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Summary

The immune checkpoint inhibitor (ICI) pembrolizumab is FDA-approved for treatment of solid 

tumors with high tumor mutational burden (TMB-high,≥10 variants/Mb). However, the extent to 

which TMB-high generalizes as an accurate biomarker in diverse patient populations is largely 

unknown. Using two clinical cohorts, we investigated the interplay between genetic ancestry, 

TMB, and tumor-only versus tumor-normal paired sequencing in solid tumors. TMB estimates 

from tumor-only panels substantially overclassified individuals into the clinically important 

TMB-high group due to germline contamination, and this bias was particularly pronounced in 

patients with Asian/African ancestry. Among patients with non-small cell lung cancer treated 

with ICIs, those misclassified as TMB-high from tumor-only panels did not associate with 

improved outcomes. TMB-high was significantly associated with improved outcomes only in 

European ancestries and merits validation in non-European ancestry populations. Ancestry-aware 

tumor-only TMB calibration and ancestry-diverse biomarker studies are critical to ensure that 

existing disparities are not exacerbated in precision medicine.

Graphical Abstract
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Analyzing tumor-only genetic sequencing data, Nassar et al. highlight overestimation of mutation 

counts in non-Europeans. Recognizing the utility of TMB as a biomarker of response to immune 

checkpoint inhibitors, they propose an ancestry-informed calibration of mutational burden to 

mitigate biases in immunotherapy treatment allocation whenever matched-normal sequencing data 

is unavailable.

Keywords

Tumor mutational burden; genetic ancestry; immunotherapy; biomarker; genomics; cancer 
disparities

Introduction

Immune checkpoint inhibitors (ICIs) have introduced a new paradigm of cancer 

management in the past decade(Robert, 2020). However, racial and ethnic minorities 

are underrepresented in clinical trials of ICIs(Nazha et al., 2019), which limits the 

generalizability of emerging biomarkers. Moreover, analyses of patients from trials still 

center around race and ethnicity, which capture a complicated mix of social constructs and 

genetic ancestry(Nazha et al., 2019).

Recently, pembrolizumab received FDA approval for the treatment of patients with 

unresectable or metastatic tumors classified as tumor mutational burden (TMB)-high (≥10 

variants/Mb) and have progressed on prior therapy(Marcus et al., 2021; Subbiah et al., 

2020). More recent work(Cristescu et al., 2022) builds on the phase II KEYNOTE-158 

study, and shows that among 1772 patients receiving pembrolizumab monotherapy, overall 

response rate is 31.4% in 433 patients with TMB ≥175 mutations/exome versus 9.5% in 

1339 patients with TMB<175 mutations/exome. Importantly, this association is independent 

of PD-L1 expression, tumor type, or MSI status. As TMB is adopted in clinical decision-

making, generalizability of TMB to diverse real-world settings is a prerequisite to its 

validity and utility as a biomarker. The use of tumor-only next generation sequencing 

panels(Chalmers et al., 2017) poses an additional challenge for TMB estimation, where 

in-silico methods for germline variant exclusion that rely on reference data, may lead to 

higher rates of false positive somatic variants in populations that are underrepresented in the 

reference(Fancello et al., 2019) (Figure 1). Parikh et al.(Parikh et al., 2020) show that among 

50 tumor samples from 10 different tumor types, TMB-only estimates, based on filtering 

germline variants from population databases, are significantly inflated compared to estimates 

from paired tumor/normal TMB.

Separate from the question of accurate TMB estimation, it is critical to understand the 

generalizability of TMB as a biomarker in diverse patient cohorts, as the TMB-high cutoff 

is established in studies of primarily white patients with European ancestry(Marabelle et al., 

2020a; Marabelle et al., 2020b). The emergence of large-scale patient sequencing, detailed 

multi-ethnic reference panels, and computational tools enables robust inference of genetic 

ancestry(Jorde and Bamshad, 2020; Kumar et al., 2010; Martin et al., 2019; Price et al., 

2006; Sakaue et al., 2020), defined as the contribution of genetic material from an ancestral 

population into a contemporary individual. Several studies leverage genetic ancestry to 
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identify relationships with somatic drivers in cancer(Carrot-Zhang et al., 2020; Carrot-Zhang 

et al., 2021; Yuan et al., 2018). However, clinical outcomes of patients with non-European 

ancestry, particularly in the ICI setting, are scarce.

Herein, we analyze genetic ancestry for >2000 patients with common solid tumor types 

treated with ICIs and determine genomic and clinical correlatives. We confirm ancestry-

biomarker associations in an independent cohort and specifically highlight ancestry-specific 

biases in TMB estimates from tumor-only sequencing panels. We point to a potential 

influence of these biases on patient outcomes and propose a strategy for TMB recalibration.

Results

Genetic Ancestry Improves Population Classification of Self-reported non-Whites

To assess the value of genetic ancestry in population studies, we utilized 8,193 patients 

from the entire DFCI/PROFILE cohort for cancers of interest with genetic data available. 

We inferred genetic ancestry using principal component analysis in a large multi-ancestry 

population including our target data, focusing on two "continental" components capturing 

European/African/Asian ancestry (see STAR Methods). Compared to self-reported race 

(which can be arbitrarily defined or missing), genetic analysis identified an additional 42% 

and 38% of patients with African and Asian ancestry, respectively: 219/312 patients with 

African ancestry were self-reported Black/African American and 53/312 were self-reported 

White; 248/343 patients with East Asian ancestry were self-reported Asian and 57/343 were 

self-reported White (Figure S1A).

TMB Inflation in Tumor-Only Sequencing Panels by Ancestry and Race

Calling somatic variation from tumor-only sequencing is prone to miscalling germline 

variants as somatic (Garofalo et al., 2016; Parikh et al., 2020) and necessitates filtering out 

germline false-positive variants using population reference panels. As the available reference 

panels for European populations are larger than those for non-Europeans (for example, 

gnomAD v2.1 reference panel contains 56,885 European exomes but only 8,128 African 

exomes), we hypothesized that the degree of inflation would be particularly pronounced 

for tumor-only TMB estimates in individuals with non-European ancestry (Figure 1 A-B). 

