization, translation
initiation and protein localization (Fig. 1D). Several genes
encoding ribosomal proteins, components of the 60S
and the 40S subunits, were upregulated. Furthermore,
two elements of the eukaryotic initiation factor 3
complex were differentially expressed after treatment.
Eukaryotic translation initiation factor 3 subunit F
(EIF3F), a positive regulator of NOTCH signaling (41),
was upregulated. Conversely, eukaryotic translation

initiation factor 3 subunit J (EIF3J), involved in the
recognition of starting codons (42) and in ribosome
recycling (43), was downregulated. Signal peptidase
complex catalytic subunit SEC11A (SEC11A), which
mediates the import of nascent proteins into the ER (44),
was upregulated whereas lysine, aspartate, glutamate,
and leucine endoplasmic reticulum protein retention
receptor 3 (KDELR3), which mediates protein trafficking
from Golgi to ER and involved in the stress response (45),
was downregulated by EH301. B cell receptor associated
protein 31 (BCAP31), a chaperone abundant in the ER
and involved in transmembrane protein export (46,47)
and in the assembly of mitochondrial complex I (48),
was upregulated. Both KDELR3 and BCAP31 have been
associated with pathologies of the nervous system
(49,50). Of note, treatment with EH301 normalized
YIF1A expression in sALS1 whereas STMN2 and KIF5C-
AS1 expression remained altered. Surprisingly, no
pathway was found to be significantly enriched in
sALS2 fibroblasts, even though the expression of 187
genes was altered by EH301 in this group. Interestingly,
the expression of MRE11, the only gene significantly
downregulated in sALS2 versus control (CTL), was
increased in sALS2 only after EH301 treatment (trending
toward statistical significance, Padj = 0.073, log2 fold
change = 0.53), therefore moving its expression to levels
closer to that of the controls.

In summary, RNAseq in human primary fibroblasts
confirmed that based on the number of DEGs the
sALS1 samples are more distinct from the controls than
sALS2 and that genes involved in neurodevelopment and
neuronal function are differentially regulated in sALS1
fibroblasts. Moreover, pathway analysis indicates that
EH301 affects sALS1, sALS2 and control fibroblast gene
expression differently, mostly affecting mRNA splicing
and stability in controls and protein biosynthesis and
localization in sALS1 whereas no specific pathways were
identified in EH301-treated sALS2.

The metabolite profiles of sALS and control
fibroblasts are modified by EH301
Next, we investigated how treatment with EH301 affects
the metabolite profiles of sALS1, sALS2 and control
fibroblasts. We performed targeted metabolomics in
the same cell lines (n = 6 per group) as used for
transcriptomics under the same cell culture conditions.
After excluding low-abundance hits, 166 metabolites
were used for analysis.

The metabolomic profiles showed that sALS1 had
reduced cystathionine and increased betaine compared
with the controls (Supplementary Material, Tables
S10–S12), corroborating previously reported differences
in the transsulfuration pathway (8). Cystathionine levels
were unchanged in EH301-treated sALS1 but decreased
in both control and sALS2 fibroblasts (Fig. 2A). Oxidized
glutathione was increased after treatment in the con-
trols but unchanged in sALS1 and sALS2 fibroblasts
(Fig. 2A). Together, these results indicate that EH301
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Figure 1. Different sALS metabotypes show distinct gene expression profiles and transcriptional responses to EH301. (A) Volcano plot of DEGs in sALS1
(left) versus control and sALS2 (right) versus control fibroblasts (n = 6 per group). Red dots represent DEGs with P-value < 0.05 after FDR adjustment.
Known ALS-related disease genes are labeled. (B) Gene ontology pathways with significantly enriched BPs and MFs of upregulated and downregulated
DEGs in sALS1compared to control. (C) Venn diagram of DEGs with P-value < 0.05 after FDR adjustment modified by EH301 in control (green), sALS1
(blue) and sALS2 (red) fibroblasts (n = 6 per group). (D) Gene ontology pathways significantly enriched in EH301 treated controls (green) and sALS1 (blue)
fibroblasts, (n = 6 per group), all DEGs with P-value < 0.05 after FDR adjustment were included in the analysis.

modulates the transsulfuration pathway but does not
correct the alterations observed in sALS1. As expected,
the metabolic pathway analysis showed that EH301
modifies metabolites of the nicotinate and nicotinamide
pathway in all groups, increasing the availability of NAD
precursors and NAD (Fig. 2A and B). EH301-treated sALS2
also showed decreased fumarate and malate compared
with the vehicle-treated cells, suggesting that NAD
derived from NR accelerates the tricarboxylic acid cycle

(TCA) cycle (Fig. 2A). D-glyceraldehyde-3-phosphate was
significantly increased at baseline in sALS2 compared
with that in the controls and was normalized by EH301
(Fig. 2A), pointing to the accelerated flux of NAD-
dependent reactions in the EH301-treated sALS2 cells.
Riboflavin, the precursor of flavin mononucleotide and
flavin adenine dinucleotide, was decreased at baseline in
both sALS1 and sALS2 fibroblasts and returned to control
levels after treatment with EH301 (Fig. 2A). The pentose
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phosphate pathway was also affected by EH3101 in the
control, sALS1 and sALS2 fibroblasts, with an increased
concentration of ribose and phosphorylated ribose in the
treated cells (Fig. 2A and B). Pyrimidine metabolism was
modified by EH301 only in sALS1 and sALS2 fibroblasts
whereas the controls were not affected (Fig. 2A and B).
Purine metabolism, which was reported to be altered
in sALS1 at baseline (8), was affected by EH301 in
control and sALS1 cells (Fig. 2A and B). Interestingly,
EH301 increased 1-methyladenosine in all groups. 1-
Methyladenosine is found in the S-adenosylmethionine
(SAM)-dependent modification of RNA regulating mRNA
localization, stability, translation and splicing (51). 1-
Methyladenosine also responds to stress, decreasing
upon glucose or amino acid starvation and increasing
after heat shock (51). 1-Methyladenosine can also modify
tRNA, regulating its stability and folding (52) and is
found in mtDNA-encoded transcripts (53). Thus, some
of the effects of EH301 on transcription and metabolism
could be mediated by the regulation of SAM-dependent
epigenetic marks on RNA.

