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Simple Summary: The characters of Taiwanese hepatocellular carcinoma (HCC) are different from
other parts of the world. We characterized the molecular features of HCC using a newly developed
classification system based on the expression of the Wnt-Hippo signaling pathway-related genes. We
analyzed the data in terms of prognostic value, transcriptome features, immune infiltration, and clini-
cal characteristics, and compared the resulting subclasses with previously published classifications.
A new molecular classification method based on a 272 gene panel of Wnt-Hippo pathways that may
provide a new target for the treatment.

Abstract: In Taiwan, a combination of hepatitis B and C infection, economic boom-related food and
alcohol overconsumption, and Chinese medicine prescriptions has led to a high rate of hepatocellular
carcinoma (HCC). However, the causative factors and underlying tumor biology for this unique
HCC environment have not been identified. Wnt and Hippo signaling pathways play an important
regulatory role in HCC development, and their functions are generally considered as positive and
negative regulators of cell proliferation, respectively. In this study, we characterized the molecular
features of HCC using a newly developed classification system based on the expression of the
Wnt-Hippo signaling pathway-related genes. RNA sequencing (RNA-Seq) was performed on liver
tumor tissues from 100 patients with liver cancer. RNA-Seq data for 272 previously characterized
Wnt-Hippo signaling pathway-related genes were used for hierarchical clustering. We analyzed
the data in terms of prognostic value, transcriptome features, immune infiltration, and clinical
characteristics, and compared the resulting subclasses with previously published classifications. Four
subclasses of HCC (HCCW1-4) were identified. Subclass HCCW1 displayed the highest PCDHB4
expression. Subclass HCCW?2 displayed lower Edmondson-Steiner grades (I and II) and CTNNB1
mutation frequencies. Subclass HCCW3 was associated with a good prognosis, the highest PCDHGB7
expression, high CD8+ naive T cells abundance, and relatively low TP53 mutation rates. Subclass
HCCW4 was associated with a poor prognosis, the highest PCDHB2 and PCDHB6 expression, a
relatively high abundance of Thl cells, NKT and class-switched memory B cells, relatively low
enrichment of cDC, iDC, and CD4+ memory T cells, and high Edmondson-Steiner grades (III and
IV). We also identified Wnt-Hippo signaling pathway-related genes that may influence immune cell
infiltration. We developed a panel of 272 Wnt-Hippo signaling pathway-related genes to classify
HCC into four groups based on Taiwanese HCC and The Cancer Genome Atlas Liver Hepatocellular
Carcinoma datasets. This novel molecular classification system may aid the treatment of HCC.

Keywords: Taiwanese hepatocellular carcinoma; molecular classification; Wnt-Hippo pathways;
immune infiltration
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1. Introduction

Liver cancer is the fifth most common cancer and the second common cause of cancer-
related death worldwide, and hepatocellular carcinoma (HCC) is its predominant form [1,2].
In addition to genetic factors, HCC development is associated with chronic viral infection,
alcohol abuse, diabetes mellitus (DM), obesity, metabolic diseases, hemochromatosis, and
autoimmune hepatitis [3,4]. The incidence of noninfectious HCC in developed countries
is increasing due to increased rates of obesity, DM, and metabolic diseases [5,6]. These
conditions induce liver injury and progressive inflammation, such that liver cells show
a cycle of necrosis, regeneration, somatic mutations, and chromosomal instability [7-9].
Recent studies have revealed many genomic alterations of HCCs, and numerous frequently
altered genes including TP53, CTNNB1, and TERT [10-13]. Surgery resection is the major
treatment for HCC; however, many HCCs found at the unresected stage require chemother-
apy or targeted therapy. Despite many potential therapeutic targets, few drugs have shown
clinically promising effects, such as the multikinase inhibitors sorafenib and regorafenib,
and immune checkpoint inhibitors; however, most of these drugs increased survival by
only a few months, indicating the need for new drugs to treat HCC [4,6].

