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Purpose: The task-based assessment of image quality using model observers is increasingly used for
the assessment of different imaging modalities. However, the performance computation of model
observers needs standardization as well as a well-established trust in its implementation methodology
and uncertainty estimation. The purpose of this work was to determine the degree of equivalence of
the channelized Hotelling observer performance and uncertainty estimation using an intercomparison
exercise.
Materials and Methods: Image samples to estimate model observer performance for detection tasks
were generated from two-dimensional CT image slices of a uniform water phantom. A common set
of images was sent to participating laboratories to perform and document the following tasks: (a) esti-
mate the detectability index of a well-defined CHO and its uncertainty in three conditions involving
different sized targets all at the same dose, and (b) apply this CHO to an image set where ground
truth was unknown to participants (lower image dose). In addition, and on an optional basis, we
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asked the participating laboratories to (c) estimate the performance of real human observers from a
psychophysical experiment of their choice. Each of the 13 participating laboratories was confiden-
tially assigned a participant number and image sets could be downloaded through a secure server.
Results were distributed with each participant recognizable by its number and then each laboratory
was able to modify their results with justification as model observer calculation are not yet a routine
and potentially error prone.
Results: Detectability index increased with signal size for all participants and was very consistent
for 6 mm sized target while showing higher variability for 8 and 10 mm sized target. There was one
order of magnitude between the lowest and the largest uncertainty estimation.
Conclusions: This intercomparison helped define the state of the art of model observer performance
computation and with thirteen participants, reflects openness and trust within the medical imaging
community. The performance of a CHO with explicitly defined channels and a relatively large num-
ber of test images was consistently estimated by all participants. In contrast, the paper demonstrates
that there is no agreement on estimating the variance of detectability in the training and testing set-
ting. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12940]

Key words: channelized hotelling observer, computed tomography, image quality, intercomparison,
model observers

1. INTRODUCTION

The use of X ray technology in medical imaging involves
tradeoffs: while enabling the diagnosis of disease, the
unavoidable cost is the dose to the patient. With the increas-
ing use of volumetric imaging like X ray computed tomogra-
phy (CT), the collective dose to the population increases as
well,1 making dose management a priority in radiological
imaging.2,3 However, reducing the dose without accounting
for any potential degradation of image quality could reduce
the benefit for the patient in the form of a misdiagnosis.

The task-based assessment of image quality, as proposed
by Barrett and Myers,4 helps overcome this issue as it relates
image quality to reader performance for diagnostic tasks of
interest. Furthermore, replacing readers with a mathematical
observer makes this method less time-consuming and usable
in routine image quality assurance. Over the last two decades,
model observers, and in particular the Channelized Hotelling
Observer (CHO),5–8 have been increasingly investigated for
the assessment of different imaging modalities: mammogra-
phy,9 Digital Breast Tomosynthesis (DBT),10 fluoroscopy,11

CT,12–15 cone beam CT16 and nuclear medicine,17,18 and for
different tasks: detection,13 localization19,20 and estima-
tion.21,22 Recently, the US Food and Drug Administration
(FDA) proposed using CHOs in virtual clinical trials as evi-
dence of device effectiveness.10 The reasons that explain the
success of channelized observers are that they can be com-
puted with a limited number of images and, depending on the
choice of the channels, that they can be tuned to mimic
human or ideal observers.

The increasing use of model observers by the medical
imaging community raises concerns common to all metrolog-
ical quantities that become mature. The absence of an overall
strategy to assess image quality with model observers can
make their use difficult by parties such as accreditation bod-
ies, regulatory authorities, or practical users. Consequently,
model observer computation needs standardization as well as

a well-established trust in its computational methodology and
uncertainty estimation, like what is done for other metrologi-
cal quantities used in medicine (e.g., absorbed dose, air
kerma, activity, luminance, etc.). In addition, the robustness
of anthropomorphic model observers relies on their good
correlation with human observers. Many studies have investi-
gated model observer accuracy to predict human performance
with different modalities and tasks7,13,23 resulting in different
model observer formulations. However, less is known about
the accuracy of these model observers and the degree of
equivalence that exists between different laboratories that per-
form a given evaluation.

