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Simple Summary: In the Republic of Serbia, pig selection in recent decades has been based on
genetic improvement of growth and carcass quality traits. Genetic improvement of reproductive traits
of pigs was based on the so-called phenotypic selection. The introduction of modern information
systems and the availability larger dataset have opened the possibility to perform genetic estimation of
reproductive traits within the main breeding programme of the Republic of Serbia. Using the methods
of gene flow and connectedness evaluation, our study investigated the possibility of improving
the reliability of estimating the breeding value of reproductive traits in highly productive sows.
We believe that these methods could lead to a systematic improvement of the genetic value of
reproductive traits in sows. Thus far, none of the methods for estimating the degree of connectedness
between herds in pigs has been used in the preparation of the National Breeding Programme of the
Republic of Serbia.

Abstract: This study investigated the influence of the degree of connectedness on the reliability of
the estimated breeding values (EBVs). The focal trait in the study was the number of piglets born
alive (NBA) from sows of the highly prolific Large White and Landrace sows. An analysis included
total of 58,043 farrowing’s during the 2008–2020 period. BLUP procedure was used to estimate the
breeding values for NBA for the three herds separately and after merging all three herds into one
herd. The model for EBV estimation included the following fixed factors: parity, genotype, seasons,
litter sire, herds, sow age at farrowing, weaning-conception interval, length of previous lactation, and
the following random effects: common litter environment, permanent litter environment, and direct
additive genetic effect of animal. Heritability values for NBA ranged from 0.048 to 0.097, depending
on the data included in the analysis. The connectedness between herds was analysed using the
connectedness rating (CR) and the gene flow (GF) methods. CR among the observed herds ranged
from 0.245 to 0.994%, depending on the data included. The exchange of genetic material between all
three herds was determined using GF method. The high degree of connectedness determined by the
CR and GF method had a strong effect on EBV reliability. The average EBV reliability ranged from
0.520 to 0.867, depending on the data included. The increase in average reliability was observed in
both cases when the data were added, both in the analysis of average reliability for purebred animals
and when crossbreeds were added, where an increase in this value was also observed. The increase
in average EBV reliability is a consequence of the greater amount of information included in the
joint evaluation. In conclusion, we believe that our research will improve EBV reliability and help in
further selection work in the Republic of Serbia.
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1. Introduction

Litter size traits are relatively easy to measure and monitor under production condi-
tions and are, therefore, suitable for inclusion in selection programmes. Low heritability,
negative correlation between direct additive genetic and maternal influence, expression
only in females, and a relatively late age at which these traits are expressed in animals
are the main reasons for slow improvement of litter size traits in the past. On the other
hand, the presence of a relatively large direct additive genetic variance for litter size and
the availability of data on numerous relatives allow successful selection for litter size. An
important step in this direction is the use of the Linear Mixed Model (LMM) to estimate
breeding value in domestic animals. The LMM method is now a standard procedure in
pig production to evaluate the parameters of phenotypic and genotypic variability using
the Restricted Maximum Likelihood (REML) method and to EBV of animals based on Best
Linear Unbiased Prediction (BLUP) [1,2].

Numerous studies have confirmed that genetic progress in the overall reproductive
performance of sows can be most effectively achieved by selection for litter size [3–11].
Postnatal litter size can be described as the NBA, stillborn, total born and weaned piglets.
The number of weaned piglets is even more important economically than the size of the
litter at birth. However, due to the widespread technological procedure of standardisation
of litters of different farrowing at about the same time this trait is of secondary importance,
right after the NBA. A high genetic correlation between the total number of piglets born
and the NBA means that selecting for only one of the two traits is sufficient. Selection for
the total number of piglets born also increases the number of stillborn piglets. Therefore,
the NBA is a trait that is the most common choice for improving litter size in most breeding
and selection programmes [4,5,12].

The estimation of breeding values using BLUP method in countries with developed
and modern pig production is today a routine method for selecting the best individuals.
This method makes it possible to estimate the breeding value of animals and their ranking
within and between herds. The reliability of the breeding value estimation of animals
from different herds depends on the degree of connectedness between them. The higher
the connectedness, the more reliable the comparison of individuals from different herds
seems to be. Higher genetic connectedness of the herd results in both more reliable EBV
and reduced bias. If herds are insufficiently connected the comparison of breeding values
between animals from different herds may be biased. Therefore, measuring the across-herd
connectedness is important in order to achieve a more reliable genetic evaluation among
pig herds (between a large number of farms/herds) [13–19].