Using the TCGA cohort of 3,618 samples (STAR Methods; Figure S1B) and genomic 

variant calls from Oncopanel-restricted genes (Table S1), we compared the correlation 

between TMB from WES paired tumor-normal samples (hereby referred to as TMB paired) 

versus TMB tumor-only from the same samples estimated by blinding the germline variant 

calls, restricting to Oncopanel baitsets (v1-v3), and applying the Oncopanel germline 

filtering pipeline including filtering variants occurring in >0.1% of the TOPMED freeze 

8 database (see STAR Methods). As expected, TMB tumor-only was significantly higher 

than TMB-paired (median TMB tumor-only=5.3 vs. median TMB-paired=3.3, p<0.0001), 

although the two estimates were generally correlated (Pearson correlation coefficient for 

Oncopanel v3=0.92) (Table S1, Figure S2A-C). Importantly, TMB tumor-only inflation 

was significantly higher in non-Europeans compared to Europeans (Figure S2A-C): On 

average, TMB was inflated 2.2-fold in non-Europeans (computed as the median of the ratio 

TMBtumor-only / TMBpaired) versus 1.5-fold in Europeans.
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To investigate the phenomenon of differential inflation by continental ancestry in tumor-

only sequencing panels in contemporary, real-world sequencing, we turned to data from 

>120,000 tumors across multiple institutions collected by AACR Project GENIE. We used 

MSK-IMPACT and Yale as the gold standard panel for estimating TMB (paired tumor/

normal sequencing) and data from seven other sequencing centers as the representative 

tumor-only panels. Because the panels differ in the types and numbers of genes assayed, 

we did not attempt to compare TMB directly but instead compared per-variant variant allele 

frequency (VAF) distributions, which should be insensitive to the number of variants in the 

platform. Since rare germline variants generally have a VAF of 50%, we expect germline 

contamination to lead towards more high-VAF variants, which was clearly observed in the 

tumor-only cohorts compared to the tumor/normal paired panels (MSK-IMPACT and Yale) 

(Figure S3). Moreover, more high-VAF variants were generally observed for tumors from 

non-white patients (race serving as a crude proxy for ancestry, which was not available) in 

the tumor-only cohorts but not the tumor/normal paired cohorts.

Confirmation of ancestry-specific tumor-only TMB bias with normal-matched data

To confirm the relationship between ancestry and tumor-only TMB, we turned to data 

from a real-world cohort of 456 patients sequenced using MSKCC IMPACT with tumor-

normal as ground truth. Genetic ancestry for each patient was computed in prior work 

(see STAR Methods). In the MSKCC IMPACT cohort, patients with Asian and African 

ancestry (excluding Admixed populations, see STAR Methods) were oversampled for two 

groups: 327 Non-Small Cell Lung Cancer (NSCLC) patients on ICIs, and 139 randomly 

selected other cancers (Table S2). For each sample, the matched normal sample was 

blinded and tumor-only TMB was estimated using the conventional reference-based filtering 

approach, with the difference between tumor-only TMB and tumor/normal matched TMB 

being the outcome of interest (see STAR Methods). To allow a fair comparison, tumor/

normal TMB was estimated using the same workflow and treated as the ground truth 

(see STAR Methods). As expected, TMB inflation was more pronounced in tumor-only 

TMB compared to tumor/normal TMB, especially among non-Europeans (Figure S4). 

Non-European populations had a significantly larger log-transformed TMB difference in 

both the NSCLC cohort (1.4-fold; p=1.1x10−09) and the pan-cancer cohort (1.4-fold; 

p=1.1x10−06) (Table S2). These findings confirmed the excess tumor-only TMB estimates in 

non-European patients with direct matched-normal sequencing.

TMB Calibration Eliminates Ancestry Differences in Most Cancer Types

We used TCGA data to estimate ancestry-specific calibration coefficients for panel TMB 

tumor-only using the TMB paired WES as a benchmark, accounting for panel version and 

cancer type (see STAR Methods). We then applied the calibration coefficients trained in 

TCGA to the full DFCI/PROFILE (n=8193 patients) to compute recalibrated and ancestry 

corrected TMB, which we call TMB-c. Prior to recalibration in the DFCI/PROFILE 

cohort, non-Europeans had significantly higher TMB compared to Europeans across four 

of seven cancer types (CRC, EGC, HNSCC, NSCLC) (Table S3, Figure 2A). After TMB 

calibration, only TMB-c among patients with CRC and HNSCC remained significantly 

higher in non-Europeans compared to Europeans (the difference remained significant for 
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CRC after adjusting for microsatellite instability status); EGC and NSCLC no longer 

exhibited significant ancestry differences in TMB-c (Figure 2B).

We investigated whether additional granularity in ancestry beyond the continental 

populations would substantially alter our TMB calibration method. We inferred fine-

scale genetic ancestry based on 11 principal components (PCs) that corresponded to 

sub-continental populations in the 1000 Genomes reference (see STAR Methods). In the 

TCGA data, we then evaluated the impact of an increasing number of ancestry PCs on the 

TMB difference, defined as (TMBTumor-only – TMBTumor-Normal). TMB difference was only 

significantly associated with PCs 1–3 (PC3 correlating with admixed American populations 

in the 1000 Genomes reference), consistent with our assumption that TMB miscalibration 

is primarily driven by continental ancestries underrepresented in germline reference panels. 

The addition of PC3 to our model for computing TMB-c in the DFCI/PROFILE samples 

led to reclassification of only 1.2% individuals, compared to the model with continental 

(African/Asian) ancestry alone (see STAR Methods, Table S4). We thus used TMB-c from 

the continental model for all subsequent analyses.

Potential Impact of TMB calibration in tumor-only panels on clinical decision-making

Having established the presence of differential inflation by ancestry in tumor-only panels, 

we hypothesized that 1) differential inflation of TMB in non-European populations 

sequenced with tumor-only panels would likely lead to increasing rates of TMB-high 

misclassification in non-Europeans relative to Europeans, 2) TMB-c would better predict 

clinical outcomes to ICI. We computed TMB and TMB-c for each of 8,193 patients in the 

DFCI cohort (Figure S1B) and concentrated on patients that had TMB-high tumors prior 

to calibration (n=2800). Individuals with non-European ancestry and TMB-high tumors had 

significantly higher rates of false TMB-high (i.e. raw TMB-high corrected to TMB-c low) 

compared to Europeans (African: 51/117, 43.6%; Asian: 54/145, 37%; European: 528/2538, 

21%, p<0.0001, Figure 2C). For example, out of 100 patients of European ancestry with 

mixed tumor types, 21 would be expected to have false TMB-H. In a similar-sized cohort 

of patients of Asian or African descent, an estimated 37 and 44, respectively, would be 

expected to have false TMB-H, suggesting that an additional 17% of Asian and 23% of 

Africans would have their tumors erroneously called as false TMB-H and thus be eligible for 

ICIs solely due to tumor-only TMB inflation.

Next, to evaluate the clinical impact of TMB misclassification, we investigated the 

association between TMB-c reclassification and outcomes in two cohorts: 1) 1840 patients 

treated with ICI at DFCI with one of seven cancer types (Table 1, Table S3) and 2) 234 

patients with NSCLC treated with ICI at MSKCC and with available tumor-only and tumor/

normal data. For the MSKCC cohort (Table 2), we applied the TMB calibration coefficients 

trained in TCGA as a proof-of-concept that this methodology applies to non-Oncopanel 

targeted panels as well. For the PROFILE/DFCI cohort, we stratified the population into: (a) 

true TMB-high (TMB high and TMB-c high) (b) false TMB-high (TMB high but TMB-c 

low), and (c) true TMB-low (TMB low and TMB-c low); no patients were observed with 

TMB-low but TMB-c high. For the MSKCC cohort, paired tumor/normal was available 
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and represented ground truth to which we compared our calibration method (see STAR 

Methods).