Nationwide programs have been initiated in Taiwan to reduce hepatitis B virus (HBV)-
and hepatitis C virus (HCV)-related HCC, beginning in 1984; aggressive countermeasures
against HBV and HCV infections have also been implemented by the government. These
measures have resulted in a reduction in the number of HBV carriers and a decrease
in the rate of HBV-related HCC among younger individuals [14-16]. There is no vaccine
available for hepatitis C even nowadays. Chinese herbs are also prescribed for the treatment
of diseases, including chronic hepatitis, under the national health system; these herbs
may contain compounds that modulate aristolochic acid or liver toxins [17]. Moreover,
an economic boom was associated with higher rates of DM, metabolic disorders, and
obesity [14,18,19]. HCC in Taiwan is unique due to the higher prevalence of chronic
hepatitis B than in the Western world. Nonalcoholic fatty liver disease, alcoholic liver
disease, and chronic hepatitis C are more common in Western countries.

Aberrant Wnt signaling promotes the development and/or progression of HCC.
Mutations of CTNNBI, a gene that codes for 3-catenin in the Wnt signaling pathway, are
common in HCC [20]. Aberrant activation of Hippo signaling pathway components has also
been observed in HCC, especially the Yes-associated protein and transcriptional co-activator
with PDZ-binding motif transcription factors [21]. Inactivation of the Hippo pathway is
significantly associated with poor prognosis in human HCC [22]. Molecular classification
of HCC plays an important role in the selection of therapeutic strategies and evaluation
of therapeutic responses and prognoses [10-13,23-26]. For example, a recently developed
metabolic network classified HCC patients into three subgroups (iHCC1-iHCC3), where
the iHCC2 phenotype was associated with aberrant Wnt signaling: 75% of iHCC2 tumors
found to carry CINNB1 mutations and displayed upregulated expression of 3-catenin
target genes [24]. Another study identified three HCC subtypes (S1-53), where S1 tumors
exhibited Wnt pathway activation through two mechanisms: CTNNB1 mutation and TGF-f3
activation [25].

In this study, we applied bioinformatic tools for RNA sequencing (RNA-Seq) analysis
of 100 Taiwanese HCCs, and then used several approaches to develop a survival-related
molecular classification method. This is the first study to analyze the Wnt-Hippo pathways
for the molecular classification of HCCs in Taiwan. Our findings improve our understand-
ing of HCC etiology and provide a basis for the identification of new treatment targets.

2. Materials and Methods
2.1. Liver Samples

HCC was determined by pathological diagnosis. Tumor samples were collected and
frozen at —80 °C after surgical resection at the Tissue Bank of the China Medical University
Hospital (CMUH). The CMUH Tissue Bank was established in 2005 and accredited by
Taiwan Government on 25 October 2012 and has collected more than 20,000 cancer tissues
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from patients with more than 20 cancer types. This study was approved by the Ethics Com-
mittee of the CMUH (CMUH 109-REC3-055), and written informed consent was obtained
from all participants according to the standard procedure of the CMUH Tissue Bank.

2.2. RNA Extraction and RNA-Seq

RNA was extracted from tissue samples using the NucleoSpin RNA Kit (Macherey—
Nagel GmBH, Duren, Germany) following the manufacturer’s instructions. The quality,
quantity, and integrity of the RNA were evaluated using a NanoDrop1000 spectrophotome-
ter and Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).

RNA-Seq was performed as described previously [27]. Briefly, samples with an RNA
integrity number > 6.0 were used for RNA-Seq. An mRNA-focused, barcoded library was
generated using the TruSeq strand mRNA Library Preparation Kit (Illumina, San Diego,
CA, USA). The libraries were sequenced on the Nova Seq 6000 instrument (Illumina), using
2 x 151-bp paired-end sequencing flow cells following the manufacturer’s instructions.

2.3. RNA-Seq Data Analysis

The RNA-Seq data were analyzed as described previously [28]. Briefly, data quality
control at the Q20 level was performed using the Trimmomatic tool [29], read alignment
to the GRCh38 human genome was conducted using the HISAT2 alignment program [30],
expression was quantified with reference to GENCODE v35 (excluding mitochondrial
genes), and transcripts were normalized to transcripts per million (TPM) using the StringTie
assembler [31].