The effect of connectedness in terms of differences between EBVs between and within
herds depends on trait heritability [13]. A heritability for a back fat thickness ranges from
20% to 40%, while heritability for the NBA varies from 5% to 15%. These differences in the
heritability of certain traits can have an impact on the differentiation of breeding values
across herds. By examining the benefits of genetic connectedness between pig herds, the
results show that average inbreeding coefficients decreased while cumulative selection
responses increased [20]. The selection response is influenced by both genetic connectedness
and trait heritability. For traits with low heritability, higher genetic connectedness between
herds enables faster selection results. In many countries, commercial breeding programs
place great emphasis on improving low-hereditary traits in sows. As already mentioned,
the BLUP method enables the estimation of the breeding value of animals between and
within the herd, with a greater effect of selection being achieved if the herds are connected
at the genetic level.

The aim of measuring the connectedness between herds is to obtain an indication of ac-
curacy and to reduce bias when estimating breeding value in different herds. Several meth-
ods have been developed for this purpose. One of the most adequate methods of measuring
connectedness is the prediction error variance (PEV) of the difference in EBVs between
individuals in different herds [21]. As this method of measuring connectedness/association
requires complex computational operations to obtain variance in predicting differences
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in EBVs, the authors of [22] proposed three simpler methods: genetic drift variance, gene
flow (GF), and effect estimation variance. The latter has the highest correlations with PEV
differences in the estimation of breeding value. As the calculation of all differences in the
pair between animals, for each possible pair in the herd, is computationally demanding,
the connectedness rating (CR) method has been developed [13,22].

CR is expressed as a correlation between the assessments of herd effects, and it is
strongly associated with PEV [13,22]. In addition, CR is less dependent on other methods
for size and variation between herds. CR is a statistical method based on measuring the
accuracy of comparing EBVs, not genetic links. Unrelated animals may be connected if
tested on the same farm or within the same management group. A method such as “gene
flow”, which is based on the degree of genetic links between animals, and not on statistical
measurement of connectedness, may often give inferior results compared to CR [13,18].

The CR method has been routinely used in national genetic evaluation in Canada,
Australia, and many other countries. The advantages of the practical application of the
CR method are multiple. They are primarily reflected in the simplicity of calculation [16].
The CR method enables breeders to access a broader genetic base on which the selection
will be carried out, and thus, increase the intensity of selection. In the Republic of Serbia,
no method of assessing the connectedness between herds has been used so far in the
development of the national breeding program. Therefore, the across-herd connectedness
will be analysed in this paper due to its impact on the reliability of the estimate of breeding
value and consequently on the effect of selection. The objectives of this study are to
determine the degree of across-herd connectedness using the CR method and to determine
the reliability of breeding values estimated by BLUP method both within a single herd and
upon merging multiple herds into one.

According to a previous practice in the Republic of Serbia, the estimation of breeding
value of reproductive traits in sows has been conducted individually per herds. By intro-
ducing a unique information system, the possibility of simultaneous genetic evaluation of
larger number of herds has been opened. The results obtained in this research may indicate
certain steps to be taken in order to increase reliability of estimating breeding value in
highly prolific sows in the Republic of Serbia. The model applied and genetic parameters
estimated could be used during a practical estimation of breeding value in sows.

2. Materials and Methods
2.1. Phenotypes and Genotypes

Data on litter size and pedigree data were provided by the Department of Animal
Husbandry, Faculty of Agriculture, University of Novi Sad. The dataset included three
farms (A, B, and C) over a period of 14 years (2007–2020). The reproductive traits of the four
most common breeds on farms in the Republic of Serbia (Landrace-L, Large White-LW and
the crosses LxLW and LWxL) were analysed. The complete dataset (herd-ABC) contained
records of 58,043 farrowings (Table 1). The NBA was a focal of this study.

Table 1. Structure of data and pedigree files used in the analysis.