In the DFCI/PROFILE cohort, after accounting for tumor type and genetic ancestry 

as covariates in a cox proportional hazards model, true TMB-high tumors had overall 

significantly superior outcomes relative to false TMB-high and true TMB-low tumors 

(median OS 27.7 months; 95% CI [22.6–36.2] vs. 16.3 months, 95% CI [13.7–18.7] vs. 14.4 

months, 95% CI [13.1–16.2], respectively; p<0.0001, Figure 2D). Importantly, no significant 

difference in OS was observed between false TMB-high and true TMB-low tumors in the 

DFCI ICI cohort (p=0.66; Figure S5) even after accounting for tumor type and genetic 

ancestry.

For validation, we turned to the MSKCC cohort of patients with NSCLC treated with ICIs 

and with available TMB and gene-level mutation status (n=234 patients). Raw tumor-only, 

calibrated tumor-only TMB (TMB-c), and tumor/normal paired TMB were computed for 

234 patients with NSCLC treated with ICIs. True TMB-high tumors were defined as either 

1) TMB-high in both the tumor/normal and raw tumor-only calculations or 2) TMB-high in 

both raw tumor-only TMB and tumor-only TMB-c. True TMB-low tumors were either 1) 

both TMB-low by tumor/normal and raw tumor-only calculations or 2) TMB-low in both 

raw tumor-only TMB low and tumor-only TMB-c. False TMB-high tumors had high TMB 

by raw tumor-only calculations that corrected to low TMB by tumor/normal calculations 

or TMB-c. Similar to the DFCI cohort, using paired tumor/normal TMB or tumor-only 

TMB-c as a gold standard for TMB status classification, patients with true TMB-high 

tumors had significantly improved outcomes relative to patients with true TMB-low tumors 

and patients with false TMB-high tumors (Figure 3A,B). Reassuringly, associations between 

TMB assignment and OS were similar between paired tumor/normal TMB (Figure 3A) and 

tumor-only TMB-c (Figure 3B), which meant that our calibration method was accurate in 

reassigning TMB in an independent sequencing platform of similar bait-set size.

Evaluating the trans-ethnic portability of TMB as an ICI biomarker

Previous clinical trials and observational studies were either depleted for non-Europeans 

or relied on self-reported race(Gandhi et al., 2018; Hellmann et al., 2019; Nazha et al., 

2019; Paz-Ares et al., 2018), motivating us to investigate the prognostic effect of TMB 

across ancestries in our ICI cohort (Figure 4A,B). In the PROFILE/DFCI cohort, no effect 

of ancestry (taken as continuous indices or as categories) on OS was observed for any 

cancer type, after controlling for prior lines of therapy, ICI type, TMB-c, treatment prior 

to sequencing and histologic subtype; although statistical power was insufficient to rule out 

moderate effect-size differences. Asian ancestry was nominally associated with worse OS in 

RCC (p=0.036, Figure 4B) and worse TTF in NSCLC (p=0.012; Figure 4C, Table S5).

We investigated the trans-ethnic portability of TMB-c in DFCI/PROFILE and MSKCC 

patients with NSCLC treated with ICI. In the DFCI/PROFILE cohort, multivariable Cox 

regression showed significantly longer OS in patients of European ancestry with high 

TMB-c (adjusted hazard ratio (HR)=0.64; 95% CI=0.53–0.77, p<0.0001), after adjusting 

for number of prior lines of therapy, type of ICI, treatment relative to sequencing date, and 

histologic subtype (Figure 5A). In contrast, higher TMB-c was not associated with OS in 
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patients of Asian (HR=1.00, 95% CI=0.95–1.05, Figure 5B) or African ancestry (HR=0.99, 

95% CI=0.94–1.06, Figure 5C Table S6), although this sample size (n=57 for Asians and 

n=64 for Africans) had limited power to identify an association in down-sampling analyses 

(see STAR Methods). Higher TMB-c was associated with improved (p<0.0001) TTF in 

patients of European ancestry and no significant difference in TTF in patients of Asian, and 

African ancestry (Table S6). Accounting for histology subtype in the MSKCC NSCLC 

cohort, higher TMB (paired tumor/normal) was associated with significantly improved 

survival among Europeans (n=1,534, adjusted hazard ratio (HR)=0.7; 95% CI=0.62–0.81, 

p<0.0001, Figure 5D) treated with ICIs while no association was noted among Asians 

(n=132; Figure 5E) and Africans (n=78, Figure 5F). Given the relatively small number 

of non-European individuals even in these large cohorts across two major institutions, our 

findings motivate further study of TMB as a biomarker in ancestrally diverse individuals.

Ancestry-specific Effects of Gene Alterations (GA) on ICI Outcomes in NSCLC

As an exploratory analysis, we sought to identify individual GA biomarkers that may lack 

transancestry portability. We analyzed individual GAs with significant ancestry differences 

in their prognostic effect using an ancestry-interaction scan across 35 genes with >5% 

GA frequency (see STAR Methods). After accounting for type of ICI, treatment relative 

to sequencing, histologic subtype, prior lines of therapy and using an FDR<10%, MGA 
gene alterations were associated with longer OS and TTF in Europeans (Figure 6A, Table 

S7), were not associated with outcomes in Africans (Figure 6B), and were associated with 

shorter OS and TTF in Asians (Figure 6C, Table S7), with the difference significant in 

a formal ancestry interaction test that accounts for power (OS: pinteraction=0.029; TTF: 

pinteraction=0.03, q-value<0.1; Table S7). In line with prior work by (Sun et al., 2021), 

the HR for associations between MGA alterations and OS among Europeans was similar 

(HRDFCI=0.48; HRSun et al.=0.39).

To test whether these qualitative differences in the effect direction may be driven by local 

tumor-only inference biases, we turned to tumor/normal data from the MSKCC NSCLC 

cohort treated with ICIs (n=1898). After accounting for histologic subtype, Europeans 

with tumors harboring MGA gene alterations (Table S8) had significantly improved OS 

compared to Europeans with WT tumors (median OS for MGA-mutant tumors=26.9 months 

versus median OS for MGA-WT tumors=15.6 months, p=0.029; Figure 6D). However, no 

association between MGA gene alterations and OS was observed in the African or Asian 

ancestry individuals (Figure 6E, F). We again caution that the sample sizes for non-European 

individuals were small for both the DFCI/PROFILE and MSKCC cohorts and thus no 

definitive conclusions can be made regarding MGA as a biomarker in non-Europeans.

Discussion

In this work, using genetic ancestry, we investigated the generalizability of predictive 

biomarkers in the ICI setting. In two independent cohorts (DFCI, MSKCC), we showed 

that TMB estimates from tumor-only panels substantially overclassify individuals into the 

clinically important TMB-high group, particularly in non-Europeans. We then identified 

two examples of ancestry-specific biomarkers in patients with NSCLC treated with ICI. 
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We found no evidence that TMB generalizes to non-European populations as a biomarker 

for improved ICI response although we acknowledge that this may be limited by the small 

sample size of non-Europeans in both DFCI and MSKCC cohorts. Next, among individual 

genomic alterations, we noted a complete reversal in the prognostic effect direction for 

MGA alterations between Europeans and Asians, which was recently identified as a putative 

biomarker in Europeans(Sun et al., 2021) and further validated herein in the DFCI and 

MSKCC cohorts. The lack of trans-ancestry portability of biomarkers demonstrated herein 

calls for further efforts to include non-Europeans in clinical trials and publicly available 

databases. This ancestry-specific association between TMB or MGA genomic alterations 

on one hand, and clinical outcomes in patients treated with ICIs on the other hand, is 

likely due to 1) lack of statistical power (much less non-European patients were treated 

with ICI at DFCI and MSKCC compared to the European patients) 2) remnant technical 

concerns in TMB calculations (e.g. Need for better reference genome characterization in 

non-Europeans) 3) differential treatment patterns and healthcare disparities (quality of care 

and access to care is inferior among non-Europeans) 4) and biological underpinnings that are 

yet to be unraveled.