In this paper, we present a first step towards building con-
sensus about model observer methodology in the form of an
inter-laboratory comparison of the performance computations
of model observers for a simple case. The approach was simi-
lar to what is done between national metrology laborato-
ries24,25: a common sample of image data was sent to several
laboratories for evaluation. This exercise aimed at answering
the following questions: (a) How consistent is model observer
implementation across different laboratories? (b) How consis-
tent are uncertainty estimates? Ultimately, this work aims at
establishing a standardized framework and guidance for the
evaluation of medical image quality based on model obser-
vers. Some anticipated practical outcomes of this exercise
are: increasing the robustness of model observer computa-
tions, building mutual trust among laboratories performing
model observer computations, and generating confidence
from the authorities, such as manufacturers and the medical
community, regarding the practical applications of model
observers in day-to-day practice.

Practically, we report on a comparison among 13 different
laboratories from six different countries that estimated the
performance of model observers for a detection task with
two-dimensional CT image slices of a uniform water phan-
tom. The exercise was co-ordinated by the Institute of Radia-
tion Physics in Lausanne, Switzerland and each participating
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laboratory received the exact same image sets and was asked
to perform and document the following tasks: (a) estimate the
performance of a well-defined CHO and its uncertainty in
three conditions involving different sized targets, and (b)
apply this CHO to an image set where ground truth was
unknown to participants. In addition, and on an optional
basis, we asked the participating laboratories to (c) estimate
the performance of real human observers from a psychophys-
ical experiment of their choice.

2. MATERIALS AND METHODS

2.A. Image dataset

2.A.1. CT acquisition

We considered the practical situation of a medical physi-
cist that assesses image quality from a CT device with a dedi-
cated test object. We obtained the image datasets by
performing 15 repeated acquisitions of a cylindrical water
tank (Figure 1) with no embedded object for a CTDIvol equal
to 7.5 mGy and 45 repeated acquisitions at 15 mGy. The two
levels of dose were used to generate two independent image
datasets. The 15 mGy acquisition corresponds to local dose
reference level for abdominal imaging26 and is therefore rep-
resentative of clinical practice. The scans were acquired and
reconstructed with an abdominal protocol used routinely for
clinical imaging on a multidetector CT (Discovery HD 750,
GE Healthcare). Acquisition and reconstruction parameters
are detailed in Table 1.

2.A.2. Image samples and signal

For simplicity, and because it was the first such exercise,
we considered 2D image slices from CT acquisition. All
image samples used were non-overlapping squared regions of
interest (ROI) of 200 9 200 pixels cropped from the original
CT scans using only one slice every three slices to minimize

any axial noise correlation. The investigated task was a binary
classification in which the signal was present with 50 %
prevalence. Signal present images were generated by insert-
ing 6, 8, and 10 mm low contrast disk-shaped signal mimick-
ing hypodense focal liver lesion at the center of the image
(location-known-exactly) with an alpha blending technique.27

Figure 2 shows ROIs for 6, 8, and 10 mm signal sizes. The
signal radial profile was fitted to real liver lesion profile using
a contrast-profile equation28 and checked for its realism by an
experienced radiologist. To ensure a non-trivial task with
human observers, the signal intensity was set to reach 90% to
95% of the correct answer in a pre-study two-alternative
forced-choice experiment (2-AFC) with a 10 mm signal size
involving three human observers. The same signal intensity
was used for the two smaller signals.

2.A.3. Image dataset for observer study

We generated two Datasets. Dataset1 was intended to
compare implementation of CHO model observer when the
ground truth is available and Dataset2 was intended to assess
model observers when the presence or absence of the signal
in the image sample is unknown. Dataset1 contained images
explicitly labeled in terms of presence or absence of the sig-
nal and corresponded to the 15 mGy dose level scans. Three
image subsets were provided (1 for each signal size) and con-
tained both 200 signal present and 200 signal-absent samples.
Dataset1 was provided in two versions: one without location
cues for a model observer computation and another with
location cues for human observer psychophysical experi-
ments. Dataset2 was composed of 400 images obtained at
half the dose of Dataset1 (CTDIvol = 7.5 mGy) to provide a
different dose condition with an 8 mm signal with a preva-
lence of 50%. The sequence of signal present and signal-
absent images was randomly defined and was different for
each participating laboratory. The ground truth was kept
unknown to each participant (including the co-ordinating
laboratory).

FIG. 1. Cylindrical water tank phantom. Diameter: 20 cm; length: 25 cm.
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1. Acquisition and reconstruction parameters.