Herd
Name

Phenotypes Litter Genotype Pedigree File

N −
x-NBA SD L LW LXLW LWXL No. of

Animals
% Base

Animals N2

A 36,200 16.18 3.58 591 1111 21,948 12,550 15,478 12.96 10,192
B 7823 14.00 3.79 3510 4313 / / 4886 20.91 3160
C 14,020 16.88 3.84 988 853 5801 6378 10,878 18.46 5609

ABC 58,043 16.05 3.77 5098 6277 27,749 18,928 23,453 13.02 18,708

N—number of litters,
−
x-NBA—average number of piglets born alive, SD—standard deviation, No. of animals—

Number of animals in pedigree file, % Base animals—% base animals in the pedigree file, N2—number of
individual animals with production results in the pedigree file.
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The pedigree file required for this analysis was created for at least three generations of
ancestors. The complete pedigree file (Table 1) for all three farms analysed contained 23,453
individual animals of which 18,708 were individual animals with production data. The
percentage of animals without data for both parents (so-called base animals) for Herd-ABC
was 13.02% (Table 1). All sows used in the analysis are registered in the Herd Book managed
by the Department of Animal Science at the Faculty of Agriculture in Novi Sad. Farm B
has its own AI centre. Pedigree records were analysed using the CFC software package
v.1.0, Sargolzei et al., Nigata, Japan [23], while descriptive statistics was calculated using
software package SAS Inst. Inc., Cary, NC, USA [24].

2.2. Statistical Analyses
2.2.1. Applied Model

In order to determine the significance of the fixed effects on the dependent variable,
data processing was performed using the GLM procedure of the software package SAS Inst.,
Inc., Cary, NC, USA [24]. The systematic effects included in the model for the assessment
of genetic parameters were selected through a “step by step” procedure according to the
criterion of statistical significance of the expressed influences. Data were analysed using
the following linear mixed model:

[
yijklmnop

]
= Fi + Sj + Gk + Bl + Hm + b1i

(
xijklmnopq −

−
x
)
+ b2i

(
xijklmnopq −

−
x
)2

+
[

Zn + b3(zijklmnopq − z¯)
]

+lo + pijklmnopq + aijklmnopq + eijklmnopq

(1)

where yfijklmnopq—a manifestation of the observed trait of the individual animal in sows’
litters, Fi—fixed effect of parity, Sj—fixed effect of the season of successful mating, presented
as combination of the year and month, Gk—fixed effect of the female’s genotype Bl—fixed
effect of the litter sire, Hm—fixed effect of the herd (used when all three herds were analysed

together), b1i(xijklmnopq—
−
x) and b2i(xijklmnopq—

−
x)2—linear and square regression effect,

respectively, effect of the sow age at farrowing (x) nested within the parity, Zn—fixed
effect of the class of weaning to conception interval, b3

(
zijklmnopq − z¯

)
—linear effect of

the duration of previous lactation, lo—random effect of the common litter environment,
pijklmnopq—random effect of the permanent environment, aijklmnopq—direct additive genetic
effect of animal, i.e., breeding value, and eijklmnopq—residual.

The model used to estimate the components of variance and breeding value for the
NBA can be presented in matrix form as follows:

y = Xb + Zll + Zpp + Zaa + e (2)

where y—an observation vector for the analysed trait (NBA), b—the vector of unknown
parameters for the fixed part of the model (season—defined as the interaction of year and
month of successful mating, genotype, litter sire, parity, age at farrowing, duration of
previous lactation, and duration of weaning to conception interval); l, p, and a—vector of
unknown parameters for the effect of the common environment of the litter in which the
sows were born (reared), permanent influence of the environment in the litters of sows
and direct additive genetic effect of the animal or breeding value, e—vector of random
residues, and X, Zl, Zp, and Za—event matrices that connect phenotype records with
corresponding effects.

The assumptions are as follows:

E(y) = Xb, l ∼ N
(

0, Iσ2
l

)
, p ∼ N

(
0, Iσ2

p

)
, a ∼ N

(
0, A2

a

)
, e ∼ N

(
0, Iσ2

e

)
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where A is the relation matrix counter.