Our work has several limitations. First, non-White populations were markedly under-

represented in our cohort and, despite the advantages of genetic ancestry estimates over 

binary race categories, our ICI cohorts were still underpowered for definitive genomic and 

survival associations in non-Europeans. Second, tumors sequenced at DFCI were formalin-

fixed paraffin embedded (FFPE) while TCGA samples used for calibration were based on 

fresh frozen samples. As such, estimation of TMB even after calibration may be confounded 

by artifactual variant calls due to poorer quality and formalin modification of DNA. Future 

efforts should focus on calibrating using paired tumor/normal FFPE tissue as a reference 

especially that the current clinical workflow relies on FFPE samples for next-generation 

sequencing and clinical testing. Third, in addition to technical differences, differences in 

biomarker performance by ancestry can be caused by a range of social and environmental 

confounding factors for which ancestry is merely a proxy(Bach et al., 2001; Berry et 

al., 2009; Borrell et al., 2021) and require further study. Fourth, our approach to TMB 

recalibration relied on heuristic ancestry groupings to translate between cohorts and will 

likely benefit from richer admixture data and more granular recalibration incorporating local 

ancestry. However, our findings validated in an independent cohort from MSKCC with 

paired tumor/normal sequencing, and sensitivity analyses using fine-scale ancestry showed 

that most of the TMB bias was explained by broad continental ancestry.

Our work builds on prior studies demonstrating that tumor-only sequencing approaches 

overestimate TMB(Parikh et al., 2020) and expands on recent cross-racial comparisons 

in multiple myeloma(Asmann et al., 2021) to a wide spectrum of solid tumors. 

Differential estimation between ancestries is driven by under-representation of non-

European populations in germline databases(Lek et al., 2016) (Sherry et al., 2001) 

and is directly mediated by patient ancestry rather than race/ethnicity. We thus suggest 

revising TMB calculations for tumor-only samples using the tumor-based ancestry inference 

employed herein, when paired germline-tumor samples or large reference panels are 

unavailable. More broadly, biomarker studies of under-represented populations are critical to 

ensure that disparities are minimized in the era of precision medicine.
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STAR METHODS

Resource Availability

Lead Contact—Further information and requests for resources should be 

directed to and will be fulfilled by the corresponding author Alexander Gusev 

(alexander_gusev@dfci.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data from the 1000 

Genomes project(Genomes Project et al., 2015), ExAC(Lek et al., 2016), 

gnomAD v2.1.1(Karczewski et al., 2021), Trans-Omics for Precision Medicine 

(TOPMed) program(Taliun et al., 2021), Partners HealthCare Biobank 

(RRID:SCR_001316), TCGA whole-exome sequencing (RRID: SCR_014555), 

and GENIE v11.1(Consortium, 2017). These accession numbers for the datasets 

are listed in the key resources table. The raw ancestry assignments generated for 

the TCGA cohorts can be found at https://portal.gdc.cancer.gov. The published 

article includes also includes datasets generated or analyzed from Dana-Farber 

Cancer Institute and Memorial Sloan Kettering Cancer Center, currently not 

publicly available. While targeted sequencing raw data were not deposited in a 

public repository since full sequencing data are not consented to be shared, the 

data that support the findings of this study are available from the corresponding 

author upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Study Design and Patient Cohorts—A summary of the clinical cohorts is presented 

below and in Figure S1B.

1. DFCI ICI cohort: We identified patients with one of seven solid tumor types 

treated with ICIs at Dana-Farber Cancer Institute (DFCI, Boston, MA), who also had 

Oncopanel somatic mutation analysis. Solid tumor types included colorectal cancer 

(CRC), esophagogastric cancer (EGC), head and neck squamous cell carcinoma (HNSCC), 

melanoma, non-small cell lung cancer (NSCLC), urothelial carcinoma (UC), and renal cell 

carcinoma (RCC). All DFCI patients received an anti–PD-1/PD-L1 or anti–CTLA-4 agent in 

the metastatic setting, either alone or in combination with chemotherapy or targeted therapy. 

Overall, 1840 tumor samples met the inclusion criteria and had next generation sequencing 

with a CLIA-certified panel, Oncopanel, across three incremental versions of the panel 

targeting 275–447 genes. The DFCI institutional review board granted a waiver of informed 

consent for this study.

Nassar et al. Page 11

Cancer Cell. Author manuscript; available in PMC 2023 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://portal.gdc.cancer.gov/


2. DFCI/PROFILE Entire Cohort: To study the impact of TMB calibration more 

broadly and by continuous ancestry, we expanded the DFCI cohort to all patients sequenced 

(n=32,366 tumors). Among the entire cohort, 8193 patients were diagnosed with one of the 

seven cancer types above, and sequenced by Oncopanel, regardless of stage or treatment 

regimens.

3. The Cancer Genome Atlas (TCGA) Cohorts: To study TMB calibration with 

and without matched normal data, we utilized the following cohorts from the TCGA: 

bladder UC(Robertson et al., 2018), colorectal adenocarcinoma(Cancer Genome Atlas, 

2012), esophageal carcinoma(Cancer Genome Atlas Research et al., 2017), gastric 

adenocarcinoma(Cancer Genome Atlas Research, 2014), HNSCC(Cancer Genome Atlas, 

2015a), kidney chromophobe(Davis et al., 2014), clear cell(Cancer Genome Atlas 

Research, 2013), and papillary carcinoma(Cancer Genome Atlas Research et al., 2016), 

lung adenocarcinoma, lung squamous cell carcinoma(Campbell et al., 2016), and 

melanoma(Cancer Genome Atlas, 2015b). As MSI tumors were included as part of 

the pembrolizumab approval for TMB-high tumors (≥10)(Subbiah et al., 2020), we 

opted to include them in the TCGA cohort. The MSI tumors constitute 3.8% of the 

TCGA cohort (139/3618), with no significant difference between Europeans and non-

Europeans (Non-Europeans which include East Asians and Africans, 17/582 (2.9%) versus 

Europeans: 122/3036 (4.0%), p=0.24). Overall, 3618 patients were evaluated for TMB 

calibration. Genetic ancestry indices for these TCGA subjects were computed as described 

previously(Yuan et al., 2018).

4. MSKCC Cohort: For validation, a cohort of 1898 patients with NSCLC treated with 

ICIs underwent targeted tumor/normal paired sequencing using one of three versions of 

MSK-IMPACT.

A separate cohort of 466 patients (n=327 NSCLC and n=139 other cancer types) had data on 

paired tumor/normal TMB and tumor-only TMB. Among these, 234 patients with NSCLC 

were treated with ICI.

