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Abstract

Deep neural networks (DNNs) represent the mainstream methodology for supervised speech 

enhancement, primarily due to their capability to model complex functions using hierarchical 

representations. However, a recent study revealed that DNNs trained on a single corpus fail 

to generalize to untrained corpora, especially in low signal-to-noise ratio (SNR) conditions. 

Developing a noise, speaker, and corpus independent speech enhancement algorithm is essential 

for real-world applications. In this study, we propose a self-attending recurrent neural network 

(SARNN) for time-domain speech enhancement to improve cross-corpus generalization. SARNN 

comprises of recurrent neural networks (RNNs) augmented with self-attention blocks and 

feedforward blocks. We evaluate SARNN on different corpora with nonstationary noises in 

low SNR conditions. Experimental results demonstrate that SARNN substantially outperforms 

competitive approaches to time-domain speech enhancement, such as RNNs and dual-path 

SARNNs. Additionally, we report an important finding that the two popular approaches to speech 

enhancement: complex spectral mapping and time-domain enhancement, obtain similar results for 

RNN and SARNN with large-scale training. We also provide a challenging subset of the test set 

used in this study for evaluating future algorithms and facilitating direct comparisons.

Keywords

Speech enhancement; cross-corpus generalization; self-attention; recurrent neural network; time-
domain enhancement

I. Introduction

Background noise is unavoidable in the real world. It reduces the intelligibility and quality 

of a speech signal for human listeners. Additionally, it can severely degrade the performance 

of speech-based applications, such as automatic speech recognition, speaker identification, 

and hearing aids. Speech enhancement aims at removing or attenuating background noise 
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from a noisy speech signal. It is used as a preprocessor in speech-based applications to 

improve their performance in noisy environments. Monaural speech enhancement, which 

is the task of speech enhancement from single microphone recordings, is considered an 

extremely challenging problem, especially in the presence of nonstationary noises in low 

signal-to-noise ratio (SNR) conditions. This study focuses on monaural speech enhancement 

in the time domain.

Traditional approaches to monaural speech enhancement include spectral subtraction, 

Wiener filtering and statistical model-based methods [1]. In recent years, supervised 

approaches to speech enhancement using deep neural networks (DNNs) have become the 

mainstream methodology for speech enhancement [2], primarily due to their capability to 

learn complex relations from supervised data by using hierarchical representations.

Speech enhancement mainly uses time-frequency representations, such as short-time Fourier 

transform (STFT), for extracting input features and training targets. Training targets play an 

important role in DNN performance and can be either masking based or mapping based. 

Masking based targets, such as ideal ratio mask [3] and phase sensitive mask [4], are based 

on time-frequency (T-F) relations between the noisy and the clean speech, whereas mapping 

based targets, such as spectral magnitude and log-spectral magnitude are based on clean 

speech [5], [6]. DNN is trained in a supervised way to estimate training targets from input 

features. During evaluation, the enhanced waveform is obtained by reconstructing a signal 

from the estimated training target.

Most of the popular approaches to speech enhancement aim at enhancing only the spectral 

magnitude and use unaltered noisy phase for time-domain reconstruction [5], [6], [7], [8], 

[9], [10], [11], [12], [13]. This is primarily due to a belief that spectral phase is unimportant 

for speech enhancement, and it exhibits no T-F structure amenable to supervised learning 

[14]. However, a relatively recent study has demonstrated that phase can play an important 

role in the quality of enhanced speech, especially in low SNR conditions [15]. As a result, 

researchers have started exploring ways to enhance both the spectral magnitude and the 

spectral phase. The first study in this regard was done by Williamson et al. [14], where 

the Cartesian representation of STFT in terms of real and imaginary parts was used instead 

of the widely used polar representation to propose complex ratio masking due to the T-F 

structure in the Cartesian representation. Complex ratio masking was further utilized in 

many studies, such as [16], [17], [18]. Complex spectral mapping, a related approach for 

jointly enhancing the magnitude and the phase, aims at directly predicting the real and the 

imaginary part of the clean spectrogram from the noisy spectrogram [19], [20], [21], [22].