E


l
p
a
e

=


0
0
0
0

, var


l
p
a
e

=


Ilσ
2
l 0 0 0

0 IPσ
2
p 0 0

0 0 Aσ2
a 0

0 0 0 Ieσ
2
e


2.2.2. Gene Flow

The extent and direction of gene flow between herds was estimated using the gene
flow (GF) method [21]. The connectedness between herds by GF method is calculated
by multiplying the matrix XZTQ, where Q denotes the base animals with respect to their
herd and T is a lower triangular matrix that tracks the gene flow from one generation to
the next, where the linkage counter is the matrix A = T’WT and W the diagonal of the
matrix of Mendelian sampling variants. Gene flow between herds was calculated for a
period of 13 years. One dataset contained data for pure breeds and the other data on all
genotypes in the herds (L, LW, LxLW, and LWxL). Matrix formation and GF calculation
was done with the RStudio software package [25], using the following software packages:
pedigreemm [26], pedigree [27], and MatrixModels [28].

2.2.3. Connectedness Rating

Connectedness rating measure (CR) was used to assess the association between
herds [22]. The CR calculation program used for this method was downloaded from
the Canadian Pig Improvement Centre website [29]. CR is defined as the correlation
between the assessment of herd effects:

Cr =
Cov(ĥi, ĥj)√

Var(ĥi)Var(ĥj)

where variances Var(ĥi) and Var(ĥj) and covariances Cov(ĥi,ĥj) for the corresponding herd
effects were estimated by directly solving the left-hand side of the mixed model equation
(MME). The MMEs for Model 1 are as follows:

XTX XTZl XTZd XTZa
ZT

l X ZT
l Zl + Iσ2

eσ
−2
a ZT

pZl ZT
l Za

ZT
pX ZT

pZl ZT
pZp + Iσ2

eσ
−2
a ZT

pZa

ZT
a X ZT

a Zl ZT
a Zd ZT

a Za + A−1σ2
eσ

−2
a




b
l
p
a

 =


XTy
Z,

ly
Z,

py
Z,

ay


The number of farms, individuals, and fertility data used to calculate CR are shown

in Table 1. CR was calculated for different combinations of data. In the first case, the
CR between the herds was calculated using data on purebred individuals separately for
Landrace and Large White. The CR between the herds was then calculated using a common
set of Landrace and Large White data. Finally, CR was calculated for both pure breeds and
crossbreeds (LxLW, LWxL).

2.2.4. Reliability of Estimated Breeding Values

Reliability of EBV (r2) was calculated as follows:

r2 = 1 − (PEV/VarA)

where PEV is the prediction error variance and VarA is the additive genetic variance in
the analysed population [1]. PEV was calculated by solving the left side of the MME
equation directly.

To estimate breeding values and their reliability, the variance components were as-
sessed. The same model (1) was used for the estimation of variance components, breeding
values, and their reliability in order to allow a proper comparison of the breeding ad-
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vantages between the farms. The components of variance were first assessed for each
farm separately and then together for all three farms. VCE 6 [30] software was used to
evaluate the variance components. In this study, when determining variance components
and estimating breeding value by means of a BLUP animal model, the analysed traits have
been treated as the traits occurring repeatedly during a production lifespan repeatability
treatment. Reliability was calculated for all EBVs and average reliability was delivered for
each individual farm and for all three farms together. Estimation of breeding value was
performed using the PEST program [31].

3. Results

Variance components were estimated both for each individual herd and after merging
all three herds into one dataset. First, variance components were estimated for the datasets
containing the pure breeds Large White and Landrace (Table 2). All estimated variance
components, except for the effect of shared litter environment, were highest in herd C.
Direct additive genetic variance was lowest in herd A. Heritability estimates ranged from
0.048 in herd A to 0.095 in herd C. The random litter effect related to the litter in which the
animals were born/raised was the lowest of all random effects, ranging from 0.000 to 0.028.
A permanent effect of a breeding animal, caused by the successive litters of the animal and
presented in terms of phenotypic variance, explained 0.036 to 0.093 variability.

Table 2. Estimates of variance components and ratios with standard errors for NBA using
purebred data.

