Lymph node segmentation by dynamic programming and active contours
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Purpose: Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a
reflection of treatment response. Automatic lymph node segmentation is challenging, as the bound-
ary can be unclear and the surrounding structures complex. This work communicates a new three-
dimensional algorithm for the segmentation of enlarged lymph nodes.

Methods: The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node.
Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the
lymph node form a triangle mesh. The intersection points are determined by dynamic programming.
The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiolo-
gists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used
to evaluate the algorithm’s performance.

Results: The mean Dice coefficient between computer and the majority vote results was 83.2%. The
mean Dice coefficients between the three radiologists’ manual segmentations were 84.6%, 86.2%,
and 88.3%.

Conclusions: The performance of this segmentation algorithm suggests its potential clinical value
for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.12844]
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1. INTRODUCTION

Enlarged lymph nodes are important indicators of cancer
staging, and their size changes contribute to therapy response
assessment. The traditional unidimensional and bidimen-
sional metrics are based on the assumption that tumors
change uniformly in all directions, which is not always the
case. Volume as a biomarker has been intensively studied and
is believed to be a better biomarker than a unidimensional or
bidimensional metric." Computed tomography (CT) provides
high-resolution images widely used in detecting and follow-
ing up enlarged lymph nodes. However, obtaining volumes of
lymph nodes by manually tracing the boundaries can be time-
consuming and subjective. Therefore, computer algorithms
are needed to provide accurate, reproducible and objective
volume measurements of lymph nodes.

Although it is an important task and has attracted much
attention, automated lymph node segmentation remains a
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difficult task because the boundary is often not clear, the con-
trast is weak, and surrounding structures can be of high den-
sity such as vessels, low density such as fat, or similar density
such as soft tissue.

Honea et al. proposed an active surface model that
inflated a balloon from a point inside the lymph node of
interest.” The balloon technique had difficulty preventing the
balloon from passing weak boundaries. The algorithm was
evaluated on phantom data but not a real patient dataset.

Yan et al. proposed a two-dimensional (2D) marker-con-
trolled watershed method and propagated the segmentation
result to neighboring slices.” The 2D segmentation and prop-
agation technique did not take into account the three-dimen-
sional (3D) compact shape information.

Dornheim et al. proposed a 3D Stable Mass-Spring Model
to fit several models of different sizes to the data and select the
one that fit best.* The number of masses and springs was often
small, resulting in boundaries jointed by long line segments.
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Beichel and Wang proposed an approach based on optimal
surface finding (OSF).” OSF converted the segmentation
problem into a graph optimization problem. The same
method was used to interactively edit the results.

Some work focuses on automatic detection and segmenta-
tion of lymph nodes. Schwartz et al. proposed a method
based on Hessian blob detection and marker-controlled water-
shed segmentation.® Barbu et al. proposed a marginal space
learning-based method for detection and Markov random
field-based method for segmentation.” Feulner et al. extended
Barbu et al. by employing a cascade of binary classifiers.®
Haar features and gradient-aligned features were used to
detect lymph node centers, graph cut were used to segment
the candidates, and a classification stage followed to deter-
mine whether the segmentation was a lymph node.

Wang et al. proposed a spiral scanning technique for lung
nodule segmentation that transformed a 3D image into a 2D
image, performed segmentation on the 2D image and con-
verted the result back to 3D.” The intersection points of the
scanning rays and the boundary formed a cloud of points that
lack structure of a closed surface mesh.

Dynamic programming is a powerful tool to minimize cost
that had been applied to many image segmentation prob-
lems.'” It has the advantage of finding a connected path
despite lack of image feature in some region. Lalande et al.
applied it to detect cardiac boundaries in MRI by maximizing
the membership to the edge fuzzy set.'’ Liu et al. employed it
to segment breast mass in MRI images with sophisticated
edge detector.'” Wang et al. applied it to segment pulmonary
nodules in CT with intrinsic cost that favors smooth path and
external cost that favors strong edges.” When a circular object
went through polar transformation, the start and end of rays
were connected, and the problem of finding a closed curve in
the original image transformed to finding a circular shortest
path (CSP) in the transformed image.'>'"* Timp and Karsse-
meijer applied CSP to segment lesions in mammography.'*
However, our path is not circular. Cost function was often
designed so that the gradient along it was maximized and the
discontinuity was minimized. We would like the region close
to the boundary in lymph node to be homogeneous, so we
designed the cost function to favor a path having the prop-
erty.