On the other hand, time-domain speech enhancement aims at directly predicting the clean 

speech samples from the noisy speech samples, and in the process, magnitude and phase 

are jointly enhanced [23], [24], [25], [26], [27], [28], [29]. It does not require computations 

associated with the conversion of a signal to and from the frequency domain, and feature 

extraction becomes an implicit part of supervised learning.

The study in [23] proposed a fully convolutional neural network (CNN) for time-domain 

speech enhancement. Time-domain speech enhancement was further improved by using 
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better processing blocks, such as dilated convolutions [25], [26], [29], dense connections 

[30], self-attention [31], [32], and dual-path recurrent neural networks (RNNs) [33], [34].

Additionally, time-domain speech enhancement has benefited from better optimization 

methods, such as adversarial training [24] and better loss functions, such as a loss 

incorporating the objective metric of short-time objective intelligibility (STOI) [35], [27] 

or spectral magnitudes [36], [28]. The STOI-based loss in [27] was able to improve STOI 

but was found to be suboptimal for objective quality metric, perceptual evaluation of speech 

quality (PESQ) [24], and segmental SNR. The spectral magnitude based loss [36], [28], 

on the other hand, was able to improve both STOI and PESQ but was suboptimal for 

scale-invariant SNR. In [32], the spectral magnitude based loss was found to exhibit an 

artifact in the enhanced audio, which was subsequently removed by using an improved loss 

called phase constrained magnitude (PCM). The PCM loss not only removed the artifact but 

also obtained consistent improvement for different metrics, such as STOI, PESQ, and SNR.

Recently, it has been revealed that DNNs trained for speech enhancement do not 

generalize to untrained corpora, especially in low SNR conditions [37]. Even time-domain 

enhancement networks, such as auto-encoder convolutional neural network (AECNN) [28] 

and temporal convolutional neural network (TCNN) [29], that exhibit strong performance 

for untrained speakers from the training corpus, fail to generalize to speakers from untrained 

corpora. It is revealed that the corpus channel unwillingly acquired due to recording 

conditions is one of the main culprits for performance degradation from trained to untrained 

corpora. Several techniques were proposed to improve cross-corpus generalization, such as 

channel normalization, a better training corpus, and a smaller frame shift [37]. The proposed 

techniques obtain significant improvements on untrained corpora for an IRM-based long 

short-term memory (LSTM) recurrent neural network (RNN). This work was further 

extended to complex spectral mapping with improved cross-corpus generalization [22]. An 

interesting finding in [22] is that a sophisticated architecture for complex spectral mapping, 

gated convolutional neural network (GCRN), which obtains impressive performance on 

trained corpora, fails to generalize to untrained corpora. Further, simple LSTM RNNs with a 

smaller frame shift are found to be very helpful for cross-corpus generalization.

Self-attention is a widely utilized mechanism for sequence-to-sequence tasks, such as 

machine translation [38], image generation [39] and ASR [40]. It was first introduced 

in [38], which obtained start-of-the-art performance for sequence-to-sequence tasks by 

using networks comprising self-attention blocks only. In self-attention, a given output in 

a sequence is computed using a subset of the input sequence that is helpful for the output 

prediction. In other words, an output is predicted by attending to a subset of the input for 

improving output prediction. Many recent studies [31], [41], [42], [43], [44], [34], [32], 

[45], [18] have employed self-attention for speech enhancement and reported significant 

improvements.

Nicolson et al. [44] developed a network similar to the encoder of the transformer network 

[38] for a priori SNR estimation. The estimated SNR was used with a minimum-mean 

square error (MMSE) log-spectral amplitude estimator for magnitude enhancement. In a 

subsequent study [45], a similar network was employed for predicting linear predictive 
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coding (LPC) power spectra, which was utilized with an augmented Kalman filter for 

time-domain speech enhancement. Zhao et al. [41] used self-attention within a CNN for 

spectral mapping based magnitude enhancement for speech dereverberation.

Self-attention for complex ratio masking and complex spectral mapping has been studied for 

speech enhancement. A complex-valued transformer with Gaussian-weighted self-attention 

mechanism was proposed in [42]. A speaker-aware network using self-attention was 

investigated in [43], and a self-attention mechanism within a convolutional recurrent 

network was utilized in [18].