Herd
Estimates of Variance Components for Purebred Data

Var(a) Var(p) Var(l) Var(e) Var(ph)

A 0.508 + 0.455 0.951 + 0.543 0.000 + 0.000 9.053 + 0.415 10.513

B 0.602 + 0.191 0.428 + 0.195 0.332 + 0.124 10.318 + 0.211 11.681

C 1.615 + 0.590 1.248 + 0.752 0.000 + 0.000 14.058 + 0.648 16.922

ABC 0.825 + 0.196 1.171 + 0.214 0.189 + 0.117 10.324 + 0.174 12.511

h2 p2 l2 e2

A 0.048 + 0.042 0.090 + 0.051 0.000 + 0.000 0.861 + 0.033

B 0.051 + 0.016 0.036 + 0.016 0.028 + 0.010 0.883 + 0.014

C 0.095 + 0.034 0.073 + 0.044 0.000 + 0.000 0.830 + 0.035

ABC 0.065 + 0.015 0.093 + 0.017 0.015 + 0.009 0.825 + 0.012
Var(a)—direct additive genetic variance; Var(l)—variance of common litter environmental effect; Var(p)—
permanent environmental variance; Var(e)—residual error variance; Var(ph)—phenotypic variance; h2—direct
heritability; p2—proportion of permanent environmental effect; l2—proportion of common litter environmental
effect; e2—proportion of residual error variance.

Upon adding crossbreed data to the purebred dataset, the variance components for
each farm separately and upon merging data into one dataset have been estimated. Table 3
shows no variance components for herd B because this herd contained did not contain
crossbreed data. As in the analysis of pure breeds, the highest values of the estimated
variance components were obtained for farm C, except for a random effect of the litter
in which the animals were born. The direct additive genetic variances were quite similar
for all three analysed datasets, ranging from 0.912 to 0.790. A slight increase in additive
genetic variance was observed when all three herds were combined into one. The highest
value for heritability was observed in herd C. The permanent effect of breeding animals
produced by their successive litters ranged from 0.064 to 0.089. For the random effect of
the litter in which animals were born/bred, relatively low values between 0.009 and 0.017
were obtained.
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Table 3. Estimates of variance components and ratios with standard errors for NBA using purebred
and crossbreed data.

Herd.
Estimates of Variance Components for Purebred and Crossbreed Data

Var(a) Var(p) Var(l) Var(e) Var(ph)

A 0.912 + 0.123 0.601 + 0.090 0.090 + 0.050 7.787 + 0.070 9.393

B / / / / /

C 0.955 + 0.198 1.107 + 0.199 0.120 + 0.126 10.219 + 0.160 12.403

ABC 0.970 + 0.089 0.727 + 0.075 0.181 + 0.039 8.754 + 0.058 10.634

h2 p2 l2 e2

A 0.097 + 0.012 0.064 + 0.009 0.009 + 0.005 0.829 + 0.007

B / / / /

C 0.077 + 0.015 0.089 + 0.016 0.009 + 0.010 0.823 + 0.011

ABC 0.091 + 0.008 0.068 + 0.007 0.017 + 0.003 0.823 + 0.005
Var(a)—direct additive genetic variance; Var(l)—variance of common litter environmental effect; Var(p)—
permanent environmental variance; Var(e)—residual error variance; Var(ph)—phenotypic variance; h2—direct
heritability; p2—proportion of permanent environmental effect; l2—proportion of common litter environmental
effect; e2—proportion of residual error variance.

Measuring the degree of across-herd connectedness is very important for efficient
estimation of breeding value between herds. The connectedness between herds (A, B,
and C) for Landrace and Large White is shown in Table 4. The values of CR for both breeds
were well above the minimum value of 1.5% for the NBA, which is required for genetic
evaluation between herds [13].

Table 4. Connectedness rating (CR) between herds for Large White and Landrace.

Dataset Herd A B C

A 1.000000 0.887295 0.875809
Large White B 0.875334 1.000000 0.983121

C 0.864112 0.983272 1.000000

Landrace
A 1.000000 0.274184 0.251712
B 0.269284 1.000000 0.894574
C 0.245873 0.895578 1.000000

The level of connectedness between the observed herds was quite high for the Large
White breed, ranging from 0.864% to 0.983%. The highest CR value for the Large White
breed was 0.983% between herds B and C. The correlation between herds A and C was
slightly lower at 0.864 %. A high CR between B and C herds was also found for the
Landrace breed (0.895%), while the correlation between A and B flocks or A and C herds
the connectedness was lower, ranging from 0.245% to 0.274%.