Estimates of Continental and Sub-Continental Genetic Ancestry

a. Constructing a rich genetic ancestry reference panel: A genetic ancestry reference 

panel was constructed using germline genotype data from: 2,504 international samples from 

the 1000 Genomes Project (whole-genome sequencing); 10,585 normal samples from TCGA 

(Affymetrix SNP 6.0 array); and 58,178 patients in the Partners Biobank (Illumina Multi-

Ethnic Genotyping Array followed by imputation to the 1000 Genomes). These populations 

were selected to maximize global diversity (1000 Genomes) as well as reflect patients 

from the target population (Partners Biobank). All genotyped individuals were merged (total 

n=71,267) and restricted to variants directly genotyped by the TCGA, followed by stringent 

LD pruning (removing variants with an r^2 of >0.2 within 500kb).

Genetic ancestry was inferred from the combined genotype dataset using Principal 

Component Analysis (PCA) to infer the 30 lead PCs. Inference was carried out using the 

fast randomized approximation of PCA(Galinsky et al., 2016) implemented in the PLINK 

software, which is accurate for top PCs in large datasets. As observed in prior multi-ancestry 
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studies, PC1 and PC2 captured continental ancestry across European, African, and Asian 

populations (Figure S6A). Notably, the additional samples beyond the 1000 Genomes data 

substantially increased the number of samples with moderate African ancestry as well as 

samples with multi-continental ancestry, which had not been broadly sampled by the 1000 

Genomes (Figure S6A, black points). For presentation purposes, PC1 and PC2 were linearly 

rotated and rescaled so that EUR samples have mean 0.0 for both PCs and AFR/EAS 

individuals have mean 1.0 for PC1/PC2 respectively (Figure S6B-C). These rescaled PCs 

thus correspond to percentage ancestry, as previously shown(Chen et al., 2013), though it 

is important to note that the rescaling does not influence the statistical significance of any 

downstream analysis.

b. Estimating the number of meaningful ancestry PCs and classifying 
populations: We sought to determine the minimum number of PCs that corresponded 

to fine-scale ancestry (i.e. when to stop considering lower PCs) through classification 

of the labeled 1000 Genomes populations. A non-linear classifier was built between an 

increasing number of PCs and the population/sub-population labels as the response. Random 

Forests were used to train the classifier as they can directly accommodate categorical 

response variables. Accuracy was quantified using the “out-of-bag” error statistic, which 

evaluates performance on held-out samples while training the classifier. For the five major 

1000 Genomes populations (AFR=African, AMR=Admixed American, EAS=East Asian, 

EUR=European, SAS=South Asian) classification accuracy was optimized using the first 4 

PCs and did not improve subsequently (Figure S6D). The overall error rate was nearly zero, 

consistent with broad continental ancestry being well estimated with the leading PCs. For 

the 26 subpopulations studied in 1000 Genomes, classification accuracy hit diminishing 

returns after 11 PCs (Figure S6E). The remaining classification error was attributable 

to recently diverged populations with shared genetic ancestry: within northern Europe 

(CEU/GBR), within southern Europe (ITU/STU), within China (CHB/CHS), within West 

Africa (MSL/ESN/YRI), and within African Americans (ACB/ASW), and within India 

(GIH/PJL). We thus focused on PC1-PC4 and PC1-PC11 for all subsequent analyses of 

“broad” (continental) and “fine-scale” (subcontinental) ancestry, respectively. Finally, the 

random forest classifier of broad continental ancestry was applied to the remaining non-1000 

Genomes samples without population labels to define general ancestry groups (Figure S6F). 

We note that due to the absence of individuals with moderate African ancestry in the 

1000 Genomes reference, individuals were arbitrarily classified as African versus European 

at approximately 50% African ancestry, even though a gradient of ancestry was clearly 

observed in the target data (Figure S6F). This further underscored our use of quantitative 

ancestry components for recalibration and led us to consider multiple continental ancestry 

thresholds when defining population groups.

c. Projecting and verifying ancestry for the DFCI PROFILE data: For PROFILE, 

quantitative genetic ancestry for African, Admixed American, East Asian, European, and 

South Asian populations was inferred using common germline polymorphisms called from 

off-target and on-target sequencing reads from the tumor-only sequencing. To guard against 

potential artifacts in the tumor-imputed DFCI PROFILE data, these samples were not used 

to compute ancestry components but were instead projected into the ancestry components 
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inferred in the reference data (see above). For each reference component (x, ranging from 

PC1 to PC11) and SNP (i), factor loadings (wxi) were estimated in the reference data as 

part of the PC analysis. Each (DFCI PROFILE) target individual was then projected into 

this ancestry space as a simple linear combination of the loadings: projected PCx = Σigiwxi, 

where g is the genotype at SNP i. This procedure was carried out for PC1 to PC11 for each 

target individual. Benchmarking was conducted using a subset of 872 individuals that had 

germline genotyping as part of the Partners Healthcare Biobank and also tumor sequencing 

as part of the DFCI PROFILE cohort. Each sample was processed through the reference/

target workflows respectively as described above. Accuracy was then assessed by Pearson 

correlation between the germline ground truth and tumor imputed data for each PC (Figure 

S6G). For each of the informative PCs (PC1-PC11), the correlation between the germline 

ground truth and the tumor imputed PC was >0.90, and for the subset of continental PCs 

(PC1-PC4) the correlation was >0.98. The tumor-inferred PCs were thus highly accurate for 

all PCs used in our analyses. This approach for genetic ancestry inference was previously 

shown to be highly reliable (Gusev et al., 2021). Ancestry was significantly correlated with 

self-reported race (Pearson correlation=0.90; p<1x10−10) but provided additional admixture 

variation and was not susceptible to missingness (Figure S7A). Continental ancestry groups 

were defined with European ancestry treated as the reference group and African/Asian 

groups defined based on inflection points in the ancestry distribution relative to self-reported 

race (Figure S7B,C).

For the MSKCC cohort, genetic ancestry was estimated by a previously described 

method(Srinivasan et al., 2021). Briefly, continental and sub-continental ancestry was 

determined by ADMIXTURE, using SNP markers within captured regions of the targeted 

MSK-IMPACT panel, with 1000 Genome samples as reference. Quantitative genetic 

ancestry for African, Admixed American, East Asian, European, and South Asian 

populations was inferred.

TMB Calculation—For the DFCI/PROFILE and TCGA cohorts, TMB was defined as the 

total number of exonic non-synonymous variants divided by the total number megabases 

sequenced. We used TCGA whole-exome sequencing (WES) data to quantify the bias 

in Oncopanel tumor-only TMB and developed linearly recalibrated TMB (TMB-c) that 

accounted for both tumor-only and ancestry-specific error. We used the TCGA cohorts for 

CRC, EGC, HNSCC, melanoma, NSCLC, UC, and RCC as our benchmark. Using TCGA 

genomic variant calls, we computed TMB estimates for each sample using two methods: 

1) A gold standard paired tumor-normal approach, hereby referred to as TMB-paired 

approach; 2) a tumor-only approach blinded to germline variant filtering, hereby referred 

to as TMB tumor-only approach. For the TMB tumor-only approach, we applied filters for 

variant quality and putative germline variant removal mirroring the in-house pipeline used 

for reporting TMB to physicians. VCF files for TCGA samples with available ancestry 

calls from Yuan et. al (Yuan et al., 2018) were obtained from the GDC data portal (https://

portal.gdc.cancer.gov/). Somatic variants were called using Mutect2(Benjamin et al., 2019). 