The alanine, aspartate and glutamate metabolic
pathways were globally altered by EH301 in sALS1 and
sALS2 fibroblasts (Fig. 2A and B). Specifically, glutamate
was decreased at baseline in sALS1, but not in sALS2,
compared with that in controls (Fig. 2A and B). This
selective glutamate decrease in sALS1 could be due to the
increased extrusion of glutamate in exchange for cystine
by the solute carrier family 7 member 11 (SLC7A11)
transporter, which was shown to be upregulated in
sALS1 fibroblasts (8). EH301 decreased glutamate levels
in all groups, a potentially disease-relevant effect, as
extracellular glutamate homeostasis is known to be
dysregulated in ALS (54).

EH301 strongly protects fibroblasts from cell
death induced by thiol group depletion
Although EH301 did not correct the characteristic
imbalances of transsulfuration metabolites in sALS1, we
investigated whether the increased NAD availability and
modification of amino acid metabolism by EH301 could
improve cell viability under metabolic stress induced
by methionine and cystine deprivation. To this end,
we cultured cells for 72 h in methionine and cystine-
depleted medium, in the presence or absence of EH301
or its individual components (NR or PT). The depletion
of methionine and cystine caused similar levels of cell
death in all groups (Fig. 2C). Interestingly, the addition
of NR alone was effective in protecting sALS1 fibroblasts
from cell death, whereas the viability of sALS2 and the
controls was not improved (Fig. 2C). Treatment with PT
alone was sufficient to prevent cell death in all groups
(Fig. 2C). The combination of NR and PT (EH301) had
comparable effects to PT alone. These results further
indicate that the metabolic alterations of sALS1 are
different than of sALS2 and potentially more responsive
to nicotinamide derivatives. They also indicate that PT is

the most potent compound in protecting cells from the
profound redox stress derived from thiol group depletion.

Transcriptomic analysis performed on the control cells
exposed to medium depleted of methionine and cystine
showed that treatment with EH301 reduces expression
of genes involved in inflammation and apoptosis
(Fig. 2D and E, Supplementary Material, Tables S13–S14).
Of note, the expression of the stress response factor
activating transcription factor 3 (ATF3) was downregu-
lated by EH301, while the level of activating transcription
factor 5 (ATF5), which promotes the expression of chaper-
ones and prosurvival factors (55), was increased (Fig. 2D).
Members of the kinesin family and tumor protein p53
(TP53) were among the genes upregulated by EH301 in
fibroblasts grown in the absence of methionine and
cystine. Protein arginine methyltransferase 1 (PRMT1)
and protein arginine methyltransferase 2 (PRMT2), which
regulate the DNA damage response and other signaling
pathways through SAM-dependent arginine methylation,
were also increased by EH301. On the other hand,
interleukins (C-X-C motif chemokine ligand 1 (CXCL1),
C-X-C motif chemokine ligand 2 (CXCL2), C-X-C motif
chemokine ligand 3 (CXCL3), C-X-C motif chemokine
ligand 5 (CXCL5), C-X-C motif chemokine ligand 6
(CXCL6), C-X-C motif chemokine ligand 8 (CXCL8)) were
downregulated by the treatment. The transcripts of
superoxide dismutase 2 (SOD2) and different metalloth-
ionein isoforms were reduced in fibroblasts treated with
EH301 compared with the vehicle, further indicating that
EH301 acts through antioxidant and antiinflammatory
mechanisms, which prevent the need for upregulation of
free radical scavengers and stress response genes under
thiol-depleted conditions.

Weighted gene co-expression network analysis
highlights associations between fibroblast
transcriptional profiles and ALS clinical traits,
which are altered by EH301 treatment
WGCNA is a powerful unbiased method for the analy-
sis of transcriptome-wide changes due to disease state
(56,57). WGCNA differs from more traditional differential
gene expression analysis methods because it considers
groups of genes with highly similar expression patterns
across samples as part of a set of interconnected mod-
ules, rather than considering genes as single entities.
This type of analysis increases the statistical power avail-
able to identify significant associations with phenotypic
traits by minimizing noise. It may also provide more
comprehensive information on complex BPs (58). The
method works by using expression data from every gene
in every sample to create a network that represents
overall patterns of gene expression. Several matrices are
constructed stepwise to encode the correlations of each
gene with every other gene in all samples, the relative
connection strength of these correlations, and the pro-
portional interconnectedness of each gene to all other
genes across all samples. These networks of values are
then used as input to hierarchical clustering algorithms
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Figure 2. EH301 affects nucleotide and amino acid metabolism and protects fibroblasts from thiol depletion stress. (A) Z score heatmap of metabolites
significantly modified by EH301 in control, sALS1 and sALS2 fibroblasts (n = 6 per group), P-value < 0.05 after FDR adjustment. (B) Scatter plot of
metabolic pathways enriched in control (square), sALS1 (circle) and sALS2 (triangle) fibroblasts after treatment with EH301, shape size reflects number
of metabolites. (C) Percentage cell death in control, sALS1 and sALS2 fibroblasts grown in methionine/cystine depleted medium for 72 h and treated
with EH301 or its single components (NR, PT). Bars represent average +/− standard error of mean of at least three independent experiments. One-way
ANOVA followed by Fisher least significant difference (LSD). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗∗P < 0.0001. (D) Volcano plot of transcripts modified by EH301 in
control fibroblasts (n = 3 per condition) grown for 48 h in methionine/cystine depleted medium compared to vehicle treatment. Red dots represent
DEGs with log2 fold change greater than 1 with P-value < 0.05 after FDR adjustment. Some representative genes belonging to enriched GO pathways
are labeled. (E) Significantly enriched pathways of upregulated and downregulated genes in control fibroblasts grown in methionine/cystine depleted
medium for 48 h and treated with EH301 (n = 3 per condition).
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Table 1. Vehicle network modules with a significant trait association and GO annotation

ALS versus CTL sALS1 versus sALS2 Disease duration ALSFRS-R Rate of decline FVC% Age Sex

Greenyellow Salmon Greenyellow Greenyellow Turquoise Brown
Darkred
Orange

Table 2. EH301 network modules with a significant trait association and GO annotation

ALS versus CTL sALS1 versus
sALS2

Disease
duration

ALSFRS-R Rate of decline FVC% Age Sex

Brown White Lightpink2 Darkviolet Darkviolet Red Tan3 Salmon1
Indianred1 Skyblue Red Red Salmon1 Lavenderblush3 Navajowhite2
Brown Sienna4 Magenta4 Slateblue Darkred Slateblue
Firebrick Salmon1 Mediumpurple1 Magenta4

Slateblue Lavenderblush3 Mediumpurple1
Brown Lightskyblue4 Darkorange
Magenta4 Mediumorchid4

Magenta3

to identify groups of highly coexpressed genes called
modules (56,57).