Parameter Value

Acquisition Pitch 1.375

Rotation time (s) 1

Tube voltage (kVp) 120

Tube current (mA) 130 260

CTDIvol (mGy) 7.5 15

Collimation width (mm) 40

Reconstruction Matrix size (pixel) 512 9 512

Reconstruction algorithm Filtered
backprojection

Kernel Soft tissue

Slice interval (mm) 2.5

Slice thickness (mm) 2.5

Field of view (mm) 300

Pixel size (mm) 0.59
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2.B. Task descriptions

All participating laboratories were asked to perform three
tasks. The first two tasks were mandatory and consisted of
computing the performance of a defined model observer. The
other task was optional and consisted of estimating the per-
formance of the human observer with a psychophysical
experiment.

2.B.1. Performance computation with a defined
model observer and Dataset1

Participants were asked to compute the performance of a
defined model observer with Dataset1. We chose the
CHO,5–8 which is defined by a template derived from optimal
weighting of a limited set of channel outputs. To get the tem-
plate, each image is preprocessed by a set of J channels which
reduces image dimension to the number of channels. Channel
outputs are weighted to maximize detection performance
using the dot product between the inverse of the covariance
matrix and an estimation of the mean difference signal in the
channel space. The decision variable from an image sample
is derived from the dot product between the CHO template
and the image sample vector in the channel space.

The D-DOG channels in this exercise were those proposed
by Abbey and Barrett,29 which have the advantage to be pre-
cisely defined, sparse and mimic human observer.30 DDOG
radial spatial frequency profile functions are defined by

CjðqÞ ¼ exp � 1
2

q
Qrj

� �2
 !

� exp � 1
2

q
rj

� �2
 !

where rj ¼ r0aj is the channel standard deviation of the jth
channel, and r0is the initial standard deviation. We used
j ¼ 10 channels, r0 ¼ 0:005 pixels�1, a ¼ 1:4, Q ¼ 1:66.

Different computations of CHO concern how the image
samples are used or processed to derive the CHO features
(e.g., template and mean signal, and decision variable distri-
butions). The CHO computation methodology contains the
following features: training and testing strategy, number of
sample pairs in training and testing sets, ROI size, estimation
of the covariance matrix with signal-present and/or signal-
absent image samples, mean signal estimation, computation
domain for image processing (space or frequency). The

participants were free to use the image dataset as they wanted.
The implementation details of the laboratories are docu-
mented in the Results section.

The participants were asked to estimate the detectability
index d0, which is the distance between signal present and
signal-absent of decision variables distribution in standard
deviation units; according to the definition given by Barrett
and Myers.4 They were also asked to provide their uncer-
tainty as being one standard-deviation of their estimated
probability density function of d0. In metrology, this uncer-
tainty is called “standard uncertainty”.31 For a Gaussian dis-
tribution, this corresponds to a confidence level of 68% that
the true value is within the interval. No instructions regarding
the number of image samples to be used in the training and
testing subsets of Dataset1 were given.

2.B.2. Performance of the same model observer
and Dataset2

In the second mandatory task, participants were asked to
compute test statistics using the same model observer as in
the first task, but for Dataset2. The participants had the possi-
bility to train the model observer using images from Dataset1,
as the co-ordinating laboratory did not provide additional
images. As ground truth was unknown to them, participants
reported the model’s responses to each individual image. The
detectability was computed by the co-ordinating laboratory
using the same definition as in 2.B.1.

2.B.3. Human observer with Dataset1

A voluntary exercise provided was to run human observer
experiments with Dataset1. Participants could select the
method to carry out the human study, and templates of the
targets were provided together with the images for this task.
They were asked to estimate d0 and its standard uncertainty u
(d0) for the three signal sizes. For those who ran the experi-
ments with more than one human observer, individual and
pooled results were expected.

2.C. Study design

Each of the 13 participating laboratories was randomly
assigned a participant number from 1 to 13. To guarantee

(a) (b) (c)

FIG. 2. 200 9 200 pixel size ROIs for (a) 6 mm, (b) 8 mm and (c) 10 mm signal size. These images were obtained by increasing signal contrast for visualization
purposes.
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some degree of confidentiality, each laboratory only knew its
own number. The study packages were distributed through a
secure server and participating laboratories could download
them when they wanted. The study package contained Data-
set1 and Dataset2, a description of the tasks, the study’s mile-
stones and a form to collect the raw results. The form content
is described in Table 2. The complete form is available in the
appendix.