Filtering of variants followed the below algorithm:

I. Variants not passing the following quality measures were filtered out:
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• bPcr: "Variant allele shows a bias towards one PCR template strand."

• bSeq: "Variant allele shows a bias towards one sequencing strand."

• t_lod_star: "Tumor does not meet likelihood threshold."

• germline_risk: "Evidence indicates this site is germline, not somatic."

Variants tagged with other quality issues (listed next) were retained as those filters were not 

adopted in the PROFILE pipeline:

• clustered_events: "Clustered events observed in the tumor."

• triallelic_site: “Site filtered because more than two alt alleles pass tumor LOD."

• str_event: "Site filtered due to contraction of short tandem repeat region"

Evidently, variants tagged with “alt_allele_in_normal” (Evidence seen in the normal sample) 

were retained to blind the calling to matched normal germline variants.

II. Next, the following filters were applied:

• Variants overlapping with PROFILE designed panel-of-normals (PON) loci were 

filtered out.

• Variants in tier5 list were filtered out.

• Remaining variants were checked for their functional consequence and only 

those with the following consequences (from VEP) are retained:

– missense_variant

– stop_gained

– stop_lost

– start_lost

– frameshift_variant

– inframe_insertion

– inframe_deletion

– coding_sequence_variant

– protein_altering_variant

– incomplete_terminal_codon_variant

III. Variants were subject to population frequency checks.

• If max population frequency across the European Standard Population (ESP) and 

gnomAD (maxPOPAF) is <= 0.1%, variant allele frequency (VAF) was checked.

– If VAF is >= 3%, variant was retained.

– If VAF < 3% and variant is present in COSMIC at least twice, the 

variant was retained.
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• If max population frequency across ESP and gnomAD (maxPOPAF) is > 0.1% 

but <= 10% and variant is present in COSMIC at least twice, the variant was 

retained.

• Variants occurring in >0.1% of the TOPMED database were excluded (https://

topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8)

IV. Subsequently, the variants were restricted to those occurring within the target intervals 

for each panel version of Oncopanel. The number of variants is divided by the size of 

the exonic bait set (0.76 Mb or v1, 0.82 Mb for v2, 1.31 Mb for v3/3.1) to calculate 

the final TMB estimate. TMB was calculated separately for each panel version for every 

TCGA sample (see Table S1). For the MSKCC cohort, tumor/normal and tumor-only TMB 

were computed for patients with sequenced using MSK-IMPACT. For tumor-only TMB, 

somatic mutations were called by the tumor-only mode of MuTect v.1.1.5 and annotated by 

ANNOVAR. This was followed by filtering out variants seen in gnomAD or with frequency 

greater than 0.1% in TOPMed Freeze 8. Only nonsynonymous SNVs were counted in the 

TMB calculation. Tumor/normal TMB was calculated for the same samples by incorporating 

the matched normal sample in the mutation calling step by MuTect to filter out variants 

detected in normal tissue.

TMB calibration by continuous genetic ancestry: First, we constructed a large reference 

population to enrich for admixed individuals (see Constructing a rich genetic ancestry 

reference panel), by combining the Partners Healthcare Biobank(RRID:SCR_001316), 1000 

Genomes Project(Genomes Project et al., 2015), and TCGA cohorts (total n=71,267). This 

reference data is sufficiently large and reflective of the DFCI population to capture realistic 

admixture. We then used PC analysis to identify 11 PCs associated with fine-scale ancestry, 

of which 4 were associated with continental ancestry. We then projected the entire DFCI 

cohort regardless of cancer type (n=32366) into this 11-dimensional space. Consistent 

with our previous analyses, PC1 and PC2 (corresponding to African and Asian ancestry) 

contributed the majority of the continental classification accuracy.

Second, we modified our TMB recalibration algorithm to model continuous ancestry 

components rather than dichotomous ancestry populations using regression. This makes 

no assumptions on hard population definitions beyond which ancestry components are 

included in the model, allowing admixed individuals to be modeled as mixtures of 

components. We evaluated models with an increasing number of PCs in TCGA data (TMBd 

~ PC1+PC2+PC3…PC11) and found that PC1–3 were significantly associated with TMB 

differences (Table S4); again consistent with our assumption that the TMB miscalibration is 

primarily driven by continental ancestry.

Third, we evaluated TMB recalibration in the DFCI data for the seven cancer types of 

interest (n=8193 patients) using the continuous components with (i) a model using African 

+ Asian ancestry; (ii) a model additionally including PC3. The inclusion of PC3 led to 

reclassification of 1.2% individuals compared to the model with African + Asian ancestry 

alone (Table S4).
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Given the minimal contribution of PC3 to TMB recalibration and the fact that PC3 captures 

admixed subcontinental ancestry that is difficult to define and may be reference dependent, 

we elected to use the African + Asian ancestry model for our primary analyses.

TMB Recalibration—Ancestry-specific TMB calibration coefficients were estimated as 

follows in TCGA. For each panel version (Oncopanel v1, v2, v3/3.1), the linear relationship 

between TCGA paired TMB (Thorsson et al., 2018) and simulated panel (tumor-only) TMB 

was estimated separately for the individuals defined as European and non-European by 

linear regression:

TMBpaired  m × TMBtumor − only  + b

Where m corresponds to the coefficient on the TMB tumor-only estimate and b is the overall 

constant bias in the TMB estimate. The estimated calibration coefficients for each panel 

version were:

Europeans: Oncopanel v1: m=0.989, b=−2.18; Oncopanel v2: m= 0.994, b= −2.12; 

Oncopanel v3 m= 1.094, b= −1.94

Non-Europeans: Oncopanel v1: m= 0.821, b= −1.71; Oncopanel v2: m=0.84, b= −1.71; 

Oncopanel v3: m=0.895, b=−1.29.

In the DFCI/PROFILE cohort, TMB-c was computed for each sample using the coefficients 

corresponding to their called ancestry and version of Oncopanel. In the MSKCC cohort, 

TMB-c was computed for each patient using calibration coefficients from Oncopanel v2 

given the similarity in bait-set size (Oncopanel v2 bait-set=0.83; MSK-IMPACT average 

bait-set=0.89).

Data collection—Clinical outcomes included overall survival (OS) and time to ICI failure 

(TTF) for the DFCI ICI cohort. OS was linked to the National Death Index (NDI) and 

calculated from the date of ICI initiation to the date of death. TTF was calculated from the 

data of ICI initiation to the date of next line treatment or death. Alive patients were censored 

at the date of last follow-up.