2.4. Molecular Classification of HCC

Molecular classification of HCC was performed using transcriptomics-based analysis
integrating Wnt [32] and Hippo [33] signaling pathways-related gene panels, coupled with
survival analysis, and then validated using data from The Cancer Genome Atlas (TCGA).
Subjects were also classified according to molecular signatures reported in other HCC
studies [24,25]. For the molecular classification, hierarchical clustering was performed
using Spearman rank correlation for sample distance calculation and the “average” linkage
method using the Morpheus web tool (https:/ /software.broadinstitute.org/morpheus/,
accessed on 13 April 2022). Important nodes and subnetworks were predicted and explored
using CytoHubba [34], a Cytoscape plugin [35].

2.5. Cell Enrichment Analysis

The xCell [36] was used to examine the enrichment of various immune cells in the
tumors and to calculate an immune score from the TPM expression matrix.

2.6. Statistical Analyses

The Kaplan-Meier method was used to construct overall survival curves, and the
p-values were obtained using a log-rank test. The Kruskal-Wallis test and Mann-Whitney
U test were used to compare groups in terms of non-normally distributed variables. Contin-
gency table variables were analyzed using Fisher’s exact test. All statistical analyses were
performed in the Python programming environment. A two-tailed p < 0.05 was considered
statistically significant.

3. Results
3.1. Molecular Subtypes of Taiwanese HCC Based on the Expression Profiles of 254 Wnt
Pathway Genes

Hierarchical clustering analysis identified four subclasses (A-D) of Taiwanese HCC
patients (Figure 1A). Kaplan-Meier plots of the results of individual and grouped pairwise
analysis showed significant differences in survival between subclasses B and D (p = 0.019)
and C and D (p = 0.035), but there was no significant difference in a comparison of all four
groups (p = 0.077) (Figure 1B-H). Moreover, we investigated the expression of CTNNB1
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up/downstream genes for CTNNB1 overexpression or down expression. FZD1, FZD3,
FZD4,FZD5, FZD6, FZD7, GSK3B, TCF7L2, TLE4, LRP5, TLE2, TLE5, and TLE6 were found
to be differentially expressed in CTNNBI1 overexpression or down expression (Supple-
mentary Figure S1). We found positive correlation for the expression of CTNNB1 with the
expression of FZD1, FZD3, FZD4, FZD5, FZD6, FZD7, GSK3B, TCF7L2, and TLE4. However,
the expression of CTNNB1 was inversely correlated with the expression of LRP5, TLE?2,
TLE5, and TLEG.
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Figure 1. Molecular classification of Taiwanese hepatocellular carcinoma (HCC) using a panel of
254 Wnt pathway genes. (A) Heatmap showing normalized expression levels of 254 signature genes
(rows) across subjects (columns) divided into four molecular subclasses (A-D) using an unsupervised
approach. Each signature gene was significantly up- or downregulated in one subclass relative
to the other subclasses, as indicated by color changes, where blue and red indicate low and high
expression, respectively. Signature genes and subjects were hierarchically clustered within each
subclass. Significant differences in demographic characteristics, clinical annotations, molecular
subclasses, and hepatitis B and C virus infection status across subjects are shown at the top of the
figure. (B-H) Overall survival of subjects in each molecular subclass.

3.2. Molecular Subtypes of Taiwanese HCC Based on the Expression Profiles of 18 Hippo
Pathway Genes

Hierarchical clustering analysis identified two subclasses (A and B) of Taiwanese
HCC patients (Figure 2A). A Kaplan-Meier plot of overall survival showed no significant
difference between the two subclasses (p = 0.751) (Figure 2B). In addition, we examined the
expression of YAPI up/downstream genes for YAP1 overexpression or down expression.
We found TAOK1, TAOK2, TAOK3, SAV1, LATS1, LATS2, STK4, MOB1A, MOB1B, NF2, TAZ,
TEAD1, TEAD3, TEAD4, and FRMD6 were differentially expressed in YAP1 overexpression
and down expression (Supplementary Figure S2) and positive correlation for the expression
of YAP1 with the expression of TAOK1, TAOK3, SAV1, LATS1, LATS2, STK4, MOBI1A,
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MOB1B, TEAD1, and FRMD6. However, the expression of YAPI was inversely correlated
with the expression of TAOK2, NF2, TAZ, TEAD3, and TEAD4.
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Figure 2. Molecular classification of Taiwanese HCC patients using a panel of 18 Hippo pathway
genes. (A) Heatmap showing normalized expression levels of the 18 signature genes (rows) across
subjects (columns) divided into two molecular subclasses (A,B) using an unsupervised approach.
Each signature gene was significantly up- or downregulated compared with the other subclasses,
as indicated by color changes, where blue and red indicates low and high expression, respectively.
Signature genes and subjects were hierarchically clustered within each class. Significant differences in
demographic characteristics, clinical annotations, molecular subclasses, and hepatitis B and C virus
infection status across subjects are shown at the top of the figure. (B) Overall survival of subjects in
each molecular subclass.