Each laboratory had 2 months to return the results form.
One month later, the results were distributed with each partic-
ipant recognizable by its number. Each laboratory had the
possibility to modify their results with justification within
1 month. We allowed this because model observer calcula-
tions are not yet a routine and still error prone. Moreover, as
it was the first time that such an exercise was proposed, we
needed to build trust to embark as many laboratories as possi-
ble into this study. Modified results are reported in Section 3.
Results in the corresponding Figures and justifications are
detailed in a dedicated paragraph in the Discussion section.

3. RESULTS

Data from returned forms were analyzed and organized
into two main sections: observer performances and computa-
tional methods. Table 3 shows the participation in the study
respective to the tasks.

3.A. Quantitative results: Observer performances

3.A.1. Performance computation with a defined
model observer and Dataset1

Detectability indexes computed by each laboratory for 6,
8, and 10 mm signal size are presented in Figure 3. Because
the actual true detectability is not known, due to the use of
actual CT data with an unknown underlying probability dis-
tribution, we chose the reference as being the median of all
reported estimations. As expected d0 increased with signal
size for all participants. The detectability index was very con-
sistent for 6 mm and showed a somewhat higher variability

for 8 and 10 mm for all participants with respectively less
than 5%, 16%, and 18% variation between labs.

Figure 4 presents the uncertainty estimation of d0 com-
puted by each participant for 6, 8, and 10 mm signal
size, separately and in increasing order. They are pre-
sented as 95% confidence intervals with mention to the
estimation method: resampling,32 exact 95% interval33

and repartitioning. For the laboratories who reported a
standard uncertainty, we implicitly assumed a Gaussian
distribution and expanded their value by a coverage factor
k = 2 to estimate a 95 % confidence interval (with k = 2
instead of the more precise value of 1.96, we followed
the habit of the national metrological institutes, because
the “uncertainty on the uncertainty” is much larger than
the difference between 1.96 and 2). We observed one
order of magnitude between the lowest and the largest
uncertainty estimation.

The effect of the number of images, N, used to train CHO
D-DOG with Dataset1 on d0 for independent and resubstitu-
tion (the use of the same data for training and testing the
CHO) sampling methods, was calculated by one of the partic-
ipating laboratories, and is presented in Figure 5. The plot
uses 1/N scale as d0-versus-1/N can be approached by a linear
relationship and d0 for infinite sample size can be estimated
by the intercept of a linear regression of d0-versus-1/N.34 Esti-
mation of d0 uncertainty decreased with increasing numbers
of training images for both sampling methods. As expected,
for resubstitution sampling, d0 decreases with increasing
numbers of training images. For testing with independent
samples, d0 increases with increasing numbers of training
images. The two sampling methods converge and give
approximately the same estimation of d0 from roughly 200
training images.

TABLE 2. Content of the results form to be filled by every participant.

Section Content

1. CHO D-DOG
with Dataset1

Quantitative estimation of detectability d0 and its
uncertainty u(d0) for 6, 8 and 10 mm

Qualitative description of model observer
computation and uncertainty estimation method

Covariance matrix for 6, 8 and 10 mm

2. CHO D-DOG
with Dataset2

Responses to Dataset2 image samples

3. Human observer
with Dataset1 (optional)

Quantitative estimation of detectability d0 and
its uncertainty u(d0) for 6, 8 and 10 mm

Qualitative description of psychophysical
experiment (material and settings)

TABLE 3. Summary of the participation in the three tasks.

Participant
number

Participation in the study

CHO DDOG with
Dataset1

CHO
DDOG
with

Dataset2

Human
observer

with Dataset1

Number of
human

observers

1 Yes Yes Yes 4

2 Yes Yes Yes 10

3 Yes Yes - -

4 Yes Yes - -

5 Yes Yes Yes 1

6 Yes Yes - -

7 Yes Yes - -

8 Yes Yes - -

9 Yes Yes Yes 3

10 Yes Yes - -

11 Yes Yes - -

12 Yes Yes Yes 1

13 Yes Yes Yes 3

Total 13 13 6 22
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3.A.2. Performance of the same model observer
and Dataset2

Detectability indexes of the CHO D-DOG computed on
Dataset2 are presented in Figure 6. As expected, due to the
lower dose of Dataset2, d0 median is lower than the one
obtained with Dataset1. They also show a larger variability
than Dataset1 with less than a 21% in variation between labs.

3.A.3. Human observer with Dataset1

Human data provided by the participating laboratories
with Dataset1 are presented in Figure 7. They show a much
larger variability than the fixed D-DOG estimation. For
example, for the 10 mm signal size, there is a factor of 1.2
between minimum and maximum estimation of d0 for partici-
pating laboratories for CHO D-DOG with Dataset1 and there
is a factor of 2.5 for human observers with the same images.