To apply the WGCNA framework to our fibroblast gene
expression dataset, we first constructed a coexpression
matrix using normalized expression data for 17 662
genes. For this analysis, we included all the vehicle-
treated lines except one sALS1 (10 V) that was identified
as an outlier based on its extreme distance from all
other samples in hierarchical clustering (Supplementary
Material, Fig. S1). Note that 10 V was only excluded
from WGCNA, due to this method’s higher sensitivity
to outliers (59), and not the other analyses described
above. We applied the same method to construct a matrix
using all the EH301-treated samples. After clustering, we
identified 25 modules in the vehicle network and 90 in
the EH301 network (Fig. 3A and B). We next correlated
module gene expression with six disease traits (disease
status—ALS or control, disease subgroup—sALS1 or
sALS2 -, disease duration, amyotrophic lateral sclerosis
functional rating scale (ALSFRS)-R, rate of ALSFRS-R
decline and forced vital capacity (FVC%)), as well as sex
and age, to identify modules that are strongly associated
with important disease parameters. Disease duration,
ALSFRS-R, rate of decline and FVC% are all relevant
markers of ALS severity, which were significantly
correlated with each other, as expected (Supplementary
Material, Fig. S2). We found no significant correlations
between age and any of the disease traits or the first
10 principal components, which cumulatively explain
over half of the total variance in the dataset, derived
from gene expression in either vehicle or EH301 samples,
suggesting that age does not significantly contribute
to the variance in gene expression in our data. Sex
significantly correlated with vehicle PC9 and EH301 PC1
and PC9 but did not correlate with any of the disease
traits (Supplementary Material, Fig. S2). Nevertheless,

we opted to include sex and age in our analysis as they
are potential biologically relevant variables in ALS. In
the vehicle network, 10 modules (40%) were significantly
associated with one or more traits (Fig. 3C) whereas in
the EH301 network, 38 modules (44%) had significant
associations with one or more traits (Fig. 3D).

We then performed Gene Ontology (GO) pathway
analyses using the GO: BP, GO: MF and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) databases on
the significantly associated modules and found that
in the vehicle network 6 out of 10 modules (Table 1)
had a significant enrichment for one or more pathways
whereas in the EH301 network 23 out of 38 modules
(Table 2) had a significant enrichment for one or more
pathways. The module significantly associated with the
largest number of traits in the vehicle network was the
Greenyellow, which was associated with disease status,
disease duration, ALSFRS-R score and nearly reached
significant association (P = 0.06) for FVC%. GO analysis
showed that the set of genes comprising the Greenyellow
module were functionally enriched for genes involved in
cell cycle, chromatin modifications and DNA damage
repair (Fig. 4A, Supplementary Material, Table S15). The
Turquoise module significantly associated with FVC%
and neared significance for association with disease
metabotype, ALSFRS-R score and rate of decline. Genes
belonging to the Turquoise module were function-
ally enriched for pathways related to DNA damage
repair, autophagy and protein catabolism, cell cycle,
innate immunity and mitochondrial function (Fig. 4B,
Supplementary Material, Table S15). Interestingly, the
Turquoise module was also significantly enriched for
genes annotated by the KEGG database as important for
ALS pathogenesis (KEGG hsa05014). Finally, the Salmon
module, which significantly associated with disease
metabotype, contained genes belonging to pathways
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Figure 3. EH301 modifies network structure and associations of modules with disease traits. (A, B) Dendogram of hierarchical clustering of gene
co-expression dissimilarity values, constructed from the TOM, for vehicle-treated samples (A) and EH301-treated samples (B). Colors correspond to
module assignments (see Supplementary Material Fig. S1 for network construction parameters). (C, D) Heatmaps showing correlations between module
eigengene expression values and clinical traits for vehicle-treated samples (C) and EH301-treated samples (D). The numbers in each box are P-values,
while box colors correspond to the correlation coefficient. For clarity, only modules with at least 1 significant trait association are shown.

related to autophagy and protein catabolism (Fig. 4C,
Supplementary Material, Table S15). Clustering of
module eigengene expression revealed that the Salmon,
Turquoise and Greenyellow modules had highly dissimi-
lar expression patterns from each other (Supplementary
Material, Fig. S3). Furthermore, when comparing the
GO terms enriched in these three modules, we found
minimal overlap in terms enriched in the Greenyellow
and Salmon modules (Fig. 4D), suggesting that the
genes comprising them have mostly distinct functions.
Although the Turquoise module has GO terms showing
an over 50% overlap with those found in the Salmon
and Greenyellow modules, it also has over 1000 unique
GO terms, indicating that it contains genes that have
functional annotations not represented in either of the
other two modules. Thus, based on their eigengene
expression and GO enrichment, the three modules
identified in the vehicle network are non-redundant.

In the EH301 network, four modules were associated
with at least three traits. The Brown module was
associated with disease status, disease metabotype
and ALSFRS-R and included genes enriched for cell
cycle, chromatin modifications, DNA damage repair,
nucleic acid metabolism and transcriptional activity
GO terms (Fig. 4E, Supplementary Material, Table S15).
The Red module associated with ALSFRS-R, rate of
decline and FVC% and included genes enriched for

chemotaxis, antigen processing and immunity (Fig. 4F,
Supplementary Material, Table S15). The Slateblue
module was associated with ALSFRS-R, FVC% and sex
and included genes enriched for RNA stem-loop and
scaffold protein binding (Supplementary Material, Table
S15). Finally, the Magenta4 module was associated
with ALSFRS-R, rate of decline and sex and included
genes enriched for Fanconi anemia pathway, a pathway
activated by DNA damage (Supplementary Material,
Table S15). Clustering of module eigengene expression
revealed that Brown, Slateblue and Magenta4 cluster
together whereas Red does not (Supplementary Material,
Fig. S3). There was minimal overlap in GO enrichment
terms among the four modules in the EH301 network
that associate with traits (Fig. 4G). This indicates that
although the gene expression signatures of three of the
four trait-associated modules in the EH301 network are
similar, all four modules are functionally distinct.