Genomic analysis—Details of the tissue collection, DNA extraction and tumor targeted 

sequencing by Oncopanel were previously described (Sholl et al., 2016). Specifics about 

genomic profiling are derived verbatim from the AACR Project GENIE Data Guide(2020; 

Consortium, 2017), “DFCI uses a custom, hybridization-based capture panel (Oncopanel) 

to detect single nucleotide variants, small indels, copy number alterations, and structural 

variants from tumor-only sequencing data. Three (3) versions of the panel have been 

submitted to GENIE: version 1 containing 275 genes, version 2 containing 300 genes, 

version 3 containing 447 genes. Specimens are reviewed by a pathologist to ensure tumor 

cellularity of at least 20%. Tumors are sequenced to an average unique depth of coverage 

of approximately 200x for version 1 and 350x for version 2. Reads are aligned using BWA, 

flagged for duplicate read pairs using Picard Tools, and locally realigned using GATK. 

Sequence mutations are called using MuTect for SNVs and GATK SomaticIndelDetector for 
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small indels. Putative germline variants are filtered out using a panel of historical normals 

or if present in ESP at a frequency ≥ 0.1%, unless the variant is also present in COSMIC. 

Copy number alterations are called using a custom pipeline and reported for fold-change >1. 

Structural rearrangements are called using BreaKmer. Testing is performed for all patients 

across all solid tumor types. Version 3 includes the exonic regions of 447 genes and 191 

intronic regions across 60 genes targeted for rearrangement detection. 52 genes present in 

previous versions were retired in the v3 test.”

Separate from the TMB calculation, individual gene carriers were defined as follows: 

For tumor suppressor genes, pathogenic variants included nonsense mutations, frameshift 

insertions or deletions, splice-site variants affecting consensus nucleotides, or homozygous 

deletions. For proto-oncogenes, the functional impact of missense variants was determined 

using SIFT(Kumar et al., 2009) and Polyphen-2(Adzhubei et al., 2010). Missense mutations 

classified as “damaging” in SIFT and/or “probably damaging” in Polyphen-2 were deemed 

pathogenic. All genes covered by Oncopanel v3 were included in the analysis. For genomic 

alteration frequency calculation and survival analyses, all patients that were not assayed 

for alterations in a gene of interest were excluded from the frequency calculations and 

comparisons pertaining to that gene.

Interaction analysis: Cox proportional hazards models accounting for covariates (prior 

lines of therapy, ICI type, treatment prior to sequencing (yes/no), TMB-c, and histologic 

subtype) were employed to detect any interaction between ancestry scores and genomic 

alterations (GAs) and its subsequent effect on survival outcomes. ANOVA was used to 

estimate interaction p-values across the following models:

fit1 =  survival   covariates  + GA +  ancestry 

fit2 =  survival   covariates  + GA +  ancestry  + GA ∗  ancestry 

anova (fit1,  fit2)

Downsampling power analysis: To assess whether some biomarker associations were not 

detected in specific patient subgroups (ex. African patients with NSCLC, Ngroup=64) due to 

lack of power, we ran a permutation analysis (1000 permutations) using random subsets of 

a larger cohort where an effect was detected (ex. European with NSCLC); nsubset = Ngroup. 

For each random subset, we ran a cox regression model using the specific biomarker as 

a predictor variable and generated the corresponding p-values for the association between 

this biomarker and survival outcomes. We then reported the fraction of sampling where a 

significant effect was detected.

In the case of African patients with NSCLC (nsubset = Ngroup = ), 1000 random subsets of 

64 European patients with NSCLC were analyzed. Out of 1000 cox regression tests, 101 

showed a statistically significant association between TMB and overall survival.
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power  = 169
1000 × 100 = 16.9%

Quantification and Statistical Analysis

Logistic regression models were used to study the association between continental ancestry 

and somatic alterations with histologic subtype used as a covariate. Multivariable Cox 

regression analysis was used to examine associations between ancestry indices, somatic 

alterations, and clinical outcomes, with prior lines of therapy, ICI type, treatment prior to 

sequencing (yes/no) and TMB-c used as covariates. Interaction term analysis was performed 

for gene associations with ancestry and clinical outcomes in the NSCLC cohort. The models 

were used to calculate the odds ratios, 95% confidence intervals (CI), and p-values. False 

discovery rate (FDR) correction was applied using Benjamini Hochberg for the number of 

independent tests conducted (Significant q-value<0.1). Statistical analyses were performed 

using R version 4.0.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Across tumor-only panels, TMB inflation is more pronounced in non-

Europeans

• There are ancestry-specific differences in clinical outcomes by TMB in lung 

cancer

• Calibration of tumor-only TMB off paired tumor/normal TMB improves 

ancestral biases

• MGA alterations do not generalize across ancestries as immunotherapy 

biomarkers
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Figure 1: See also Figures S1-S4 and Tables S1-S2 TMB overestimation in tumor-only 
sequencing panels driven by false positive germline variants in non-Europeans.
A. Annotating somatic and germline variants across self-reported race and effect on TMB 

calculations. The orange color in the DNA molecule refers to the European component of 

the genome and the navy-blue color refers to the African component. B. Germline reference 

panels where non-Europeans are underrepresented. This is driven by genetic ancestry and 

not by race as an individual with high non-European ancestry will have the same bias in 

their tumor-only TMB estimate whether they self-report as white or non-white. See also 

Figures S1-S4 and Tables S1 and S2.
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Figure 2: See also Figure S5 and Tables S3-S4. Differential TMB estimates across continental 
ancestral populations in the DFCI cohorts prior and after calibration and effects of TMB 
calibration on clinical outcomes.
A. Distribution of uncalibrated TMB estimates for each of 7 cancer types shown by genetic 

ancestry. A two-sided binomial test was used to establish P values (* <0.05, ** <0.01, *** 

<0.001, **** <0.0001). Data are represented as boxplots. The horizontal lines reflect the 

median, the lower and upper whiskers indicate 1.5 x the interquartile ranges. Circles are 

outliers. B. Distribution of calibrated TMB estimates for each of 7 cancer types shown by 

genetic ancestry. A two-sided binomial test was used to establish P values (* <0.05, ** 

<0.01, *** <0.001, **** <0.0001). Data are represented as boxplots. The horizontal lines 

reflect the median, the lower and upper whiskers indicate 1.5 x the interquartile ranges. 

Circles are outliers. C. 10x10 dot plot showing TMB misclassification rates for TMB-

high tumors in each ancestral population in the entire DFCI cohort (n=2800 TMB-high 

patients). D. Impact of TMB calibration on overall survival in ICI-treated patients at DFCI 

(n=1840 patients). Patients were stratified into: (a) true TMB-low (raw TMB<10; calibrated 

TMB<10), true TMB-high (raw TMB≥10; calibrated TMB ≥10), and false TMB-high (raw 

TMB ≥10, calibrated TMB<10). CRC: colorectal cancer, EGC: esophagogastric cancer 

(EGC), HNSCC: head and neck squamous cell carcinoma, melanoma, NSCLC: non-small 

cell lung cancer, UC: urothelial carcinoma, RCC: renal cell carcinoma. See also Figure S5 

and Tables S3-S4.
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Figure 3. Effects of TMB calibration on clinical outcomes in the MSKCC cohort of patients with 
NSCLC treated with ICI (n=234 patients).
A. Impact of tumor-only versus paired tumor/normal TMB on overall survival in ICI-treated 

patients with NSCLC at MSKCC. Patients were stratified into: (a) true TMB-low (raw 