The connectedness upon merging into one database for pure Landrace and Large
White as well as the pure breeds and their crossbreeds is shown in Table 5. CR for pure
breeds between all herds was high, ranging from 0.828% to 0.987%. The highest CR value
for the purebred dataset was recorded between herds B and C (0.987%). After adding F1
crosses to the pure breeds, there was an increase in CR values between A–B and A–C herds.
The connectedness between B and C herds had a slightly lower value of 0.980% compared
to the pure breed dataset of 0.987%.
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Table 5. Connectedness rating (CR) between herds for purebred and purebred and crossbred data.

Dataset Herd A B C

A 1.000000 0.869794 0.860125
Purebred B 0.838694 1.000000 0.987166

C 0.828842 0.986661 1.000000

A 1.000000 0.971128 0.994608
Purebred and

crossbred B 0.976018 1.000000 0.980043

C 0.994738 0.975265 1.000000
Purebred—Large White and Landrace; Purebred and crossbred—Large White, Landrace, Large White × Landrace,
Landrace × Large White.

Gene flow, i.e., the genetic contribution of animals from one herd to another, is shown
in Figures 1 and 2. This method expresses the genetic contribution of animals from a given
herd to another as the proportion of genes in a herd that originate from other herds. The
GF for the herds studied was determined for all three herds in both directions. Gene flow
for pure breeds was thoroughly monitored both before and after crossbreeds were included
in the dataset. The exchange of genetic material was determined between all three herds.
Only in the direction of herd C, from herd A, there was no exchange of genetic material,
when only pure breed was observed.
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After the addition of crossbreeds, the largest GF observed in the period from 2008 to
2020 was between B and C herds. The share of genes from herd B found in herd C was
0.74%. A large percentage of genes derived from farm B was also found on farm A (0.65%).
The lowest number of exchanged animals was between herds A and C (0.09 and 0.02%).
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The percentage of genes originating from other farms on farm B ranged from 0.02% to
0.10%. Herd C had the lowest genetic contribution to the other herds.

Increasing the accuracy of EBV for reproductive traits in sows is important because
traits from this group have low heritability and manifest relatively late in females. The
reliability of breeding value estimation for sow reproductive traits depends on the amount
of information used in the estimation, in addition to the indicated level of connectedness
between herds. The average reliability of the EBV when using purebred data is shown
in Table 6. Herd A had the lowest reliability of the EBVs with an average value of 0.520.
For the analysed herds, the reliability ranged from 0.519 to 0.867. Herd C had the highest
average reliability of the EBVs of 0.867.

Table 6. Average reliability of prediction in contemporary groups using purebred data.

Herd
Reliability

N −
x SD Min Max

A 1194 0.5198505 0.1327724 0.3415963 0.8014904
B 4887 0.7101317 0.0744571 0.3778204 0.9441333
C 3091 0.8672705 0.0213980 0.7678735 0.9430393

ABC 7481 0.7426409 0.0886325 0.5907634 0.9690157

N—number of sows,
−
x—mean, SD—standard deviation, Min—Minimum, Max—Maximum.

Comparison of the reliability of breeding value obtained by BLUP method for datasets
containing pure breeds and crossbreeds is shown in Table 7. After adding crossbreeds to
datasets with purebreds, the average reliability of EBVs in herds A and ABC increased.
Herd C had slightly lower values compared to the pure breed dataset. Generally, reliability
has increased with the addition of more information in estimating breeding value. The
average reliability ranged from 0.812–0.846. The reliability of EBV in Table 7 for herd B was
not shown because it contained no crossbreed data.

Table 7. Average reliability of prediction in contemporary groups using purebred and
crossbreed data.

Herd
Reliability

N −
x SD Min Max

A 14,376 0.8224012 0.0411112 0.7261741 0.9791662
B / / / / /
C 10,880 0.8122522 0.0419156 0.6077485 0.9695336

ABC 23,453 0.8460510 0.0414397 0.7423716 0.9885285

N—number of sows,
−
x—mean, SD—standard deviation, Min—Minimum, Max—Maximum.