Comparing the vehicle and EH301 networks revealed
a striking difference as the EH301 network included
nearly four times the number of modules observed in
the vehicle-treated cells. However, the intramodular
connectivity was comparable between the two networks
(Table 3), indicating that modules are clustered with a
similar robustness in both networks. On the other hand,
the total average connectivity and extramodular con-
nectivity were significantly higher in the EH301 network
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Figure 4. Both vehicle and EH301 disease-associated modules have overlapping and unique GO functional annotations. (A–C) Top 20 most significant
non-redundant GO: BP terms (identified using the simplify function from the clusterProfiler package to merge terms with more than 40% overlapping
annotated genes) enriched in the Greenyellow (A), Turquoise (B) and Salmon (C) modules from the vehicle network. (D) Venn diagram showing overlap
of all significantly enriched GO terms in the Greenyellow, Turquoise and Salmon vehicle modules. (E, F) Top 20 most significant GO terms enriched in
the Brown (E) and Red (F) modules from the EH301 network. (G) Venn Diagram showing overlap of all significantly enriched GO terms in the Brown, Red,
Slateblue and Magenta4 EH301 modules.

Table 3. Vehicle and EH301 network structure comparison parameters

Parameter Vehicle network average EH301 network average P-value

Total connectivity 184.45 243.75 2.04 e-118
Intramodular connectivity 140.0 144.0 0.18
Extramodular connectivity 44.0 100.0 0.00

(Supplementary Material, Table S15). This indicates that
individual modules are more highly connected to each
other in the EH301 than in the vehicle network. Modules
from the two networks were compared based on their
components using Fisher’s exact test, and modules were
paired if P < 0.05. This analysis revealed that 22 out of
25 vehicle modules have a corresponding module in
the EH301 network (Supplementary Material, Fig. S4).
Of these 22 pairs, four significantly associated with only
one common trait whereas the Greenyellow and Brown
pair associated with two traits common to both (disease
status and ALSFRS-R). When the GO terms from all
modules that significantly associated with a trait in both
networks were compared, most terms associated with
disease status in the Greenyellow vehicle module were
also found in the Brown EH301 module (Fig. 5A) and were
related to cell cycle and DNA replication (Fig. 4). This
suggests that the genes that correlate with disease status

likely share similar functions, regardless of treatment
with EH301, but the latter introduces new associations
with genes annotated with different functions, including
nucleic acid metabolism and transcriptional regulation
(Figs 5A and 4E). However, for other traits including
disease metabotype (Fig. 5B), disease duration (Fig. 5C)
and FVC% (Fig. 5E), the overlap between GO terms
from the vehicle and EH301 networks was small or
absent. GO terms differing between sALS1 and sALS2
in vehicle conditions were related to autophagy and
protein catabolism (Fig. 4C) whereas GO terms after
EH301 treatment were related to glycolysis, extracellular
matrix organization, cell cycle and transcription (Supple-
mentary Material, Table S15). Vehicle modules associated
with disease duration were enriched for terms related
to cell cycle and DNA damage repair whereas EH301
modules were enriched for terms related to cell adhesion,
membrane polarization and cation homeostasis (Fig. 4A
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Figure 5. Minimal overlap exists between GO terms from vehicle and EH301 modules associated with specific disease traits. (A–E) Venn Diagrams
comparing overlap between all significantly enriched GO terms from all modules significantly associated with the listed clinical traits, from vehicle and
EH301 networks. Due to the number of EH301 modules associated with ALSFRS-R score, only the 4 modules containing common terms are shown.

and Supplementary Material, Table S15). The Turquoise
vehicle module associated with FVC% was enriched
for terms related to mitochondrial function, innate
immunity, cell cycle and autophagy (Fig. 4B) whereas the
EH301 modules associated with FVC% were enriched for
terms including major histocompatibility complex (MHC)
complex assembly and antigen presentation (Fig. 4F) and
cell cycle (Fig. 4E, and Supplementary Material, Table
S15). This suggests that EH301 modifies gene sets associ-
ated with disease traits and that these genes regulate
more diverse functions than those from the vehicle
network. Similar to disease status (sALS or control),
there was a substantial overlap in GO terms between the
Greenyellow vehicle module and Brown EH301 module
associated with ALSFRS-R (Fig. 5D), but there were also
several modules from the EH301 network with no GO
overlap with vehicle modules. These were enriched
for terms including sugar alcohol metabolism, RNA
and protein binding, MHC complex assembly and cell
adhesion and motility (Supplementary Material, Table
S15). Overall, comparison of the two networks revealed
conservation of most of the vehicle modules after EH301
treatment, including the functionally similar Greenyel-
low/Brown pair that associated with disease status and
ALSFRS-R. However, a large disparity was found in the
functional annotation of the other modules associated
with clinical traits in the two networks, indicating that
EH301 modulates the expression of gene sets that are
significantly correlated with various clinical traits.

To investigate the transcriptional regulation underly-
ing the effects of disease and EH301 treatment on gene
expression, we performed a TF binding site enrichment
analysis on all genes in modules significantly associated
with disease traits in both networks. The TF binding sites
most enriched in genes associated with disease in both
vehicle and EH301 modules were those of the E2F and the
Sp families of TFs (Supplementary Material, Table S16).
Importantly, enrichment of binding sites of several TFs
was found only in disease-associated modules of the
EH301 network, indicating that these transcriptional
effects are EH301-specific (Supplementary Material,
Table S16). These TFs have also been associated with
ALS in patients or model systems and include activating
enhancer binding protein 2 (AP-2), forkhead box protein
O1A (FOXO1A) (60), sterol regulatory element binding
transcription factor 1 (SREBP1) (61), metal regulatory
transcription factor (MTF)-1 (62,63) and retinoic acid
receptor beta (RARB) (64).

Finally, we aimed to identify ‘hub’ genes from impor-
tant modules, or genes that drive the expression profile
of each module, while also correlating significantly with
disease traits. Hub genes may be useful as biomarkers for
potential classification of patients based on their clinical
characteristics and disease severity. For each gene, we
calculated a significance score, denoting how strongly
that gene associates with a trait, and a module mem-
bership score, denoting how closely that gene’s expres-
sion pattern matches the average module eigengene
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Figure 6. A set of five hub genes that correlate strongly with ALSFRS-R can be used to cluster samples into groups that correspond to their ALSFRS-R
scores. (A) Heatmap showing Z-scores of normalized expression values of the five genes chosen as ‘markers’ of ALSFRS-R score, along with aggregated
average expression values of all five and ALSFRS-R score for each sample. (B) Dendograms created by hierarchical clustering of ALSFRS-R score on the
left, and average expression of the five marker genes on the right, for vehicle samples (left) and EH301 samples (right). Central gray lines show matching
of each sample over the two trees, and colored lines in the tree denote matching clusters. P-value for Baker’s gamma index calculated using 100-fold
permutation.