3.B. Qualitative results: comparison of the
computational methods

The computational methods for CHO D-DOG with Data-
set1 are summarized in Table 4. Train-test strategy and size
of training and testing sets show how participants used
image samples to estimate d0 from model observer decision
variables. Eight participants chose resubstitution using the
same set for training and testing. Among them, two partici-
pants (4 and 12) used an alternate resubstitution method
with bias correction for the estimation of d0.33 Four partici-
pants employed hold-out using independent sets for training
and testing. One participant split the testing set into eight
independent samples and averaged d0 from all samples. All
participants who applied the resubstitution method used a
training size of 200 image pairs, and 100 image pairs were
used for the hold-out training and testing strategy, and one
participant used the leave one out strategy. The testing size

(a) (b) (c)

FIG. 3. Detectability indexes for CHO D-DOG with Dataset1 computed by each participant laboratories for (a) 6 mm, (b) 8 mm and (c) 10 mm signal size in
increasing order. The dotted line represents the median value for final estimation of d0. For laboratories that corrected their estimation, the first estimation of d0 is
plotted as a triangle marker. Error bars represent the 95% confidence interval for the mean d0. For the laboratories that provided standard uncertainties, the values
were multiplied by a coverage factor k = 2 and are drawn as plus/minus this new value. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

FIG. 4. CHO D-DOG with Dataset1 95% confidence interval length of the mean d0 computed by each participant laboratory for (a) 6 mm, (b) 8 mm and (c)
10 mm signal size in increasing order. For the laboratories that provided 1 standard-deviation uncertainty, the values have been adjusted as described in the text.
[Color figure can be viewed at wileyonlinelibrary.com]
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was 200 image pairs for resubstitution and 100 image pairs
for hold-out strategy.

Most of the laboratories used resampling techniques for
the estimation of u(d0), the uncertainty of d0. Resampling
methods were bootstrap13 for nine participants and jack-
knife17 for one participant. The main differences between

resampling techniques were if the training samples were fixed
or variable. One participant split the testing set into eight
independent parts and derived the standard deviation of d0

from all parts as an estimation of u(d0). Two participants used
an exact formulation of the 95 % confidence interval33 based
on a method for the interval estimation of the Mahalanobis
distance.35

The estimation of d0 was systematically computed as the
distance between the mean of signal present and signal-
absent decision variables distributions in the standard devia-
tion unit as defined in Section 2.B.1, except for participant
five who used a close form for the estimation of d0.4 For par-
ticipants who used sampling or resampling techniques, d0

was the average d0 across all samples.
The estimation of the models’ template components, such

as the covariance matrix and mean signal, were systematically
obtained from image samples. Figure 8 presents covariance
matrices estimated by each participant for the 8 mm signal
size. Every covariance matrices presents similar patterns,
except for participants 7 and 11. The general pattern corre-
sponds to high variance with high frequency channels that
tend to decrease with lower frequency channels. For partici-
pant 7, the covariance matrix pattern was flatter than for the
other participant and no scaling factor was found to explain
the differences. For participant 11, the differences are
explained as they did normalization of the channels so that
sum of each one is one. All participants trained their observer
on signal-absent and signal-present images together to esti-
mate the channel covariance matrix, except for participants
10 and 13 who used signal-absent images only. All partici-
pants computed the difference between the mean signal-pre-
sent and mean signal-absent ensemble image sets as seen
through the channels to estimate the mean signal.

For all participants, ROI size was always the original size
(200 9 200). All participants computed templates in the
image domain. None used Fourier domain estimates.

The information concerning the psychophysical experi-
ments performed with Dataset1 is summarized in Table 5.
Six laboratories provided human data resulting to a total of
22 observers. Among them, seven were naive and 15 were
experienced. There were no radiologists or otherwise clini-
cally trained readers. All observers were trained before test-
ing. All laboratories performed MAFC experiments with
M = 2 alternatives for five participants and M = 4 alterna-
tives for one participant. The metric derived from MAFC was
the percent of correct (PC) answers for a given number of tri-
als. For MAFC experiments involving more than one obser-
ver, the pool of observer outcomes was the averaged pc and
the uncertainty was estimated by bootstrapping the pooled
individual scores. No participant used multiple-reader multi-
ple-case (MRMC) methods.