3.3. Molecular Subtypes of Taiwanese HCC Based on the Expression Profiles of 272 Wnt—Hippo
Pathways Genes

A panel of Wnt pathway-related genes showed that some were corrected with survival;
therefore, we added several other functional gene panels to improve the power of the
analysis. Finally, among 18 Hippo pathway- and 254 Wnt pathway-related genes, we
identified four molecular subclasses (HCCW1-4) (Figure 3A) that were correlated with
patient’s survival (p = 0.040) (Figure 3B). The average survival time was significantly shorter
for HCCW4 (2575 days; 95% confidence interval (CI): 1953-3197, n = 18) than for HCCW2
(3075 days; 95% CI: 2649-3502, n = 30), HCCW1 (3446 days; 95% CI: 27924101, n = 18), and
HCCW?3 (3556 days; 95% CI: 3143-3968, n = 34). HCCW3 was associated with a statistically
significantly better prognosis than HCCW4 based on a two-sided log-rank test (p = 0.005)
(Figure 3C).
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Figure 3. Molecular classification of Taiwanese HCC patients using a panel of 272 Wnt-Hippo
pathway genes. (A) Heatmap showing normalized expression levels of the 272 signature genes (rows)
across subjects (columns) divided into four molecular subclasses (HCCW1-4), where blue and red
indicate low and high expression, respectively. Significant differences in demographic characteristics,
clinical annotations, molecular subclasses, and hepatitis B and C virus infection status across subjects
are shown at the top of the figure. (B) Overall survival for subjects in each molecular subclass.
(C) HCCW3 showed significantly better prognosis than HCCW4 based on two-sided log-rank tests.
(D) The Bidkhori classification results were not significantly correlated with survival, whereas (E) the
Hoshida classification results did show a significant correlation.

To validate the findings, we applied a similar molecular classification approach using
HCC (LIHC) data from TCGA and obtained similar results (p = 0.008; Figure 4A,B). HCCW4
showed significantly lower survival than HCCW?2 (p = 0.003) (Figure 4C) and HCCW3
(p = 0.007) (Figure 4D), with a more distinct grouping than that seen for Taiwanese HCC
patients, perhaps due to a larger sample size. The Bidkhori classification method [24]
applied to our cases based on a panel of 51 metabolic genes revealed no correlation with
survival (p = 0.943) (Figure 3D), whereas the results of the Hoshida classification [25]
showed a correlation with survival (p = 0.039) (Figure 3E).

3.4. Transcriptomes of the HCC Subclasses

We further analyzed the expression of genes that may influence the molecular classifi-
cation of Taiwanese HCC patients, the results showed differential expression of many genes
among the four groups; however, we detected no correlations with survival (Supplementary
Table S1). We further analyzed survival-related expression genes and found that PCDHB®,
PCDHGB7, PCDHB2, and PCDHB4 were correlated with the molecular classification and
patient survival (Figure 5A-D and Supplementary Table S1). Patients with high PCDHB6,
PCDHB?2, and PCDHB4 mRNA expression levels had lower overall survival. By contrast,
high PCDHGB7 mRNA expression was associated with longer survival. We used similar
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approaches to analyze the TCGA data, and the results showed that 56 genes were correlated
with both the molecular classification and survival (Supplementary Table S1).
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Figure 4. Molecular classification of HCC data from The Cancer Genome Atlas (TCGA) using a
panel of 272 Wnt-Hippo pathway genes. (A) Heatmap showing normalized expression levels of
272 signature genes (rows) across subjects (columns) divided into four molecular subclasses (HCCW1-
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demographic characteristics, clinical annotations, molecular subclasses, and hepatitis B and C virus

Time Time

infection status across subjects are shown at the top of the figure. (B) Overall survival for subjects in
each molecular subclass. (C) HCCW2 showed significantly better prognosis than HCCW4 based on
two-sided log-rank tests. (D) HCCW3 showed significantly better prognosis than HCCW4 based on
two-sided log-rank tests.