expression, or how strongly that gene ‘belongs’ to that
module (56). We identified the most interconnected
genes in each module using connection strengths
calculated from the topological overlap matrix (TOM)
and visualized with VisANT (65). For each of the
relevant modules in the vehicle network (Supplementary
Material, Fig. S5) and the EH301 network (Supplementary
Material, Fig. S6), we selected the 50 most significant
genes for each associated trait as well as the top 50
most strongly connected genes within the associated
module. To illustrate the potential application of this
analysis to discover disease biomarkers, we chose five
genes from the Greenyellow vehicle module that were
significantly associated with ALSFRS-R. To this end,
genes were ranked in the order of significance for
correlation with ALSFRS-R and chosen if they (1) were
part of the network hub identified by VisANT and (2)
were identified as differentially expressed in the sALS1
versus CTL comparison in vehicle samples. Expression
patterns of these five genes (distinct subgroup of the rat
sarcoma virus family member 3 (DIRAS3), G2 and S-phase
expressed 1 (GTSE1), ribonucleotide reductase regulatory
subunit M2 (RRM2), cell division cycle associated 5
(CDCA5) and holliday junction recognition protein
(HJURP)) showed clear differences between control and
sALS1 samples, and to a lesser extent between control
and sALS2 (Fig. 6A). We next examined if the expression
of these genes could be used to group samples based
on their ALSFRS-R score. Dendograms were constructed
from hierarchical clustering first of ALSFRS-R score and
then of average expression of the five genes for vehicle-
treated samples (Fig. 6B, left) and EH301-treated samples
(Fig. 6B, right). In both vehicle- and EH301-treated
fibroblasts, clustering based on ALSFRS-R significantly
matched the clustering based on gene expression,
indicating that expression of these five selected genes
can be used to group samples based on their ALSFRS-R
scores.

WGCNA of transcriptomic data from ALS induced
motor neurons supports and extends fibroblast
results
To extend the WGCNA analysis to a cell type affected
by the disease, we utilized transcriptomic and clinical
data from 124 (99 ALS and 25 control) iMN lines obtained
by the Answer ALS project (21). We constructed a new
network (Fig. 7A) using expression data from the 22 653
genes that passed quality control filters and identified 38
modules. We next calculated associations between mod-
ules and six traits (disease status, baseline ALSFRS-R,
most recent ALSFRS-R, ALSFRS-R progression slope, age
and sex) and found 23 modules (60%) with a significant
association with one or more traits (Fig. 7B). GO analysis
revealed that 20/23 modules had significant enrichment
for one or more GO: MF, GO: BP and KEGG pathways
(Table 4). Of these, Blue, Magenta and Tan associated
with both disease status and one or more measures
of ALSFRS-R. Genes in both the Blue and Tan modules
were functionally enriched for terms associated with
nucleotide metabolism and several types of protein mod-
ifications, and Tan module genes were also enriched for
terms involved in the mitochondrial electron transport
chain (Fig. 7C and D). Genes in the Magenta module were
enriched for pathways related to signal transduction
through G-protein coupled receptors (Fig. 7E).

Next, we evaluated which modules in the iMN network
contained genes from the Greenyellow module in the
vehicle-treated fibroblast network. We found that the
majority of the Greenyellow genes were found in the
Purple and Turquoise modules in the iMN network, both
of which significantly associate with ALSFRS-R progres-
sion slope. Accordingly, GO analysis revealed that both
Purple and Turquoise genes were enriched for pathways
related to cell cycle and development, similar to the path-
ways identified in the fibroblast Greenyellow module
(Fig. 7F and G, Supplementary Material, Table S15). We
then evaluated whether the genes associated with traits
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Table 4. iMN network modules with a significant trait association and GO annotation

ALS ALSFRS-R baseline ALSFRS-R latest ALSFRS-R
progression

Age Sex

Blue Cyan Magenta Blue Honeydew1 Bisque4
Magenta Tan Magenta Darkgrey
Tan Lightgreen Tan Bisque4

Maroon Yellowgreen
Yellowgreen Lightpink4
Cyan Coral1
Lightpink4 Darkred
Darkgreen Sienna3
Orangered4 Black
Lightyellow Purple

Turquoise

sALS, sporadic amyotrophic lateral sclerosis; ALSFRS-R, revised ALS functional rating scale; DEGs, differentially expressed genes; FVC, forced vital capacity; GO,
gene ontology; GSH, glutathione; iMN, induced motor neurons; NAD, nicotinamide adenine dinucleotide; NR, nicotinamide riboside; PT, pterostilbene; TF,
transcription factor; WGCNA, weighted gene co-expression network analysis.

in the vehicle fibroblast network had similar functional
GO annotations to the genes associated with the same
traits in the iMN network. There was a little overlap in
GO enrichment between modules associated with dis-
ease status in the fibroblast and iMN networks (Fig. 7H).
However, for all traits related to ALSFRS-R, there was a
large overlap in the GO terms identified in each network,
with approximately ∼66% of the GO terms associated
with ALSFRS-R in the fibroblast network also associating
with one or more of the ALSFRS-R measures in the iMN
network (Fig. 7I). Therefore, genes related to ALSFRS-
R, a measure of disease severity, share similar func-
tions, including cell cycle and nucleic acid metabolism,
in fibroblasts and iMNs.

Finally, to provide an initial proof of concept of the
potential predictive value of the five genes related to
ALSFRS-R progression in fibroblasts (DIRAS3, GTSE1,
RRM2, CDCA5 and HJURP), we used multinomial logistic
regression to classify ALS iMN samples based on the
expression of these genes. We used a 10-fold cross
validation approach, in which we randomly divided the
62 ALS samples with available ALSFRS-R progression
slopes into 10 sets. In each iteration, one set was used
as the training data (n = 6) and the model was tested
on the remaining 9 sets (n = 56). We arbitrarily defined
cases as ‘fast progressors’ if their ALSFRS-R progression
slope values were one standard deviation or more below
the mean. Using this method, we obtained an average
accuracy of 78.9% (95% CI: 66.0–91.6%), precision of 80.1%
(95% CI: 67.6–92.6%), false positive rate of 1.4% (95% CI:
−1.4–4.2%) and false negative rate of 17.0% (95% CI: 6.3–
28.0%), indicating good specificity and fair sensitivity. We
then computed receiver-operating characteristic (ROC)
curves to evaluate model performance for six of the
ten iterations (four iterations were unusable due to the
absence of any fast progressors in the test set) and
obtained an average area under the curve (AUC) value
of 0.767 (95% CI: 0.651–0.883). ROC curves showing the
performance of the model for the 6 iterations are shown
in Figure 7J. This approach represents an example of
how genes associated with ALSFRS-R in fibroblasts could

be utilized to discriminate patients with fast disease
progression relative to all other ALS cases in disease-
relevant iMNs.