TMB<10; tumor/normal TMB<10), true TMB-high (raw TMB≥10; tumor/normal TMB 

≥10), and false TMB-high (raw TMB ≥10, tumor/normal TMB<10). B. Impact of TMB 

calibration on overall survival in ICI-treated patients with NSCLC at MSKCC. Patients were 

stratified into: (a) true TMB-low (raw TMB<10; calibrated TMB<10), true TMB-high (raw 

TMB≥10; calibrated TMB ≥10), and false TMB-high (raw TMB ≥10, calibrated TMB<10). 

cTMB= calibrated TMB; TMBTO= raw tumor-only TMB; TMBTN= paired tumor/normal 

TMB.
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Figure 4: See also Table S5. Adjusted hazard ratios (HR) of clinical outcomes of different 
ancestral populations treated with ICI therapy in different cancer types.
A. Adjusted HR ratios for time to ICI failure in the DFCI ICI cohort (n=1840). Data are 

presented as adjusted HR with 95% CI (reference group EUR). B. Adjusted HR ratios for 

overall survival. All p-values and hazard ratios in A and B are of the Wald x2 test from 

the Cox regression analysis, adjusted as detailed in the STAR Methods section. Data are 

presented as adjusted HR with 95% CI (reference group EUR). * A horizontal line is not 

shown for HNSCC given only 1 patient had an event and confidence interval ranged from 0 

to infinity. C. Time to ICI failure and genetic ancestry in DFCI patients with NSCLC treated 

with ICI. D. Overall survival and genetic ancestry in DFCI patients with NSCLC treated 

with ICI. See also Table S5.
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Figure 5: See also Table S6. Ancestry-specific associations between TMB status and overall 
survival (OS) among ICI-treated patients with NSCLC.
A. Association between TMB and OS in European ancestry in the DFCI cohort. B. 
Association between TMB and OS in Asian ancestry in the DFCI cohort. C. Association 

between TMB and OS in African ancestry in the DFCI cohort. D. Association between TMB 

and OS in European ancestry in the MSKCC cohort. E. Association between TMB and OS 

in Asian ancestry in the MSKCC cohort. F. Association between TMB and OS in African 

ancestry in the MSKCC cohort. For the DFCI and MSKCC cohorts, calibrated TMB and 

tumor/normal TMB were analyzed, respectively. P-values were adjusted for prior lines of 

therapy, ICI type, TMB-c, treatment prior to sequencing and histologic subtype. See also 

Table S6.

Nassar et al. Page 28

Cancer Cell. Author manuscript; available in PMC 2023 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: See also Tables S7-S8. Impact of MGA genomic alterations on overall survival (OS) in 
ICI-treated patients with NSCLC.
A. OS in the DFCI NSCLC cohort of European ancestry. B. OS in the DFCI NSCLC 

cohort of African ancestry. C. OS in the DFCI NSCLC cohort of Asian ancestry. D. OS in 

the MSKCC NSCLC cohort of European ancestry. E. OS in the MSKCC NSCLC cohort 

of African ancestry. F. OS in the MSKCC NSCLC cohort of Asian ancestry. WT: Wild 

type. P-values were adjusted for prior lines of therapy, ICI type, TMB-c, treatment prior to 

sequencing and histologic subtype. See also Tables S7-S8.
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Table 1:

Baseline clinical characteristics of the DFCI population. See also Table S3.

DFCI (n=1840)

N (median) % (range)

Age at ICI start 65 22–93

Tumor Type

 CRC 78 4.2

 EGC 144 7.8

 HNSCC 100 5.4

 Melanoma 314 17.1

 Non-small cell lung carcinoma 879 47.8

 RCC 155 8.4

 Urothelial Carcinoma 170 9.2

Sex

 Male 1071 58.2

 Female 769 41.8

Site of specimen sequenced

 Primary 871 47.3

 Metastatic 950 51.6

 Unspecified 19 1.0

Genetic Ancestry

 African 83 4.5

 Asian 90 4.9

 Europeans 1667 90.6

Self-Reported Race

 African Americans 60 3.3

 Asians 70 3.8

 Whites 1646 89.5

 Other 64 3.5

ICI type

 Single 1300 70.7

 Combination 540 29.3

ICI class

 Anti-PD-1/PD-L1 1577 85.7

 Anti-CTLA-4 33 1.8

 Anti-PD-1/PD-L1 + anti-CTLA-4 230 12.5

Number of prior lines

 0 919 49.9
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DFCI (n=1840)

N (median) % (range)

 1 595 32.3

 ≥2 326 17.7
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Table 2.

Clinical and demographic information on 1898 ICI-treated patients of different solid tumor types sequenced 

with MSK-IMPACT

N (median) % (range)

Age at ICI start 67 22–88

Histology

 Adenocarcinoma 1388 73.1

 Squamous Cell Carcinoma 236 12.4

 Non-Small Cell Lung Cancer, NOS 132 7

 Large Cell Neuroendocrine Carcinoma 42 2.2

 Other 100 5.3

Sex

 Male 1003 52.8

 Female 895 47.2

Site of specimen sequenced

 Primary 977 51.5

 Metastatic 914 48.2

 Local Recurrence 2 0.1

 Unspecified 5 0.3

Genetic Ancestry

 Ashkenazi European 325 17.1

 Non-Ashkenazi European 1209 63.7

 East Asian 113 6

 South Asian 19 1

 African 78 4.1

 Admixed/Other 154 8.1

Self-Reported Race

 African Americans 109 5.7

 Asian 132 7

 Native American/Pacific Islander 4 0.2

 Whites 1556 82

 Other/Unknown 97 5.1

ICI type

 Atezolizumab 231 12.2

 Durvalumab 146 7.7

 Ipilimumab 58 3.1

 Nivolumab 576 30.3

 Pembrolizumab 887 46.7
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

1000 Genomes project data The International Genome Sample 
Resource RRID: SCR_006828

ExAC Lek et al. 2016 https://gnomad.broadinstitute.org/

gnomAD v2.1.1 Karczewski et al. 2020 https://gnomad.broadinstitute.org/

Partners HealthCare Biobank Mass General Brigham RRID:SCR_00131 6

Trans-Omics for Precision Medicine 
(TOPMed) program

NHLBI Trans-Omics for Precision 
Medicine RRID:SCR_01567 7

TCGA whole-exome sequencing Genomic Data Commons RRID: SCR_014555

TCGA SNP 6.0 array TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive/search/f

TCGA clinical and subtype data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/
pancanatlas

Additional somatic validation datasets GENIE v11.1 https://www.aacr.org/professionals/research/aacr-
project-genie/

Software and algorithms

PLINK v2.0 Chang et al., 2015 https://www.cog-genomics.org/plink/2.0/

MuTect Cibulskis et al. 2013 https://software.broadinstitute.org/cancer/cga/
mutect_download

Picard Broad Institute http://broadinstitute.github.io/picard/

GATK Poplin et al., 2017 https://gatk.broadinstitute.org/hc

Burrows Wheeler Aligner Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Bcftools v1.10.2 Danecek et al., 2021 https://samtools.github.io/bcftools/bcftools.html

VCFtools v0.1.15 Danecek et al., 2011 https://vcftools.github.io/
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