Among the significantly differentially expressed genes related to the Wnt-Hippo
pathway, 110 and 14 were up- and downregulated, respectively, in HCCW4 compared with
those in HCCW1-3 (Supplementary Table S2). The most important nodes and subnetworks
of protein—protein interactions among the 110 upregulated genes in HCCW4 were pre-
dicted and explored using CytoHubba; the 10 most significant node genes were WNTSB,
SMARCA4, ARID1IA, SMARCB1, SMARCC2, SMARCD1, SMARCD2, SMARCD3, FZD2,
and WNT9A (Figure 6).

We also identified 26 and 11 differentially expressed genes that were up- and downreg-
ulated, respectively, in HCCW3 compared with those in HCCW1, HCCW2, and HCCW4
(Supplementary Table S3).

3.5. Correlation of HCC Subclasses with Immune Infiltration

We investigated the associations between the subclasses and the expression levels of
34 immune cells. Significant differences were observed between HCCW4 and the other
three subclasses, with higher abundance seen for three immune cell populations (Thl,
natural killer T (NKT), and class-switched memory B-cells) in HCCW4 than compared with
HCCW?1-3 (Figure 7A), and lower enrichment for three immune cell populations (cDC, iDC,
and CD4+ memory T-cells) (Figure 7B). In the nonhematopoietic group, hepatocytes were
significantly less enriched in HCCW4 (Figure 7C). In addition, CD8+ naive T-cells were
more abundant in HCCW3 (Figure 7D).
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Correlations between molecular classifications and patient survival. Boxplot showing

the expression level of (A) PCDHB2, (B) PCDHB4, (C) PCDHB6, and (D) PCDHGB? in four HCC
subclasses. The statistical difference was compared through the Kruskal-Wallis test and Mann-—
Whitney U test, and the p-values were shown above each boxplot. Survival analysis of patients
with HCC according to above-mentioned genes expression. Patients with high PCDHB2, PCDHB4,
and PCDHB6 expression had significantly shorter overall survival compared with patients with

low expression.

Figure 6. Ten upregulated hub genes in the HCCW4 subclass. The shade of the color indicates
the degree of importance of the genes. The sequence of colors is red—orange-yellow from most

importance to less importance.
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Figure 7. Immune characteristics of HCC subclasses. (A,B) Boxplots of immune cells differing
between the subgroup with the worst prognosis (HCCW4) and the other subgroups. (C) Boxplot
of hepatocytes differing between the subgroup with the worst prognosis (HCCW4) and the other
subgroups. (D) Boxplots of immune cells differing between the subgroup with the best prognosis
(HCCW3) and the other subgroups. The statistical difference was compared through the Mann—
Whitney U test, and the p-values were shown above each boxplot.

3.6. Correlation of the HCC Subclasses with Clinical Characteristics

Next, we explored the tumor-related clinicopathological variables associated with our
classification results. Fisher’s exact test revealed significant correlations between clinico-
pathological features and HCC subclasses in our cohort. A lack of advanced Edmondson-
Steiner grade (p = 0.0007) and lower CTNNB1 mutation frequency (p = 0.0586) were as-
sociated with the HCCW2 subclass, and Edmondson-Steiner grade III/IV (p = 0.0203)
was associated with HCCW4 subclass. HCCW3 was negatively correlated with the TP53
mutation rate (p = 0.0049) (Table 1).

Table 1. Association between molecular subgroups HCCW1—4 and clinical variables.