Discussion
Numerous lines of evidence suggest that metabolic alter-
ations in ALS patients are related to both pathogenesis
and prognosis (3–5). Therefore, metabolism could be a
viable therapeutic target for the disease. However, the
biochemical and molecular underpinnings of metabolic
dysregulation remain largely unknown, especially in
sALS, hindering the development of effective targeted
approaches to correct them. The mechanisms leading to
metabolic dysregulation can differ in sALS metabotypes
resulting in different sets of biomarkers and suscep-
tibility to the effects of treatments. Efforts have been
made to use biofluids to identify metabolic biomarkers
for stratification of sALS patients (6,7,66), but high
variability associated with environmental factors can be
challenging. An alternative approach to using biofluids
for unbiased-omic studies is to obtain cells from patients
and investigate their metabolism under homogeneous
conditions to identify specific markers indicative of
sALS metabotypes that can then be validated and in
patients and used in clinical settings. Our studies have
utilized primary skin fibroblasts from sALS patients to
first identify a hypermetabolic phenotype relative to
healthy controls (6,7) and, more recently, to define a
subtype of sALS (sALS1) metabolically characterized by
enhanced transsulfuration metabolism, which was then
confirmed in patient plasma (8). This finding raised the
possibility that sALS1 cases are differentially responsive
to therapies that modulate cellular metabolism. The NR
and PT combination drug EH301 (19) is one of these
therapies, as it is designed to elevate NAD levels and
activate sirtuins. EH301 was successful in a pilot ALS
clinical trial (19) and is currently being investigated in
a larger phase 3 clinical study. However, the metabolic
effects of EH301 in different subtypes of sALS patients
are still unknown.
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Figure 7. WGCNA of transcriptomic data from iMNs confirms the association of several GO pathways with disease traits found in fibroblasts. (A)
Dendogram of hierarchical clustering of gene co-expression dissimilarity values, constructed from the TOM, for all iMN samples (n = 124). Colors
correspond to module assignments. (B) Heatmap showing correlations between module eigengene expression values and clinical traits. The numbers
in each box are P-values, while box colors correspond to the correlation coefficient. For clarity, only modules with at least 1 significant trait association
are shown. (C–G) Top 20 most significant non-redundant GO: BP terms (identified using the simplify function from the clusterProfiler package to merge
terms with more than 40% overlapping annotated genes) terms enriched in the Blue (C), Tan (D), Magenta (E), Turquoise (F) and Purple (G) modules. (H,
I) Venn diagram showing overlap of all significantly enriched GO terms from all modules associated with disease status (H) or ALSFRS-R (I) in the iMN
and vehicle fibroblast networks. (J) ROC curves for each of the six cross-validation runs of the classification model (trained and tested on the 62 iMN
samples with ALFRS-R progression data) with computable ROC. AUC values for each curve indicated on bottom right.

In this study, we took advantage of a set of sALS
patient-derived fibroblasts with defined metabotype (i.e.
sALS1 and sALS2) and controls based on previous pub-
lished work (8). In these groups of cell lines, we performed
in-depth transcriptomic and targeted metabolomic anal-
yses to further elucidate profiles that characterize the
subtypes and to assess how EH301 treatment affects gene
expression and metabolism in the different metabotypes.
We identified striking differences in the number of DEGs,
relative to the control cells, between untreated sALS1 and
sALS2 lines (281 versus 1), and in the response to EH301,
whereby only approximately 5% of the genes modified
by the drug were in common between sALS1 and sALS2.
Notably, EH301 affected a much smaller number of genes

in control lines compared to both sALS groups (77 ver-
sus >200), further indicating group-specific responses to
the drug. In addition to the expected increase of NAD
and its precursors, targeted metabolomics revealed that
EH301 affected nucleotide metabolism in all groups as
well as amino acid metabolism in both sALS groups.
Cysteine and methionine metabolism was only affected
in sALS2 suggesting that the intrinsic transsulfuration
alterations of sALS1 lines are not corrected, possibly
because the effect of EH301 drives metabolism in a sim-
ilar direction as the adaptive mechanisms that natu-
rally take place in sALS1. EH301 had a potent protective
effect against metabolic stress induced by thiol group
deprivation in all groups, and this effect was largely
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mediated by PT because NR alone had a moderate effect
only in sALS1. This result supports efficacy of EH301 in
antagonizing the deleterious effects of cellular stress, but
do not indicate metabotype specificity of PT. However, it
needs to be noted that the stress paradigm we used is
very severe and using cell death as readout may not allow
for detection of more subtle phenotypic differences.

To complement and extend the differential gene
expression analysis we used WGCNA, which allows
association of gene expression modules with several
phenotypic variables, such as clinical parameters or
other indices of pathology. This approach may provide
more sensitivity to detect differences in disease char-
acteristics among patients than traditional grouped
pairwise-comparison approaches (58). WGCNA has been
recently used to identify new risk genes and putative
drug targets associated with major neurodegenerative
diseases (67–69). We used WGCNA to construct networks
for vehicle- and EH301-treated samples and identified
several modules in each network that significantly
associated with disease and measures of disease severity.
In both networks, genes belonging to modules associated
with disease and ALSFRS-R were highly enriched for
pathways related to the cell cycle, DNA damage repair
and nucleic acid metabolism. TF binding site analysis
of disease-associated genes in both networks revealed
enrichment of E2F and Sp family TF binding sites. TFs
in the E2F family are essential regulators of the cell
cycle and apoptosis and have been involved in the
response to DNA damage in cultured neurons (70,71).
E2F transcription factor 1 (E2F1) has been shown to
have upregulated expression correlated with markers of
aberrant cell cycle re-entry in postmortem spinal cord
and motor cortex samples from ALS patients (72,73).
Interestingly, in addition to its canonical role regulating
the cell cycle, E2F1 is also important for controlling
several aspects of global metabolic homeostasis (74).
Sp family TFs have been demonstrated to be key for
modulating apoptosis in cultured neurons undergoing
oxidative stress caused by glutathione depletion, and Sp1
knockdown is protective in G93A superoxide dismutase
1 (SOD1) mutant mice (75,76). Sp1 and specificity protein
transcription factor 3 (Sp3) can also interact with E2F1
and cooperatively regulate transcription as a complex
(77). Although the cell cycle has not been traditionally
considered relevant in post-mitotic cells, such as motor
neurons, increasing evidence suggests that cell cycle
genes can be dysregulated in neurodegenerative disease.
This dysregulation may promote aberrant re-entry into
the cell cycle, leading to neuronal death (71,73,78).
Genes associated with cell cycle also have important
functions in the maintenance of the cytoskeleton.
Notably, mutations in kinesin genes, such as KIF5A, have
been linked to ALS and other motor neuron diseases (79).
Our results confirm that cell cycle genes may be involved
in ALS pathogenesis.