The first study to use self-attention for time-domain speech enhancement was reported 

in [31], which proposed a self-attention mechanism within a 1-dimensional UNet [46]. 

Pandey et al. proposed to use self-attention within layers of a dense UNet, which comprised 

dense blocks within encoder and decoder layers. A recent study [34] also investigated 

self-attention with a dual-path RNN for time-domain speech enhancement. However, we 

find that time-domain self-attending networks, such as the ones in [32] and [34], obtain 

subpar performance on untrained corpora.

In this work, we propose a self-attending RNN (SARNN) for time-domain speech 

enhancement to improve cross-corpus generalization. SARNN comprises RNN augmented 

with a self-attention block and a feedforward block. The proposed SARNN is motivated 

by observations such as RNNs with a smaller frame shift are helpful for cross-corpus 

generalization [37], [22], and self-attention is a general mechanism effective for speech 

enhancement [31], [41], [42], [43], [44], [34], [32], [45], [18]. We employ an efficient 

attention mechanism proposed specifically for RNN [47], which results in reduced memory 

consumption, faster training, and similar or better performance than the widely used 

attention mechanism in [38].

We find that self-attention mechanism in SARNN leads to substantial improvement on 

untrained corpora. Further, SARNN outperforms existing approaches to speech enhancement 

in terms of cross-corpus generalization. Additionally, we compare complex spectral mapping 

and time-domain enhancement for RNN and SARNN and find that complex spectral 

mapping and time-domain enhancement obtain statistically similar results when trained on a 

large corpus.

We find a subset of our test set to be particularly challenging for improving objective 

intelligibility and quality scores. To stimulate progress, we make this test set available online 

for evaluating future algorithms and facilitating direct comparisons.

The rest of the paper is organized as follows. Section II describes time-domain speech 

enhancement. Section III presents the details of SARNN building blocks and Section IV 

describes SARNN architecture for time-domain speech enhancement. Experimental settings 

are given in Section IV, and results and comparisons are presented in Section V. Concluding 

remarks are given in Section VI.
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II. Time-domain speech enhancement

A noisy speech signal x is defined as the sum of a clean speech signal s and a noise signal n

x = s + n (1)

x, s, n ∈ ℝM × 1, and M is the number of samples in the speech signal. A speech 

enhancement algorithm aims at obtaining a close estimate, ŝ, of s given x.

The goal of a time-domain speech enhancement algorithm is to compute ŝ directly from x 
instead of using a T-F representation of x. Time-domain speech enhancement using a DNN 

can be formulated as

s = fθ(x) (2)

where fθ denotes a function represented by a DNN parametrized by θ.

A. Frame-Level Processing

Generally, a speech enhancement algorithm is designed to process frames of a speech signal. 

Given a noisy signal x, it is first chunked into overlapping frames which is then processed 

at frame-level by a speech enhancement model. Let X ∈ ℝT × L denote the matrix containing 

frames of signal x and xt ∈ ℝL × 1 the tth frame. xt is defined as

xt[k] = x[(t − 1) ⋅ J + k], k = 0, ⋯, L − 1 (3)

where T is the number of frames, L is the frame length, and J is the frame shift. T is given by 
M
J , where ⌈ ⌉ denotes the ceiling function. x is padded with zeros if M is not divisible by J. 

Frame-level processing using a DNN can be defined as

st = fθ xt − T1, ⋯, xt − 1, xt, xt + 1, ⋯, xt + T2 (4)

where st is computed using xt, T1 past frames, and T2 future frames.

B. Causal Speech Enhancement

A frame-level speech enhancement algorithm is considered causal if the estimation of a 

given frame st is computed using noisy frames at time instances less than or equal to t. For 

causal speech enhancement Eq. (4) is modified as

st = fθ xt − T1, ⋯, xt − 1, xt (5)

where st is computed using xt and T1 past frames.

Causality is a necessary requirement for real-time speech enhancement. Further, we observe 

that a causal algorithm exhibits greater degradation on untrained corpora compared to 
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a corresponding non-causal algorithm. Therefore, we also develop and compare causal 

algorithms.