4. Discussion

The NBA in litter is affected by a number of factors which must be included into
models in order to estimate variance genetic component as accurately as possible. Of all
the random effects identified, the additive genetic variance had the highest proportion of
total phenotypic variance. The values obtained for the additive genetic variances (0.508 to
0.970) indicate that it is possible to perform successful selection in the studied population
based on the NBA. A random effect of the litter in which the sows were born/raised and
a permanent environmental effect both contributed to a more accurate estimate of the
variance component. The proportion of common litter environment variance being 0.181 in
total phenotypic variance of NBA is deemed significant since only 10.634 of total variability
can be explained by random effects included into the model in case when all the three
farms were simultaneously analysed.

Heritability values for NBA ranged from 0.048 to 0.095 when purebred data were
used, and when crossbreeds were added, values ranged from 0.077 to 0.097. These values
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are similar to the results found in many research studies [5,32,33]. Heritability values
increased when all three farms were analysed simultaneously, which may be associated
with the presence of genetic links between farms and a greater amount of data included in
the analysis.

The presence of some degree of connectedness between herds is a basic requirement for
estimating the breeding value with satisfactory accuracy and reliably comparing animals
between herds [14,18]. The absence of genetic links between herds can have a negative
impact on EBV bias. To highlight the importance of the degree of connectedness, many
researchers have investigated the influence of genetic association on EBV [14–19,34]. How-
ever, there is little research indicating the importance of connectedness between herds
when estimating breeding values of litter size traits in sows with low heritability.

In the results presented, there is a high degree of connectedness between all the herds
included in the analysis. This high degree of connectedness is explained by the fact that
herd B has an AI centre which provides boar semen to the other two herds. There is also
trade in breeding animals between the herds. Such a high connectedness between herds
indicates that EBVs can be compared with high reliability between herds, which is also
shown in the following studies [13–15,19].

The first objective of this study was to determine the connectedness between herds
of highly prolific sows and to determine its significance. The CR method of determining
connectedness between herds was chosen because studies by many authors have shown that
indicating connectedness using this method is less computationally demanding [13,15,16].
Lower computational requirements when using the CR method facilitate its practical
application in genetic evaluation between herds. Based on the high degree of connectedness,
it is possible to recommend an estimation of the breeding value between the analysed herds.
Although the values of CR compared to Large White were lower between herds when only
the Landrace breed was analysed, they were much higher than the 1.5% recommended for
reproductive traits [13], indicating that genetic evaluation between herds can be performed
with high accuracy.

After merging data from pure breeds and crossbreeds into one dataset and analysing
the data, an increase in CR was observed between all analysed herds, especially after the
addition of crossbreeds, which was not the case in a previous study [18]. This shows
that it is important to include more data in the determination of the association and the
subsequent estimation of breeding values, which is in line with the results presented in [15].
Higher values of CR, after the addition of crossbreeds, in addition to a larger number of
data, are also associated with the fact that boars from the AI centre of one genotype were
used to inseminate seedlings of another. The mating of animals of different genotypes
resulted in an increase in CR. The high connectedness in this study after the addition of
crossbreeds indicates that the bias in EBV can be reduced [13].

In order to determine the direction of gene flow between herds the GF method was
used [18,21,35]. This method provides additional information on inter-herd connectedness.
GF monitors gene transfer from one herd to another by forming groups of animals based
on the origin of the herd. These groups should not be confused with genetic groups that
are formed in order to represent different genetic groups in the population [21].

This method is suitable when the only purpose is to determine whether there was
gene flow between herds. When data from three farms were included in the analysis of
genetic variability in a dataset, the model determinant weighed zero and the programme
found the dependence of the data in the inverse matrix, so that the parameters could not be
calculated because there were no genetic links between the herds [32]. In such cases, GF is
suitable for a quick and easy calculation and for determining the existence of genetic links
between the herds.

The highest GF in the herds studied was from herd B towards herds A and C in
both sets of data, which is consistent with the results obtained using the CR method.
Additionally, the results of the CR method showed the greatest connectedness between
these herds. This is explained by the fact that herd B has an already-mentioned AI centre



Animals 2022, 12, 2688 11 of 14

and distributes boar semen to the other herds. The only case where there was no exchange
of genetic material was from herd C to herd A for a pure breed dataset. In the opposite
direction, a small percentage of genes were found in herd A. Among these herds, there was
no exchange of genes for the reason that they are commercial-type farms that primarily
produce high-yielding gilts of F1 generation and piglets for fattening. When crossbreeds
were added to the dataset for analysis, there was a flow of genes from herd C towards
herd A.