In this study, we propose a two-stage segmentation
method that takes into account the prior knowledge that
lymph nodes are compact in shape and homogeneous in den-
sity. The method consists of an initial segmentation by sphere
subdivision and dynamic programming and a refinement by
excluding nonlesion region, morphological smoothing, and
active contour-based segmentation. The algorithm is
described in Section II, the patient data and the performance
of the algorithm on the dataset is presented in Section III, and
the discussions and conclusions follow in Sections IV and V.

2. METHODS

A user initializes the segmentation by drawing an elliptical
region of interest (ROI) that encompasses the lymph node on
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one axial slice. The 2D ROI is extended to a cylindrical
volume of interest (VOI). Let the plane where the elliptical
ROI was drawn be the XY plane, and the lengths of major
and minor axis be L and S, the VOI extended 2L in the Z axis
in both directions. Rays are cast from the center of the ROI,
along which sample points are taken. Assuming the lesion
was not 2L away from the center, 2L sample points were
taken, with spacing between sample points the same as the
spacing in XY plane. The intersections of the rays and the
boundary of the lymph node form a triangle mesh. The rays
are arranged in specific order to form a 2D image, one col-
umn for each ray; however, unlike other 2D images, each col-
umn is aware of the adjacent rays in 3D. A cost value is
assigned to each point of the 2D image. The intersection
points are determined by dynamic programming, which mini-
mizes the cost function. The triangle mesh initializes an
active contour which evolves to low-energy boundary.

2.A. Transformation of a 3D volume to a 2D image

The surface of a solid object can be approximated by a tri-
angle mesh. If all the surfaces are visible from a single point
within the object, the triangle mesh can be determined by the
distance of each vertex to the center point. By shrinking the
distances to unit length, the triangle mesh can be deformed to
a polyhedron that can be inscribed in a unit sphere. Figure 1
shows the approximation of a sphere by subdividing an octa-
hedron.

Starting from an octahedron (or any regular bipyramid),
the subdivision technique divides each triangle face into
smaller ones. An octahedron has four points on the equator
and one point on each pole. An N-level subdivision divides
each edge on the equator into N edges and adds points along
N-1 latitudes. Vertices on the same level have the same lati-
tude, which makes it easier to determine if a voxel is inside a
mesh or not. Since the southern hemisphere is symmetrical to
the northern hemisphere, only the northern hemisphere is
described here. Let the north pole be level 0 and the equator
be level N. A level n vertex V, the center of sphere O, and the
north pole P form an angle (elevation) called 6, = ZVOP.
There are four points (in the case of an octahedron) on the
first level, forming four triangles with the north pole, and 4n
points on the nth level, forming 4n triangles with points on
level n-1. There are 4N? triangle faces on the northern hemi-
sphere, covering an area of 2nR2, where R is the radius of the
sphere. To cover the sphere with triangles of similar area,

each triangle covers ’;’;, and the elevation of each level can
be derived as
n2
0, = arccos| 1 - (1)

The vertices of the triangle mesh can be arranged from
north pole to south pole, from west to east. Figure 2 shows
the arrangement of part of the northern hemisphere for
Fig. 1(c) by cutting along one international dateline, where
the zero vertex is the north pole, and vertices 0, 4, 12, and 24
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FiG. 1. Approximate a sphere by a polyhedron. (a) a regular octahedron. (b) Subdivide each edge in (a) into two edges (n = 2). (c) Subdivide each edge in (a)
into four edges (n = 4). (d)(e)(f) the rays from the center of the polyhedron and the vertex on the sphere. [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 2. The order of vertices on a section of the northern hemisphere of the
Fig 1(c). [Color figure can be viewed at wileyonlinelibrary.com]

are along the international dateline. We can define the prede-
cessors of a vertex as the vertices that connect with the point
at an edge and have smaller indices. The predecessor with the
largest index is called the vertex’s immediate predecessor.
For example, the predecessors of vertex 14 are vertex 5, 6,
and 13, and vertex 13 is the immediate predecessor. It is easy
to see that vertex n-1 is the immediate predecessor of vertex
n for n>=1. The rays are ordered by the vertices they pass
through.