III. Self-attending Recurrent Neural Network

A block diagram of SARNN is given in Fig. 1. The building blocks of SARNN are layer 

normalization, RNN, self-attention block, and feedforward block. Next, we describe these 

building blocks one by one.

A. Layer Normalization

Layer normalization is a popular normalization technique used within DNNs to improve 

generalization and facilitate faster training [48]. It was proposed as an alternative to batch 

normalization [49], which is found to be sensitive to training batch size.

Let X ∈ ℝT × N be a matrix and xt be its tth row. We use the layer normalization defined as

xtnorm =
xt − μxt

σxt
2 + ϵ

⊙ γ + β, t = 1, ⋯, T (6)

where μxt and σxt
2 , respectively, are mean and variance of xt. Symbols γ and β are trainable 

parameters of the same size as xt, ⊙ denotes elementwise multiplication, and ∊ is a small 

positive constant used to avoid division by zero.

B. Recurrent Neural Network

We use LSTM RNN in SARNN. An illustrative diagram of an LSTM is shown in Fig. 2. 

Given an input vector sequence {x1, …, xt−1, xt, xt+1, …, xT}, the hidden state at time t, ht, 

is computed as

it = σ W ixxt + W iℎht − 1 + bi (7)

ft = σ W fxxt + W fℎht − 1 + bf (8)

gt = Tanh W gxxt + W gℎht − 1 + bg (9)

ot = σ W oxxt + W oℎht − 1 + bo (10)

ct = ft ⊙ ct − 1 + it ⊙ gt (11)

ht = ot ⊙ Tanh ct (12)

Pandey and Wang Page 6

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



σ(s) = 1
1 + e−s (13)

Tanh(s) = es − e−s

es + e−s (14)

where xt, gt, and ct respectively represent input, block input, and memory (cell) state at 

time t. In additions it, ft, and ot are gates known as input gate, forget gate and output gate, 

respectively. W’s and b’s denote trainable weights and biases.

C. Self-attention Block

A general attention mechanism is defined using three components: key K ∈ ℝT × R, value 

V ∈ ℝT × S, and query Q ∈ ℝT × R. First, correlation scores between pairs of rows from Q 

and K, {Qi, Kj}, where i, j ∈ {1, … , T}, are computed using the following equation.

W = QKT (15)

where W ∈ ℝT × T  and KT  denotes the transpose of K. The similarity scores in W are 

converted to probability values using the Softmax operation defined as

Softmax(W )(i, j) = expW (i, j)

∑j = 0
T − 1expW (i, j) (16)

The final attention output is defined as the linear combination of the rows of V with weights 

in Softmax(W).

A = Softmax(W )V (17)

In self-attention, K,V, and Q are computed from the same sequence. One of the approaches 

to self-attention is to use three linear projections of a given input, X ∈ ℝT × N, to obtain K,V, 

and Q, and then applying Eqs. (15)–(17) to obtain the attention output.

A block diagram of the attention block in SARNN is shown in Fig. 3. It comprises three 

trainable vectors q, k, v ∈ ℝN × 1 and its inputs are Q, V , K ∈ ℝT × N. Let qt, vt, and kt 

denote the tth row in Q, V, and K respectively, and they are refined using gating mechanisms 

in the following equations.

kt′ = kt ⊙ σ(k) (18)

qt′ = Lin qt ⊙ σ(q) (19)

Pandey and Wang Page 7

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vt′ = vt ⊙ [σ(Lin(v)) ⊙ Tanh(Lin(v))] (20)

where σ is sigmoidal nonlinearity, and Lin() is a linear layer. Note that σ(Lin(v)) ⊙ 
Tanh(Lin(v)) represents a constant vector computed from v. This operation is used during 

training only for better optimization of v. For evaluation, we use its value from the best 

model at training completion.

The final output of the attention block is computed as

W ′ = Q′K′T

N
(21)

A = Softmax W ′ V ′ (22)

D. Feedforward Block

The feedforward block in SARNN is shown in Fig. 4. A given input of size N is projected 

to size 4N using a linear layer, which is followed by Gaussian error linear unit (GELU) [50] 

and a dropout layer [51]. Finally, the output of size 4N is split into four vectors of size N, 

which are added together to get the final output.