When selecting animals raised in different herds, the accuracy of the estimation of
breeding value can be strongly influenced by the connectedness between the herds. If
several herds are genetically evaluated together, the estimated EBVs may be overestimated.
If the herds are well connected, the reliability of the EBVs can be expected to be higher in
a joint evaluation, as information from one herd contributes to the other [18,19,36]. The
high level of connectedness determined by the CR and GF method strongly influenced
the average reliability of EBV, which is consistent with the results presented in previous
studies [13,14,18,35].

Increasing the reliability of EBV is very important for the litter traits, because they
manifest only in female individuals and have low heritability. Publications [13,15,20] state
that heritability and across-herd connectedness can influence the selection results. Low
heritability of reproductive traits in sows and high across-herd connectedness had an
impact on selection results. It is assumed that the selection response, i.e., the reliability of
EBV, was influenced by the low heritability in this study, in addition to high connectedness.
Since low-hereditary traits were analysed in this study and the effect of selection depends
on its heritability coefficient, the aim is to increase the effect of selection along with the
increased accuracy.

The results of this study show that the estimation of breeding values between herds
that are genetically connected can strongly influence the genetic progress of the population
under selection. If genetic association is not considered when estimating breeding values of
animals from different herds, it is assumed that the average genetic values of the analysed
traits of all the herds are the same. This assumption may have a negative impact on the
estimation of breeding values [15].

In addition to across-herd connectedness, an important factor influencing the reliability
of the EBVs was the increased number of individuals in the pedigree and phenotype records.
Upon merging the herds into a single dataset, there occurred an increase in the average EBV
reliability. In both cases, when the average reliability for the pure breed was analysed and
after the addition of crossbreeds, this value increased. The increase in the average reliability
of EBVs is probably a consequence of the increased volume of information included in the
joint evaluation, as reported in the research of many authors [18,36–38]. The reliability of
the EBVs for the NBA was much higher than in [39]. These authors reported much lower
values for the reliability of EBVs in highly prolific sows, i.e., 0.33 for the NBA compared to
0.74 recorded in our study. Even though the data on pedigree and own phenotype were
used in both studies, the sample was much smaller in the estimation of BV in the mentioned
study [39], which can be related to the amount of information in the pedigree file and the
smaller volume of data on phenotype.

Since the increased amount of data in the breeding value estimation has a positive
effect on the reliability of EBV, further research of this type should be conducted on a larger
number of farms. The inclusion of a larger number of farms would increase the population
on which the selection is carried out. In this way, the response of the selection would be
directly influenced, i.e., the NBA would increase. The inclusion of more farms would also
allow smaller farms to compare their animals with larger farms [40,41]. The CR method
allows breeders to access a broader genetic base, on which selection is carried out, thus
increasing the intensity of selection.



Animals 2022, 12, 2688 12 of 14

5. Conclusions

The heritability values (0.048 to 0.097) obtained for the NBA indicate that successful
selection is possible in the investigated pig population of the Republic of Serbia. The
sufficient connectedness level and the direct genetic links allow the estimation of the
breeding value with high reliability. High values of average reliability from 0.520 to 0.867
in this study confirm this. Reliability increased with the addition of pedigree information
and phenotype data. This shows that an increase in EBV reliability is possible by including
additional data. High values for EBV reliability are associated with the large amount of data
and good connectedness between farms. High reliability has an important role, especially
in the selection for traits with low heritability. The high values of CR between the analysed
herds in this study suggest that the use of artificial insemination in the selected population
may indirectly increase EBV reliability. In addition to the increased reliability of EBVs,
high CR values indirectly affect the positive selection response. This is important because
the effects of selection are directly related to the accuracy of breeding value estimation.
It should be noted out that besides the lack of systematic selection an average NBA in
the analysed population is not low. For this reason, we should be cautious when making
recommendations regarding future pig breeding decisions. We believe that our study can
contribute to a better understanding of breeding value estimates in highly productive sows
in the Republic of Serbia. Furthermore, the results obtained could have an impact on the
future direction of pig breeding.
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