Points along each ray are sampled and the intensities are
interpolated. The length of the ray is twice the semimajor axis
of the ROI. The rays are then stacked in the order from north
pole to south pole, east to west to form a 2D image, as shown
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in Fig. 3, where pixels outside of the cylindrical VOI are set
to 0.

Throughout the study, N was a fixed value of 13, resulting
in 698 rays for each lesion.

In Fig. 3(b), let the coordinate of the bottom left corner be
(0,0); assume that the x-coordinate increases from left to
right, and y increases from bottom to top. The left-most col-
umn represents the sample points along the ray from the cen-
ter to the north pole. The right-most column represents the
sample points along the ray from the center to the south pole.

2.B. Optimal path finding by dynamic programming
in 2D

The tumor boundary on the resampled 2D image can be
determined by dynamic programming. Observing that tumor
boundary points often have large gradients, and that densities
along a ray from the center of the ROI to a boundary point
are homogeneous, we try to locate the boundary points by
minimizing the cost of a path from the north pole to the south
pole. There are three terms in the cost function: gradient cost,
homogeneity cost, and discontinuity cost.

2.B.1. Gradient cost

The gradient cost C, can be defined as the following:

Cg(X, Y) =1- gclamp(X7 y)/max (gc]amp(xa Y)) @)

| gradient(x, y)ifgradient(x,y) <50
where gejump (X, ) = { 50ifgradient(x,y) > 50

The points with strong gradient have a gradient cost close
to 0, and the points with weak gradient have a gradient cost
close to 1. The idea of clamping the gradient is that a point
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FiG. 3. Converting 3D volume to 2D image. (a) A manually selected ROI. (b) Resample the volume to form a 2D image using the proposed method (N = 13).
[Color figure can be viewed at wileyonlinelibrary.com]
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with gradient 50 is as good an edge point as a point with a
higher gradient value.

2.B.2. Homogeneity cost

The homogeneity cost function at a point (x,y) is defined
as the weighted standard deviation along the vertical line (col-
umn) X from the bottom point (x,0) to (X,y), and the points
closer to (x,y) are weighted more, particularly, the weight of
(x,0) is 1, and the weight of (x,n) is y" where y > 1. The
weighting makes intensity variation at a greater distance from
the boundary less significant, which may assist in the seg-
mentation of lymph nodes with central necrosis. The
weighted standard deviation of intensities Xg, Xp,. . .Xy With
weight wg, wy,...wy can be defined as:

o=/ il — )’ ®

where,

N
N
pi=wi/ Y,  wiand p =Y px;
i=0

A 7 x 7 window is taken from the center of the ROI, and
the standard deviation of the pixel density inside the window
Gy is used to estimate the standard deviation of the lymph
node of interest. The standard deviations of the closest n
(n = 5 in our experiment) points to the center of the ROI are
set to no less than c,. The homogeneity cost is then defined
as:

if y<5
otherwise

Culx,y) = {max(l’ o=, ¥)/ %) )

o(x,y)/o0

2.B.3. Discontinuity cost

Observing that boundary points on neighboring rays have
similar lengths from the center of the ROI, the difference in
y values for two neighboring rays is penalized. The larger the
difference, the higher the penalty. A quadratic function of the
deviation is used. Considering that a larger lymph node
allows for larger deviations, the discontinuity cost is defined
as:

(y - ypred)2 5)

Ca (yv ypred) = y
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The cost for the first column is the weighted sum of the
gradient cost and homogeneity cost, namely,

Caccum<07 Y) = Cg(07 Y) + OCCh(O, y) (6)

The predecessor of (0,y) is set to (0,y) itself.
The accumulated cost of point (x,y) can be calculated
recursively as:

Caccum (X7Y) = Cg (X7Y) + O‘Ch (va)

+

1
Z min Caccum (predv y + t)

Npred —S<t<s

pred +BCaly,y+1)
)

where ray pred is a predecessor of ray X, and np.q is the num-
ber of predecessors of ray x. The minimum is taken from
points that are from (pred, y-s) to (pred, y+s). The formula
favors points on a boundary having similar distances to the
center as their predecessors. The parent of (x,y) is set to be
the point along its immediate predecessor ray such that the
curly bracket part in Eq. (7) takes minimum value.