With the building blocks described, we now present the processing flow of SARNN shown 

in Fig. 1. The input to SARNN is first normalized and then processed using an RNN. The 

output of the RNN is normalized using two parallel layer normalizations. The first stream is 

used as Q and the second stream is used as K and V for the following attention block. The 

output of the attention block is added to Q to form a residual connection. Again, the output 

is normalized using two parallel layer normalizations. The first stream is processed using a 

feedforward block and the second stream is added to the output of the feedforward block to 

form a residual connection.

IV. SARNN for Time-Domain Speech Enhancement

The proposed SARNN for time-domain speech enhancement is shown in Fig. 5. Given an 

input signal x with M samples, it is first chunked into overlapping frames with a frame 

size of L and frame shift of J to obtain T frames. Next, all the frames are projected to a 

representation of size N using a linear layer, which is then processed using four SARNNs. 

We use four-layered SARNN as a simple extension of the four-layered RNN for complex 

spectral mapping in [22]. A linear layer at the output projects the output of the last SARNN 

to size L. Finally, overlap-and-add (OLA) is used to obtain the enhanced waveform.

A. Non-causal Speech Enhancement

For non-causal speech enhancement, we use BLSTM RNN inside SARNN. A BLSTM 

comprises two LSTMs; a forward and a backward LSTM. The forward LSTM operates over 

the sequence in the original order, whereas the backward LSTM operates over the sequence 
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in the reverse order. Let X  and X  denote the sequence in the original and reverse order 

respectively. Then, we have

x t = xt (23)

x t = xT − t (24)

The hidden state at time t for a BLSTM is given as

ht = [h t, h t] = [LSTMf(X )t, LSTMb(X )t] (25)

where [a, b] denotes a concatenation of vectors a and b, and LSTMf and LSTMb represent 

the forward and the backward LSTM.

B. Causal Speech Enhancement

For causal speech enhancement, we use LSTM RNN and causal attention inside SARNN. 

Causal attention is implemented by applying a mask to W′ where entries above the main 

diagonal are set to negative infinity so that the contribution from future frames in Eq. (22) 

becomes zero. The causal attention is defines as

Acausal = Softmax Mask W ′ V ′ (26)

where

Mask W ′ (i, j) = W ′(i, j), if i ≤ j
−∞, otherwise (27)

V. Experimental Settings

A. Datasets

We evaluate all the models in a speaker, noise, and corpus independent way. We use all 

utterances from the training set of LibriSpeech corpus [52] to generate training mixtures. 

It consists of around 280K speech utterances of more than 2000 speakers. LibriSpeech has 

been shown to be an effective corpus for cross-corpus generalization because it is recorded 

by many volunteers across the globe, and hence consists of utterances recorded in different 

acoustic conditions. Noisy training utterances are generated in an online fashion during 

training in the following way. For each sample in a given batch, we randomly sample a 

speech utterance, extract a random chunk of 4 seconds from it, and add a random chunk of 

noise to it at a random SNR from {−5, −4, −3, −2, −1, 0} dB. The sampled speech is used 

unaltered if its duration is smaller than 4 seconds. A set of 10000 non-speech sounds from a 

sound effect library (www.sound-ideas.com) are used as the training noises.

All the models are evaluated on three different corpora: WSJ-SI-84 (WSJ) [53], TIMIT [54], 

and IEEE [55], which are not used during training. We use utterances of one male speaker 

and one female speaker from IEEE to further categorize IEEE as IEEE Male and IEEE 

Pandey and Wang Page 9

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sound-ideas.com/


Female to show potential gender effects. The WSJ test set consists of 150 utterances of 6 

different speakers. The TIMIT test set consists of 192 utterances in the core test set. IEEE 

Male and IEEE Female each consists of 144 randomly selected utterances. We generate 

noisy utterances using four different types of noises: babble, cafeteria, factory, and engine, 

none of which are used during training. Test utterances are generated at 6 different SNRs of 

−5, −2, 0, 2, and 5 dB. We find corpus fitting to be a severe issue for the difficult noises of 

babble and cafeteria, and at low SNRs of −5 dB and −2 dB. Therefore, for the sake of the 

brevity, we report results only for babble and cafeteria noises at SNRs of −5 dB and −2 dB. 