Despite the common effects of ALS on gene expres-
sion identified in both vehicle and EH301 networks, we

also identified EH301-specific alterations. We found that
EH301 markedly modifies network structure relative to
vehicle, suggesting global alterations in patterns of gene
expression. Evidence that EH301 produces widespread
changes in transcriptional regulation is also provided
by the enrichment of several TF binding sites in genes
belonging to modules associated with disease, which
were not found in the vehicle network. Furthermore,
we identified substantial differences in the functions of
genes associated with disease traits between EH301 and
vehicle networks, such as cell adhesion and immune
response which are unique to EH301. Therefore, EH301
may modulate genes and pathways relevant to mecha-
nisms of ALS pathogenesis through transcriptional reg-
ulation. These findings will be valuable in interpreting
the results of the ongoing clinical trial of EH301 in ALS
patients.

In this study, we utilized fibroblasts as a model system,
as these cells have been extensively used by us and
many other groups for the investigation of molecular,
biochemical and metabolic changes in ALS. Nevertheless,
we deemed it important to compare the gene expression
modules obtained from ALS fibroblasts with modules
from an independent, larger dataset from iMNs publicly
available from the Answer ALS database. We observed a
small overlap in GO terms enriched in genes belonging
to modules associated with disease status in fibroblasts
and iMNs, including nucleic acid metabolism terms. On
the other hand, there was a substantial overlap in the
functional annotations of genes associated with ALSFRS-
R in both datasets, indicating disease severity-related
gene expression changes common to both cell types.
Previous studies have used genomic and transcriptomic
data from human motor cortex to characterize sALS
metabotypes, and have identified immune response, cell
adhesion, cytoskeletal organization and cell cycle among
the most dysregulated pathways in specific sALS sub-
groups relative to control (66,80). These findings coincide
with our results on pathways affected in sALS fibroblasts
and those identified in sALS iMNs, further supporting
the notion that different subsets of sALS cases are char-
acterized by distinct gene expression profiles that are
common among multiple cell types and tissues.

Purine and pyrimidine metabolism alterations were
consistently identified in metabolomic and transcrip-
tomic analyses in ALS fibroblasts and transcriptomics
analyses in ALS iMNs. Alterations in nucleotide metabo-
lism have also been shown in spinal cord from ALS
patients (81). In post-mitotic cells, nucleotide metabolism
is required for proper DNA damage repair (82), and
many of the mechanisms thought to be involved in
ALS pathogenesis, such as oxidative stress and energy
imbalance can lead to a loss of DNA integrity and high
burden of DNA damage (83–85). Therefore, nucleotide
metabolism may be integral to the mechanisms leading
to motor neuron degeneration in ALS, and nucleotide
metabolism may provide new targets for therapeutic
intervention.
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Table 5. Characteristics of sALS and control subjects at time of biopsy

ID Age at biopsy Sex Disease duration at time of
skin biopsy (months)

ALSFRS-R
total at biopsy

Rate of ALSFRS-R
decline∗

FVC%

Control 1 62 F
2 63 M
3 53 F
4 79 M
5 60 F
6 73 M

sALS1 7 67 F 24 34 0.58 97
8 73 M 10 24 2.4 38
9 67 F 14 35 0.93 78
10 64 M 24 38 0.42 55
11 66 F 5 40 1.6 118
12 56 M 34 39 0.26 81

sALS2 13 72 M 12 39 0.75 105
14 73 F 6 39 1.5 59
15 66 F 11 43 0.45 102
16 68 M 32 32 0.5 78
17 69 F 15 29 1.27 96
18 55 M 10 33 1.5 116

a% Calculated as ((48−ALSFRS at skin BX)/disease duration at skin BX).

Finally, we confirmed in iMNs the association of the
five biomarker genes with ALSFRS-R that we found in
fibroblasts. In agreement with the GO terms associated
with disease severity identified in both fibroblasts and
iMNs, four of these genes (HJURP, DIRAS3, CDCA5 and
GTSE1) are associated with cell cycle and DNA damage
repair, while RRM2 is involved in purine and pyrimidine
metabolism. To establish an initial proof of concept that
the expression of a small subset of genes in patient-
derived cells could be used to predict disease progression,
we employed a logistic regression model based on the
expression of the five biomarker genes in iMNs to
identify fast progressing sALS cases. Cross-validation of
ROC results showed an average accuracy of 78.9% and
precision of 80.1%, which indicates that the combination
of the expression of these genes could potentially identify
fast progressing sALS cases. This proof-of-concept
assessment was performed on a relatively small dataset
available from Answer ALS (n = 62), but we think that
the encouraging results warrant the extension of these
studies to larger datasets from patient-derived cells,
when they become available.

In conclusion, multiomic analyses of patient-derived
fibroblasts highlight differential metabolic and tran-
scriptomic profiles in sALS metabotypes, which translate
into differential responses to the investigational drug
EH301. In the future, it will be important to apply similar
multi-omics and machine learning strategies to readily
available patient materials, such as white blood cells, to
develop viable predictive biomarkers of disease progres-
sion and response to EH301 and other therapeutics.

Materials and Methods
Cell culture
A total of 18 primary fibroblasts lines derived from
healthy donors or ALS patients (Table 5) were maintained

in culture as previously reported (7). Sporadic ALS
subclasses (sALS1 and sALS2) were defined based
on previously published metabolic profiles (8). For
experiments, cells were plated in Dulbecco’s modified
Eagle’s medium (DMEM) medium containing 5 mM
glucose and 2 mM glutamine, 10% fetal bovine serum
(FBS), 1% of 100× antibiotic/antimycotic (sterile filtered
10 000 units of penicillin, 10 mg of streptomycin and
25 μg of amphotericin B per ml, and 2.5 μg/ml Plasmocin).
Methionine and cystine depleted DMEM contained
10 mM glucose and 2 mM glutamine, 10% FBS, 1% of
100× antibiotic/antimycotic (sterile filtered 10 000 units
of penicillin, 10 mg of streptomycin and 25 μg of
amphotericin B per ml, and 2.5 μg/ml Plasmocin). Cells
were assessed at the comparable passage number.
EH301 was defined as the combination of 1 mM NR
and 10 μM PT for the time specified in the text and
figure legends.