The accumulation matrix can be solved row by row from
the north pole ray (leftmost column) to the south pole ray
(rightmost column) quickly by dynamic programming. The
minimum value along the south pole ray corresponds to the
minimum cost from north pole to south pole. As the parent
value of each point (x,y) recorded the position of the point to
its left that leads to the minimum cost at (x,y), from right to
left, for each column, the point on the minimum cost path is
identified as seen in Fig. 4.

When calculating the accumulation matrix for one col-
umn, the dynamic programming only uses information from
its predecessors.

The 2D segmentation result can easily be converted back
to 3D. Each triangle on the mesh and the center of the ROI
form a tetrahedron. For a give voxel, its elevation determines
its level, and its longitude determines which tetrahedron the
ray passes through. The length of the line segment from the
center to the voxel is used to ascertain whether it is inside or
outside the triangle mesh.

2.C. Refinement by active contours

The tumor boundary identified by converting minimum
cost path in 2D to surface in 3D works well in general, but
may include regions whose density was beyond typical
lymph node density range in some cases. Regions with



2058 Tan et al.: Lymph node segmentation on CT

2058

FiG. 4. Boundary points calculated by dynamic programming overlaid on the image. [Color figure can be viewed at wileyonlinelibrary.com]

density lower than O HU and higher than 160 HU are
excluded and the result is smoothed with morphological oper-
ations. Then, geometric active contours are applied to evolve
a contour to high gradient boundary while keeping the con-
tour smooth.'?

A modified geometric active contour method was used
to refine the contour.'® As the initial contour was close
to the true boundary, the inflation or deflation term was
not used. To mitigate the problem that the contour may
pass through weak boundary, we strengthened the poten-
tial well by increasing its coefficient term o in the fol-
lowing equation. A volume-preserving mean curvature
flow was employed to smooth the contour with coeffi-
cient f5.

¢, = gr|Vo| +aVeg -V + (K — Knean)| V| 6]

Where ¢(x) is a level set function that has negative values
at points inside the boundary, positive values at points outside
the boundary, and zero on the boundary. x is the curvature

defined as k = div (%) , and K,,.., 1s the average of the cur-

vature along the contour.
o and B were a fixed value of 10 throughout the study.
When the evolution stopped, the lesion was taken as the
region with ¢ (x,y,z) <0.
Figure 5 showed the final segmentation result.

3. MATERIALS AND RESULTS
3.A. Materials

A total of 48 colorectal cancer patients were scanned on
CT with contrast: 14 patients were scanned with GE scanners,
14 were scanned with Siemens scanners, and 20 were
scanned with Phillips scanners. The number of scans with
interval between adjacent slices of 1.5, 2, 2.5, 3, 3.2, and
5 mm was 5, 7, 10, 16, 7, and 3, respectively. The pixel spac-
ing ranged from 0.59 to 0.98 mm, with an average value of
0.736 mm.

A total of 54 lymph nodes were identified to evaluate
the performance of the algorithm. Three radiologists inde-
pendently delineated the contours of the nodes manually.
The region on which 2 of 3 radiologists agreed was con-
sidered the gold standard. The average size of the lymph
nodes was 28.0 mm in longest diameter with a standard
deviation of 13.2 mm. The average sizes for mediastinum,
abdomen, and pelvis nodes were 29.4, 25.6, and
27.3 mm, respectively.

Medical Physics, 45 (5), May 2018

3.B. Performance evaluation

The performance of a segmentation algorithm is often
evaluated by comparing the segmentation results of the algo-
rithm with some gold standard, which can be the results gen-
erated by human observers.”'®!” The comparison can either
be the volumetric matching based, such as Dice coefficient,"”
or contour distance-based, such as the maximum distance
between computer result and gold standard, aka, Hausdorff
distance, and the average distance between them.