We observe similar performance trends for the other noises and SNR conditions. Note that 

our test set is the same as the one previously used in [37] and [22]. Babble and cafeteria 

noises are taken from an Auditec CD (available at http://www.auditec.com). Factory and 

engine noises are taken from the Noisex dataset [56]. We use WSJ test utterances mixed 

with babble noise at the SNR of −5 dB as the validation set.

We find our IEEE Male and IEEE Female test set to be relatively challenging in terms 

of improving the intelligibility and quality of unprocessed mixtures. In particular, IEEE 

utterances mixed with babble and cafeteria noises at SNRs of −5 dB and −2 dB are very 

difficult. Therefore, we provide online IEEE Male and IEEE Female utterances mixed 

with babble and cafeteria noises at SNRs of −5 dB and −2 dB as a useful test set for 

evaluating future algorithms and facilitating direct comparisons. It can be downloaded at 

https://web.cse.ohio-state.edu/~wang.77/pnl/corpus/Pandey/NoisyIEEE.html.

In addition we investigate the proposed model for speech quality improvement in relatively 

high SNR conditions. We train SARNN on the VCTK dataset [57] and compare it with 

a number of existing models evaluated on this task. The VCTK training set consists of 

utterances from 28 speakers mixed with different noises at SNRs of 0, 5, 10 and 15 dB. We 

exclude two speakers (p274 and p282) from the training set to create a validation set. The 

test set comprises utterances from two unseen speakers (not in the training set) mixed with 

different noises at 2.5, 7.5, 12.5, and 17.5 dB. We store training speech and noises separately 

and dynamically mix them during training using random SNRs from {0, 5, 10, 15} dB. The 

same SNR values are used as in the original training set. The dynamic mixing provides a 

measure of data augmentation, as similarly done in [58].

We also evaluate our model on real recordings. We utilize the blind test set from the second 

deep noise suppression (DNS) challenge [59], which consists of 650 real recordings and 

50 synthetic mixtures. This test set is divided into five classes of English, non-English, 

tonal, singing, and emotional speech. To create a training set, we use speech and noises 

from the third DNS challenge [60]. We remove low quality utterances from all classes using 

appropriate thresholds on provided parameter T60_WB. We use room impulse responses 

(RIRs) with T60_WB between 0.3 and 0.9. The final training set consists of 347K speech 

utterances, 65K noises, and 47K RIRs. We generate training mixtures dynamically by 

convolving a speech signal with a random RIR and adding a random noise segment. We 

add room reverberation with a probability of 0.5. When using an RIR, the training target 

is set to be the clean speech convolved with the first 50 ms of the RIR. We sample a SNR 

value uniformly from either {−5, −4, …, −1, 0} dB or from {1, 2, …, 19, 20} dB with a 

probability of 0.5.
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B. System Setup

All the utterances are resampled to 16 kHz, and leading and trailing silences are removed 

from training utterances. Each noisy mixture is normalized using root mean square (RMS) 

normalization and the corresponding clean utterance is scaled accordingly to maintain an 

SNR.

Parameter N is set to 1024, input frame size is set to 32 ms for causal system and 16 ms 

for non-causal system, and output frame size is set to 16 ms. For SARNN with BLSTM, 

N = 1024 results in a hidden state size of 512 in both forward and backward LSTM. A 

dropout rate of 5% is used in the feedforward block of SARNN. We use the utterance level 

MSE (mean squared error) loss in the time domain for training on Librispeech and the PCM 

(phase constrained magnitude) loss [32] for training on VCTK and DNS. The MSE loss is 

defined in the time domain as follows

LMSE(s, s) = 1
M ∑

k = 0

M − 1
(s[k] − s[k])2

(28)

The PCM loss is defined in the T-F domain that measures the distance between clean and 

estimated magnitude spectrum of both speech and noise. It is defined using the following set 

of equations.

n = x − s (29)

LSM(s, s) = 1
T ⋅ F ∑

t = 0

T − 1
∑

f = 0

F − 1
| Sr(t, f) + Si(t, f)

− (|Sr(t, f)| + |Si(t, f)|)|
(30)

LPCM(s, s) = 1
2 ⋅ LSM(s, s) + 1

2 ⋅ LSM(n, n) (31)

where S and S respectively denote STFTs of s and s, T is the number of time frames, and F 
is the number of frequency bins.