The material used to perform the psychophysical experi-
ment is summarized in Table 6. Except for one laboratory
who did not provide a value, the viewing illumination was
low for each laboratory and varied from “dark” to 20 lux.
The viewing distance was approximately 50 cm for all
observers. Diagnostic and TFT monitors from various

FIG. 5. Effect of the number of samples N used to train the CHO on d0 for
independent and resubstitution sampling methods with 10 mm signal size.
Error bars represent the exact 95% interval as defined by Wunderlich et al.33

The dotted lines are present to facilitate the reading of the graph. Courtesy of
F. Samuelson and R. Zeng from FDA/CDRH. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 6. CHO D-DOG with Dataset2 d0 for 8 mm signal size in increasing
order. The detectability index was computed by the exercise co-ordinator
from decision variable responses provided by each participant laboratory
using the ground truth of the respecting Dataset. The detectability index was
estimated as the distance between the mean signal present and absent distri-
bution in sigma units. The dotted line represents the median value. Uncer-
tainty estimates were computed by the co-ordinator by bootstrapping the test
cases from the decision variable responses provided by each participant with
1000 iterations. Errors bars represent two standard deviations from the boot-
strapped d0 distribution. [Color figure can be viewed at wileyonlinelibrary.c
om]
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manufacturers were used with pixel size ranging from 0.20
to 0.60 mm. Minimum luminance ranged from 0 to
0.465 cd/m2 and maximum luminance ranged from 405.7
to 1000 cd/m2. All participants used diagnostic monitor
except for participant 5.

4. DISCUSSION

This section is divided into different items that are each
related with the major findings of the study.

4.A. Good coherence of model observer
performance across participant laboratories

The main result of this study is that the performance of the
CHO D-DOG is reproducible across different laboratories for

the three tested signal sizes (Figure 3). This outcome was
expected as the model used for this exercise was precisely
defined. The only degrees of freedom left to the laboratories
were essentially how images were used to derive the model’s
features like the mean signal template and the covariance
matrix, as well as how the model was trained and tested. With
200 signal-present and 200 signal-absent images, these
aspects only had a minor effect on d0 as seen on Figure 5.

Concerning the derivation of the models’ template compo-
nents, mean signal estimation was identical among the partic-
ipants, however, some differences in covariance matrices
estimation were identified (Figure 8). Interestingly, the differ-
ences observed for participant 7 are consistent with their
underestimation of d0 compared with other participants. For
participant 11, the differences are explained because the
approach used machine learning which then minimized the

TABLE 4. CHO computation methodologies summary. The following features were identical for all participants and are not reported in the following table. ROI
size = 200 9 200, mean signal estimation has been made “from samples” and the computational domain is the “image domain” rather than the “Fourier
domain”.

Participant Train/test strategy

Sample pairs d0 estimation
1: distance

between signal
present and
signal-absent
distribution

2: signal-to-noise ratio
u (d0) estimation

method

Source of variance
1: new training images
2: new test images

3: new train
and test images

Number of
resampling
iterations

Covariance matrix
estimation:

signal absent &
signal present
2: signal absentTraining Testing

1 Hold-out 100 100 1 Bootstrap 2 1000 1

2 Resubstitution 200 200 1 Bootstrap 3 1000 1

3 Resubstitution 200 25 1 Repartition 2 - 1

4 Resubstitution 200 200 2 Exact 95% CI 3 - 1

5 Resubstitution 200 200 2 Bootstrap 3 1000 1

6 Other 200 200 1 Bootstrap 3 100 1

7 Hold-out 100 100 1 Bootstrap 3 2000 1

8 Resubstitution 200 200 2 Bootstrap 3 1000 1

9 Resubstitution 200 200 1 Bootstrap 3 10,000 1

10 Hold-out 100 100 1 Bootstrap 1 100 2

11 Hold-out 199 1 1 Jack-knife 3 200 1

12 Resubstitution 200 200 2 Exact 95% CI 3 - 1

13 Resubstitution 200 200 1 Bootstrap 2 100 2

(a) (b) (c)

FIG. 7. Detectability indexes for human observers with Dataset1 for participating laboratories for (a) 6 mm, (b) 8 mm, and (c) 10 mm signal size. The dotted line
represents the median value. To derive d0 and u(d0) from MAFC, the hit/miss values were bootstrapped. Averaged PC was converted to d0 and errors bars repre-
sent u(d0) as 2 standard deviations from the bootstrapped distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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generalization error in predicting individual human observer
scores on Dataset1.36 While providing a different covariance
matrix estimation, participant 11’s d0 estimation was similar

with other participants. Also, two participants (10 and 13)
estimated the covariance matrix with the signal-absent
images only and did not obtain substantially different results

FIG. 8. Covariance matrices K in channels space estimated by each participant for 8 mm signal size. In this representation, the top left pixel is the variance asso-
ciated to the output of the lowest frequency channel and the bottom right pixel corresponds to the output of the highest frequency channel. All the other pixels
describe the inter-class covariance. As the exercise used 10 channels D-DOG, K is a 10-by-10 matrix with the following array format:

K ¼
K1;1 � � � K1;10

..