Dice coefficient measures the similarity of two samples.'®
For a lymph node, given the set of voxels R inside the com-
puter-generated contour and the voxels Rg inside the gold
standard contour, the Dice coefficient is defined as:

2|Rc N R¢|
|Rc|+|Rq|
The overlap ratio (also known as Jaccard index" or inter-

section over union) is also used in evaluating the similarity of
two sets, which is defined as:

©

Dice coefficient =

|[Rc N R

I am— (10)
|RC UR(;|

overlap ratio =

Dice coefficient and overlap ratio are monotonically
related through the following formula:
dice coefficient

l tio = 11
overip rano =5 dice coefficient (D

3.C. Results

The statistics on the performance of the algorithm is
shown in Table I as well as inter-reader variabilities. The
average Dice coefficient (overlap ratio) of the algorithm on
the 54 lymph nodes was 83.2% (71.9%) with a standard devi-
ation of 7.8% (10.6%). The range of Dice coefficients (over-
lap ratios) is from 54.3% to 93.8% (37.3% to 88.4%), and
first, second (median), and third quartiles of Dice coefficients
(overlap ratios) were 80.5%, 83.9%, and 88.7% (67.2%,
72.3%, and 79.3%). In a study on general lesion segmenta-
tion evaluation, radiologists agreed that an overlap ratio of
70% and above was considered good, 40%—60% acceptable,
and below 40% poor.° According to these criteria, all of the
segmentations could be considered good or acceptable, and
53 of 54 segmentations could be considered acceptable, and
32 of them could be considered good. Figure 6 showed some
typical segmentation results. Figures 6(a) and 6(c) showed
computer results at first and second quartiles (Dice
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FiG. 5. Computer segmentation result of the lesion in Fig 3. [Color figure can be viewed at wileyonlinelibrary.com]

TasLE 1. Statistics of the performance of the algorithm and inter-reader variabilities.

Computer vs gold standard R1vsR2 R1 vsR3 R2 vsR3
Dice coefficient £+ SD (%) 832+ 178 84.6 £ 9.8 88.3 £ 7.1 862 £ 75
Hausdorff distance + SD (mm) 8.9 + 8.0 6.8 + 4.0 54430 59435
Average distance = SD (mm) 14 + 1.0 1.2 £ 0.7 0.9 £ 0.5 1.0 £ 0.5

coefficients 0.81 and 0.84). Figure 6(e) showed the result
with Dice coefficient 0.94.

Large Hausdorff distance was observed between computer
and gold standard and among readers. The average maximum
distance between computer contour and gold standard

(a)

boundary is 8.9 mm with a standard deviation of 8.0 mm.
Although large interobserver Hausdorff distance was also
observed, for example, average of 6.8 mm between R1 and
R2, the computer results deviated from gold standard more.
One explanation could be that the algorithm can make

(b)

FiG. 6. Some segmentation results. (a), (c), and (e) were the computer results in axial, coronal, and sagittal view, and (b), (d), and (f) were the majority vote of
the three human observers. The Dice coefficient of (a) and (b) was at the first quartile, 0.81; the Dice coefficient of (c) and (d) was at the second quartile (me-
dian), 0.84; the Dice coefficient of (e) and (f) was 0.93. [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 7. Box plots of Dice coefficients (a), Hausdorff distances (b), and aver-
age distances (c) between computer and the majority vote (gold standard) and
among radiologists.
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TaBLE II. The performance of the proposed method in comparison with four
variants.

Dice Hausdorff distance Average distance
(%) (mm) (mm)
DP + MS + AC 83.2 8.9 14
(proposed)
DP 79.0 8.9 1.6
DP + MS 79.7 8.9 1.5
Simple DP 674 144 3.0
Simple 715 11.7 2.0
DP + MS + AC

Bold values were indicates the best results achieved in the experiment.

mistakes that a human observer does not, for example, omit
part of the lesion for some elongated or irregular lesions.

The average distance between computer and gold standard
and among readers was much smaller than Hausdorff dis-
tance. The average distance of the computer results and gold
standard showed an average of 1.4 mm and standard devia-
tion of 1.0 mm, close to the average of 1.2 mm between
reader 1 and reader 2.

The distribution of the comparison metrics was shown in
box plots in Fig. 7. Reader 1 and reader 2 had the worst
agreement in terms of Dice coefficient, and the first to third
quartile range fully encompassed the same range for the
agreement between computer result and the gold standard
[Fig. 7(a)]. Figures 7(b) and 7(c) showed that there were
more extreme cases that the computer results deviated from
the gold standard, and agreement between the computer
result and the gold standard, in terms of distance, was slightly
worse than the agreement among readers.

4. DISCUSSION

The proposed method was comprised of two steps, an ini-
tial segmentation by dynamic programming (DP) and a
refinement step by excluding nonlesion regions and morpho-
logical smoothing (MS) and active contours (AC). The initial
segmentation step was crucial as it would be hard to refine a
contour that was far off from the expected boundary.