RNAseq and quantitative expression analysis
About 500 ng of total RNA extracted with TRIzol
(Invitrogen) were used by the Weill Cornell Genomics
Resources Core Facility to prepare 3’RNAseq libraries
using the Lexogen QuantSeq 3’ mRNA-Seq Library Prep
Kit forward (FWD) for Illumina. The libraries were
quantified on a Molecular Devices Spectra Max M2
plate reader (with the intercalating dye QuantiFluor) and
pooled accordingly for maximum evenness. The pool was
quantified by digital PCR and sequenced on 1 lane of an
Illumina NextSeq500 sequencer, single end 1 × 86 bp,
and demultiplexed based upon six base i7 indices using
Illumina bcl2fastq2 software (version 2.18; Illumina, Inc.,
San Diego, CA).

Illumina adapters were removed from the demulti-
plexed fastq files using Trimmomatic version 0.36 (86).
The trimmed reads were aligned to the human genome
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assembly GRCh38.p13 using the STAR aligner version
2.7.0f (87). The output SAM files were converted to BAM
using SAMtools version 1.8 (88), and the number of reads
overlapping each gene in the gff3 file on the forward
strand were counted using HTSeq-count version 0.6.1
(89). The R package DESeq2 version 1.24.0 (90) was used
to obtain both normalized and variance stabilized counts
and to identify genes that were differentially expressed
between controls and sALS lines. Genes with less than
10 total raw reads were filtered out before running the
DESeq2 model, and all other filtering parameters were
kept as DESeq2’s defaults. Pathway analysis was per-
formed with the free web tool WebGestalt (36), and the
gprofiler2 (91) and clusterProfiler packages (92), and the
cutoff for significance was a false discovery rate (FDR)
corrected P-value <0.05.

Metabolomics
Targeted metabolomics was performed by the Pro-
teomics and Metabolomics Core Facility at Weill Cor-
nell Medicine in New York. Metabolites were rapidly
extracted in 80% ice-cold methanol; samples were
cleared by centrifugation at 14 000×g for 20 min at
4◦C and stored at −80◦C until analysis. The Weill
Cornell Medicine Meyer Cancer Center Proteomics
& Metabolomics Core Facility performed hydrophilic
interaction liquid chromatography-mass spectrometry
(MS) for relative quantification of polar metabolite
profiles. Metabolites were measured on a Q Exactive
Orbitrap mass spectrometer (Thermo Scientific), which
was coupled to a Vanquish ultra-performance liquid
chromatography (UPLC) system (Thermo Scientific)
via an Ion Max ion source with a heated electrospray
ionization (HESI) II probe (Thermo Scientific). A Sequant
ZIC-pHILIC column (2.1 mm i.d. ×150 mm, particle
size of 5 μm, Millipore Sigma) was used for separation.
Total protein, determined by BCA Assay, was used for
normalization, and MS peak data was processed using
XCalibur 4.1 (Thermo Scientific) to obtain metabolite
signal intensity for relative quantification. Relative abun-
dance data were normalized with a log transformation
and analyzed with the free online tool MetaboAnalyst
5.0 (93). Identification was done using an in-house
library established with known chemical standards,
and required exact mass (within 5 ppm) and standard
retention times.

Cell viability
To measure viability, cells were plated in methionine and
cystine depleted medium on 96 well glass bottom plates
(Cellvis). After 72 h, cells were stained with HOECHST
33342 (Invitrogen), Calcein AM (Invitrogen), Propidium
Iodide (Invitrogen) for 30 min at 37◦C. Fluorescence was
acquired with the ImageXpress Pico Automated Imaging
System. Viability threshold was determined by a combi-
nation of calcein and propidium iodide signals as previ-
ously reported (94).

Weighted gene co-expression network analysis
WGCNA has been previously described (56,59). In
brief, we used normalized gene expression data from
DESEq2 as input for the functions included in the
WGCNA package available from Comprehensive R
Archive Network (CRAN). Induced motor neurons data
was additionally normalized to remove batch effects
using the limma: removeBatchEffect() function (95).
We generated a TOM based on expression values from
17 662 genes in the fibroblast dataset and 22 663 genes
in the iMN dataset and identified modules using a
dynamic tree cutting algorithm based on hierarchical
clustering of TOM dissimilarity values. After opti-
mization to maintain scale-free topology, we set the
ideal soft power threshold value at 4 for the vehicle
network, 20 for the EH301 network, and 8 for the iMN
network. To allow for direct comparisons between the
vehicle and EH301 networks, quantile-quantile (Q-Q)
scaling was performed such that the 95% quantiles of
both matrices matched. For all networks the module
merging parameter was kept consistent at 80%. Pairwise
Pearson’s correlations were used to calculate associ-
ations between modules and disease traits. Pathway
analysis was done in the same way as described for
RNAseq. Hierarchical clustering of ALSFRS-R and gene
expression was done using the dendextend package (96).
Correlation between dendograms was calculated using
Baker’s gamma index, and significance was determined
using a permutation test (97). Logistic regression using
the glm() function was used to calculate a model
predicting ALSFRS-R progression. To evaluate model
performance, we used a ten-fold cross validation
approach, in which we randomly divided samples
into ten sets. In each iteration, one set was used
as the test data and the model was trained on the
remaining 9 sets. Model performance was evaluated
by calculating precision, accuracy, false positive rate
and false negative rate with the caret package (98), and
with receiver operating characteristic analysis done with
the receiver operating characteristic R package (ROCR)
package (99).

Statistical analyses
A Wald test was used to determine statistical significance
of differential gene expression, with the cutoff being a
False Discovery Rate of <5% after Benjamini-Hochberg
correction. Significance for differential metabolite
abundance was determined with one-way analysis of
variance (ANOVA) with post-hoc t-tests, with the cutoff
being a False Discovery Rate of <5% after Benjamini-
Hochberg correction. All data visualization was done in
R using the ggplot2, pheatmap, corrplot and venndiagram
packages available from CRAN. Z scores were calculated
from normalized counts for each gene using the standard
formula (x−μ)/σ , where x is the sample value, μ is
the population mean and σ is the population standard
deviation.
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Availability of data and materials
All R packages are available from CRAN. Full differen-
tial expression and gene ontology analysis results are
included in Supplementary Material, Tables. Raw tran-
scriptomic data will be made available from Gene Expres-
sion Omnibus. Transcriptomic data from induced motor
neurons are available from Answer ALS.

Supplementary Material
Supplementary Material is available at HMG online.
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