. . .
. ..

.

K10;1 � � � K10;10

2
64

3
75: [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5. Psychophysical experiment design and derivation of human observer performance.

Participant

Observers

Training
Type of

experiment Basic metric

Pool of
observer
outcomes

Estimation of
uncertainty

Number of
resampling
iterationsTotal Naive Experienced Radiologist

1 4 2 2 - Yes 2AFC Percent correct Average Bootstrap 1000

2 10 5 5 - Yes 4AFC Percent correct Average Bootstrap 100

5 1 - 1 - Yes 2AFC Percent correct N/A - -

9 3 - 3 - Yes 2AFC Percent correct Average Bootstrap 10,000

12 1 - 1 - Yes 2AFC Percent correct N/A Bootstrap 1000

13 3 - 3 - Yes 2AFC Percent correct Average Bootstrap 1000

TABLE 6. Psychophysical experiment material specifications.

Participant

Viewing illumination
(lux)

Viewing distance
(cm)

Type of monitor
Pixel size (mm) Max. luminance (cd/m2) Min. luminance (cd/m2)

(lux) (cm) (mm) (cd/m2) (cd/m2)

1 10 50 NDS Dome E3 0.21 1000 0

2 N/A 40–50 BARCO 3MP LED 0.22 800 0

5 20 50 Standard TFT N/A N/A N/A

9 <10 50 BARCO MDNC-3121 0.21 405.7 0.465

12 Dark room 50 BARCO MD1119 0.60 162.9 0.01

13 Dark room 50 EIZO RADIFORCE 0.27 N/A N/A
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than those who used both image classes. This result is consis-
tent with previous results that suggest that both approaches
are equivalent if the background is not affected by the signal
like for the low contrast detection task as evaluated in this
study.4

At first sight, it might be surprising that all participants
produced such a coherent estimation of d0 since some of them
used the resubstitution method for training and testing the
models, and others used the hold-out method. As shown in
Figure 5, this may be due to the relative large number of
available images. Two-hundred images of each class were
sufficient to have a similar estimation of d0 whatever the
training/testing method. With 50 images only, the two estima-
tion methods would have been significantly different: the
strategies using resubstitution are expected to over-estimate
the performance while the strategies using hold-out would
under-estimate the performance. However, the exact confi-
dence interval estimation approach attempts to correct for the
resubstitution and hold methods limitation; the resubstitution
and hold-out methods are estimating the performance of the
finitely trained model and the exact confidence interval esti-
mates a confidence interval for the performance of the infi-
nitely trained model. Moreover, it can be seen that d0

fluctuates more between participants at high performances
(18%) than at low performances (5%). This might be
explained by the fact that at a higher performance level, the
model observer’s responses distribution present a larger stan-
dard deviation and are more prone to outliers. Therefore,
more variability in d0 estimation between participants is
expected.

4.B. Large range of uncertainty for model observer
performance across participant

Because of a finite image sample, d0 is prone to bias esti-
mation and an accurate assessment of its variability is impor-
tant for making inferences. One of the findings of this work
is that there is no consensus on what variance to present and
is a limitation leading to widely disparate results. Figure 4
shows that there is an order of magnitude in the uncertainty
estimation of the CHO performance among the participants.
This reflects the various estimation methods and sampling
strategies used in this exercise. All participants, except one,
used resampling techniques like bootstrap or jackknife to
generate multiple sets and derived the standard uncertainty as
an estimation of the measurement uncertainty. However, large
fluctuations are present in this group. Among them, some
used fixed training sets and variable testing sets while others
used both variable training and testing sets. Two participants
(4 and 12) used a method described in Wunderlich et al.33

and estimated the “exact 95 % confidence interval”, which
led to consistent estimations between them. Participant 12
implemented the method while participant 4 used IQmodelo,
a publicly available software package,37 to estimate d0 uncer-
tainty. The advantage of the exact 95 % confidence interval
method resides in the unbiased direct estimation of d0 using

the entire dataset even when the number of image samples is
low.