A few experiments were conducted to evaluate the contri-
bution of each component in the proposed method. Four vari-
ants of the proposed method, namely, a method that only
used dynamic programming (DP), a method with DP and
MS, a method with DP with only gradient and discontinuity
cost (simple DP), and simple DP with MS and AC, were
tested with the same lesions. The results were compared with
the proposed method in Table II.

Unsurprisingly, the proposed method (DP + MS + AC)
showed the best results in all variants. DP alone yielded
results with reasonable good Dice coefficient (average
79.0%). With MS, the average Dice coefficient increased to
79.7%, and average distance to gold standard also improved
slightly. And with AC, the average Dice coefficient increased
to 83.2%, and average distance to gold standard further
reduced.
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FiG. 8. The three cases with worst Dice coefficients. (a), (c), and (e) showed computer segmentation results in axial, coronal, and sagittal view, and (b), (d), and
(f) showed the majority vote of the three human observers; the Dice coefficients of which were 0.54, 0.62, and 0.67, respectively. [Color figure can be viewed at

wileyonlinelibrary.com]

A good cost function was crucial to the performance of
dynamic programming. The proposed method took into con-
sideration high gradient at boundary and homogeneous inside
the lesion. A DP with simple gradient cost performs poorer
in terms of Dice coefficient and distance, and the refinement
step could improve but the end result was worse than the pro-
posed method.

DP has the strength in segmenting some lesions with weak
boundaries. Lymph nodes can be found in many places,
sometimes attached to anatomical structures of similar inten-
sity, and the lack of edge response and the absence of contrast
impose difficulty to edge- or region-based segmentation
methods. DP guarantees to find a continuous path with mini-
mum cost. The cost function was designed that a path passing
through the clear boundary points and bridging the gap (weak
boundary) smoothly has a small cost.

To evaluate the performance of segmentation algorithm, it
is often to compare the computer-generated results with
human readers. However, it is hard and time-consuming for
human observers to draw the target boundaries. Sometimes,
the computer results were compared with the results of one
experienced human reader,” sometimes more than one human
readers participated in the effort,'”*! and the majority vote of
the human observers, that is, the regions that the majority of
the observers agreed upon, were considered the gold stan-
dard. It is known that inter-reader variability can be large in
medical imaging;*> we used the majority vote as the gold
standard which mitigated the inter-reader variability.

Medical Physics, 45 (5), May 2018

It is difficult to compare different algorithms directly, as
different datasets and different gold standards were employed.
Yan et al. segmented 29 lymphomas and achieved an overlap
ratio of 83.2%.” Beichel and Wang segmented 111 lymph
nodes, after adjusting the result of 40 cases, achieved average
Dice coefficients of 84.7%, 83.6%, and 80.9%, dividing the
dataset into three groups.’ Our algorithm achieved an average
Dice coefficient of 83.2%, which was close to inter-reader
variability, and similar to Beichel and Wang’s results.

We assumed that the lymph nodes were compact; how-
ever, some lymph nodes are less compact than others. For
example, elongated lymph nodes can extend much longer
in Z axis than the unidimensional measure in XY plane.
This posed difficulty as a compact shape could result in a
smaller cost than the actual boundary. Figure 8(c) showed
an elongated lesion that the computer missed a portion of
the lesion.

Although generally lymph nodes showed homogeneous
density distributions, some lymph nodes can have irregular
enhancement patterns, and some may have necrosis in the
center. The algorithm could perform poorer in these situa-
tions. Figure 8(a) and 8(e) showed lesions with necrosis and
peripheral enhancement.

5. CONCLUSIONS

Analysis of enlarged lymph nodes is crucial in staging
cancer and assessing treatment response. Automatic
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quantification of lymph nodes is a difficult task as the sur-
roundings may be complex. We proposed a two-stage
method. The volume of interest was converted to 2D by ray
casting. A dynamic programming procedure was used to find
an optimal triangle mesh that minimized the cost function,
which assumed low value when the edge was strong, the inte-
rior was homogeneous, and the shape was compact. The
mesh surface was then refined by active contours. This
method would be valuable for lesion contour delineation and
volumetric quantification in clinical applications such as
treatment planning and therapy response assessment.
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