Variable

HCCW1 HCCw2 HCCW3 HCCwW4 p-Value

Edmondson-Steiner grade

LI 13 28 21 8 0.0007

II1, IV 5 2 13 10 0.0203

Pathologic stage

L1I 16 27 31 15 >0.05

1, IV 2 3 3 3

Macrovascular invasion

No 16 22 24 12 >0.05

Yes 2 8 9 3
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Table 1. Cont.
Variable HCCW1 HCCwW2 HCCW3 HCCwW4 p-Value

Cirrhosis No 3 0 2 2 >0.05
Yes 15 30 32 16

Fatty liver No 3 0 2 3 >0.05
Yes 15 30 32 15

HBV No 7 18 13 10 >0.05
Yes 11 12 21 8

HCV No 12 17 21 10 >0.05
Yes 6 13 13 8

AFP Normal 5 8 7 3 >0.05
Abnormal 13 22 27 15

CTNNBI1 Wild-type 16 29 26 15 0.0586
Mutation 2 1 8 3

TERT Wild-type 11 11 20 9 >0.05
Mutation 7 19 14 9

TP53 Wild-type 12 21 32 13 0.0049
Mutation 6 9 2 5

Hoshida S3 18 11 25 5 0.0526

51,82 0 19 9 13 0.0039

Bidkhor iHCC1, 2 30 30 33 12 <0.0001

iHCC3 0 0 1 6

p-value by Fisher’s exact test.

We also compared our classification results with those of the Bidkhor (iHCC1-3) and
Hoshida (51-53) classification systems. HCCW3 was marginally significantly associated
with the Hoshida S3 class (p = 0.0526), whereas HCCW4 was significantly associated with
the Bidkhor iHCC3 class (p < 0.0001) and Hoshida S1 and S2 classes (p = 0.0039) (Table 1).

4. Discussion

Comprehensive integrated analysis of HCC is a powerful tool for understanding
molecular events relevant to HCC [10-13,24,25]. In this study, we used a functional gene
panel approach to explore correlations of molecular events with molecular changes and
survival and devised a new molecular panel including 254 and 18 Wnt and Hippo signaling
pathway-related genes, respectively, to classify Taiwanese HCC patients into four molecular
subgroups (HCCW1-4). Then, the prognostic value, transcriptome features, immune
infiltration, and clinical characteristics of the subgroups were explored.

The expression of PCDHB4 was highest for HCCW1. HCCW?2 was associated with
relatively low Edmondson-Steiner grade (I-1I) and a relatively low CTNNBI mutation
frequency rate. HCCW3 was associated with a good prognosis, the highest expression
of PCDHGB?7, relatively high CD8+ naive T-cell abundance, and relatively lower TP53
mutation rates. HCCW4 was associated with a poor prognosis, the highest PCDHB2 and
PCDHB6 expression levels, relatively high abundance of four immune cell populations (Thl,
NKT, and class-switched memory B-cells), relatively low enrichment of seven immune
cell populations (cDC, iDC, and CD4+ memory T-cells), and relatively high Edmondson-
Steiner grade (III-1V). Our method was also applied to TCGA HCC data; the results showed
that the subgroup with the poorest survival (HCCW4) was well correlated with Hoshida
classification groups S1 and S2, and Bidkhori metabolic classification group iHCC3 [24,25].
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PCDHs are a group of cell adhesion molecules in the cadherin superfamily that can
be divided into clustered (cPCDHs) and nonclustered molecules (ncPCDHs). PCDHs
can interact with intracellular molecules including components of the WAVE complex,
Wnt pathway, and apoptotic cascades. PCDHs are expressed prominently in the central
nervous system, where they play important neurobiological roles. They are also involved
in cancer development; loss or dysregulation of PCDHs is associated with multiple types
of cancer [37]. Most PCDH genes are considered to be tumor suppressors, and epigenetic
mechanisms govern their expression through their unique genomic organization that
allows for long-range epigenetic silencing [37,38]. Several studies have shown that PCDH
genes are also involved in liver cancer development, including PCDH10, PCDH17, PCDH19,
PCDH20, PCDHGC4, and PCDHGC5 [39—-43]. Alterations of these PCDHs can occur through
several oncogenic pathways; for example, PCDH20 functions as a tumor-suppressor gene
by antagonizing the Wnt/ 3-catenin signaling pathway in HCC [43]. In this study, PCDHB?2,
PCDHB4, and PCDHB6 were overexpressed in the HCCW4 subgroup, in association with
worse survival; this finding contradicts a tumor suppressor role. Our PCDHB6 results
were confirmed by the TCGA-LIHC data. Aberrant expression of these genes may have
resulted from context-dependent differences among PCDHs. We also found that PCDHGB7
upregulation was correlated with better HCC survival, which suggests a tumor suppressor
role for PCDHGBY7 in HCC. Moreover, we examined the PCDHB2, PCDHB4, PCDHB6, and
PCDHGB7 mRNA and protein expression level by TCGA and Human Protein Atlas [44]
databases, respectively. Among them, the RNA expression of PCDHB4 and PCDHGB7 were
correlated with the protein level in LIHC. However, PCDHB2 and PCDHB6 expression
were detected only at the mRNA level. PCDHB2 and PCDHB6 protein levels were not
observed in >50% of liver cancer specimens by immunohistochemistry.