4.C. More variations in model performances when
the testing set is different than the training set

Our results suggest that this particular CHO-DDOG
implementation continues to be coherent when the testing set
is different than the training set. As shown in Figure 6, test-
ing the model on images with an unknown ground truth and
a dose level 50 % lower than the training set still produces
performances that are compatible among the different
laboratories.

4.D. Large discrepancy of human observer
performances

Although all human observers were well-trained and expe-
rienced, and that the task was relatively easy, the performance
varied widely among the participants (Figure 7). This cannot
be explained by the type of monitors or their pixel size as
most of them were similar (Table 6). However, how the par-
ticipants displayed the images surely had an effect. For
instance, all participants reported to have displayed the 8-bit
images without changing the LUT while participant 9 opti-
mized the window width and level using the image histogram
to increase the apparent contrast. This probably explains why
participant 9 had the highest value of d0 for all signal sizes.
Another source of explanation could be that human perfor-
mances obtained by an MAFC experiment is the proportion
correct (PC), which is then transformed into d0 by assuming
Gaussian-distributed internal responses. This operation
stretches small differences in PC into larger differences in
terms of d0. For example, for the 10 mm signal size, the esti-
mated d0 ranged between 1.7 and 4.2. This corresponds to a
variation between 89% and 100% in terms of PC. Finally,
and more importantly, the fact that human observers are
prone to inter- and intra-variability has been an important
motivation to use model instead of human observers.

4.E. A small number of participants chose to
update their data

Participants were able to correct their outcomes after the
initial release of the results to all the laboratories. Three par-
ticipants took the opportunity to change their results. Partici-
pant 5 found an error in their implementation for Dataset1
with D-DOG channels expressed in the Fourier domain
instead of the image domain. They subsequently changed
their model observer implementation in the image domain.
With this change, the model observer performance was
improved and is now closer to the other participants. Partici-
pant 8 resized the ROIs used for the calculation of CHO
D-DOG model observer with Dataset1 from 64 9 64 to the
original size (200 9 200). This modification had a slight
impact on d0 estimation as shown in Figure 3.
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4.F. Limitations

This study was limited by the simplicity of the task investi-
gated. A low-contrast detection task in a uniform background
is the simplest diagnostic task we can imagine, and future
research could investigate different tasks and backgrounds
from different imaging modalities. Another limitation is that
the tested conditions were not very challenging since all three
signal sizes reached a d0 larger than 4, which is virtually
equivalent to area-under-the-ROC-curve equal to 1. It can be
assumed that more challenging tasks (for example with a tex-
tured background, an unknown signal position, a smaller sig-
nal size or a sample with fewer images) would spread the
estimation of d0 and its uncertainty. Another unchallenging
aspect of this study was the relatively large number of image
samples. With a smaller sample size, the estimation of the
model template would be more difficult, and would probably
induce more variation among the different laboratories. The
many possible sources of variance and participant variance
estimation methods could have been more precisely docu-
mented. A possible future investigation could collect and
report what sources of variance are present in model observer
methods and discuss the different variance estimates.

5. CONCLUSIONS

This comparison helped define the state of the art of the
performance computation of model observers in a well-
defined situation. With thirteen participants, this reflects
openness and trust within the medical imaging community.

The main result of this study is that the performance of a
CHO with explicitly defined channels and a relatively large
number of test images was consistently estimated by all par-
ticipants. In contrast, the paper demonstrates that there is no
agreement on estimating the variance of detectability in the
training and testing setting.

The number of images is crucial for an accurate estimation
of d0. In this study, the large number of available images did
not lead to significant differences between the resubstitution
and the hold-out method. For less favorable conditions, exact
95% confidence interval method33 has the advantage to include
both reliable uncertainty estimation and bias correction.

This study also emphasizes the importance of the large
variability in the human observer performance in psy-
chophysical studies. This provides further motivation for the
development of anthropomorphic model observers that can
be used in place of human studies, and also suggests that we
need further consensus on experimental settings for human-
observer studies.

Finally, this exercise should be considered a first step in
evaluating the consistency of model observer computation for
medical image quality assurance. A possible next exercise
could involve clinical images with fewer samples. Meanwhile
the images used for this exercise and the model and human
scores are freely available for interested parties who did not
take part and would like to compare their estimate of model
observer detection performance with the present results.
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