Wnt signaling pathway components play important regulatory roles in immune sup-
pression and immune cell exclusion within the tumor microenvironment [45,46], and
include macrophages and DC, T, NK, and myeloid-derived suppressor cells [47]. In a
mouse model of HCC, 3-catenin pathway activation promotes immune escape and resis-
tance to anti-PD-1 treatment through Wnt/ 3-catenin signaling; this resulted in defective
recruitment of DCs and impaired T cell activity, in turn leading to an impaired anti-tumor
immune response [48]. The Wnt and Hippo pathways play important role in HCC develop-
ment [20,49-51]; our results confirm these findings and suggest that more aggressive and
specific treatment options are needed for the poor survival group.

In HCC, TP53 loss of function is associated with high levels of centrosome amplifi-
cation, aneuploidy cell proliferation, and chromosome instability [10,52], as well as poor
prognosis [53]. In the current study, the HCCW3 subclass had lower TP53 mutation frequen-
cies; patients in this group had a better prognosis than those in the other groups. Studies
assessing the prognostic impact of TP53 mutations on the outcomes of gastroesophageal
adenocarcinomas have demonstrated conflicting results [54-56]. From these results, we
suggest that TP53 mutations may not completely correlate with poor survival, and other
genetic alterations may also play a role for the survival of patient as our two patients with
TP53 mutations in the HCCW3 group with a good prognosis.

In this study, we obtained a list of Wnt-Hippo pathways-related genes which may
influence the infiltrations of immune cells between the good and poor prognosis groups. We
also found higher proportion of Th1, NKT, and class-switched memory B-cells in the poor
prognosis group. NKT cells contribute to fibrosis progression in nonalcoholic fatty liver
disease [57]. A total of 110 upregulated Wnt-Hippo signaling pathway-related genes were
identified in our poor prognosis group. Among these genes, the 10 most significant node
genes were WNT8B, SMARCA4, ARID1IA, SMARCB1, SMARCC2, SMARCD1, SMARCD2,
SMARCD3, FZD2, and WNT9A. These genes may play important regulatory roles in
immune cell migration, differentiation, and activation in HCC. Furthermore, we also
conducted RNA-Seq in 12 normal samples. The expression of 88 genes were significantly
higher in HCC tissues than that in adjacent nontumor tissues (82 genes in Wnt signaling
pathway and 6 genes in Hippo signaling pathway), while the expression of 40 genes were
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significantly lower in HCC tissues than that in adjacent nontumor tissues (37 genes in Wnt
signaling pathway and 3 genes in Hippo signaling pathway) (Supplementary Table S4).
These alterations may be used as markers for the diagnosis of HCC and need more cases to
confirm it.

5. Conclusions

In summary, comprehensive and integrated approaches, such as that developed in
this study, will lead to a better understanding of the molecular mechanisms of HCC, and
could in turn lead to the discovery of new therapeutic strategies. The results of this study
highlight the uniqueness of Taiwanese HCC patients; this uniqueness arises from complex
interactions among genetic, lifestyle, and environmental conditions that have arisen in the
past 40 years.
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**: p < 0.005, ***: p < 0.0005; Figure S2: Expression of Hippo signaling pathway-related genes in YAP1
overexpression and down-expression. *: p < 0.05, **: p < 0.005, ***: p < 0.0005.
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