The Adam optimizer [61] is used for training. A batch size of 32 utterances is used on 

Librispeech and DNS and that of 8 on VCTK. Models are trained for 100 epochs on 

Librispeech, 84 epochs on DNS, and 200 epochs on VCTK. A constant learning rate of 

0.0002 is used for the first 33 (28 for DNS) epochs, after which it is exponentially decayed 

using a scale that results in a learning rate of 0.00002 in the final epoch. During training, 

we evaluate a given model on the validation set every two epochs, and the model parameters 

corresponding to the best SNR are chosen for evaluation.

We develop all the models in PyTorch [62] and exploit automatic mixed precision training to 

expedite training [63]. Two NVIDIA Volta V100 32GB GPUs are required to train SARNN 
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with a batch size of 32 utterances. A given batch is equally distributed to two GPUs using 

PyTorch’s DataParallel module.

C. Baseline Models

We train five different models as the baselines for comparing corpus-independent models 

trained on Librispeech. First, we train a recently proposed deep complex convolutional 

recurrent network (DCCRN) [17], which respectively won the first and the second place 

in real-time and non-real-time track of the first DNS challenge [64]. DCCRN uses 

noisy complex spectrum as the input and the complex ideal ratio mask (cIRM) as the 

training target. Next, we train two RNN-based models; RNN-IRM [37] and RNN-TCS 

[22]. RNN-IRM uses log spectral magnitude as the input feature and the IRM as the 

training target. RNN-TCS uses noisy complex spectrum as the input feature and the target 

complex spectrum (TCS) as the training target. Finally, we train two recently proposed time-

domain networks; dense convolutional network with self-attention (DCN) [32] and dual-path 

SARNN (DPSARNN) [34]. Even though DCN and DPSARNN obtain good enhancement in 

the time domain, they have not been trained and evaluated in a corpus-independent way.

The SARNN model trained on VCTK is compared with a number of existing methods that 

report performance on the same dataset (see Table III). The SARNN model trained on the 

DNS challenge dataset is compared with a baseline noise suppression network (NSNet) 

provided with the third DNS challenge [60].

D. Evaluation Metrics

We use short-time objective intelligibility (STOI) [35] and narrow-band perceptual 

evaluation of speech quality (PESQ) [65] as evaluation metrics for comparing models 

trained on Librispeech. STOI has a typical range of [0, 1], which roughly represents 

percent correct. PESQ has a range of [−0.5, 4.5], where higher scores denote better speech 

quality. Both metrics are commonly used for evaluating speech enhancement algorithms. 

For evaluating the models trained on VCTK, we use three metrics: composite scores [1], 

wide-band PESQ and STOI. Composite scores include three components: CSIG, CBAK 

and COVL, respectively measuring enhanced speech quality, noise removal and overall 

quality. For evaluation on the blind test set, we use a recently proposed non-intrusive quality 

metric, DNSMOS P.835, that highly correlates with subjective quality scores collected 

with the P.835 standard [66]. Similar to the composite scores, it has three components: 

DNSMOS-SIG, DNSMOS-BAK, and DNSMOS-OVL, respectively measuring enhanced 

speech quality, noise removal and overall quality.

VI. Results and Discussions

A. Learning Curves

First, we plot performance curves of SARNN training on Librispeech with MSE loss. Fig. 

6 plots on the validation set the MSE loss every epoch, and STOI, PESQ, and SNR scores 

every other epoch. We can observe that, for both causal and non-causal models, training 

progresses smoothly and converges at the end with minimal improvements in last 10 epochs.
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B. RNN vs SARNN

Now, we illustrate the effectiveness of self-attention for speech enhancement. Fig. 7 plots 

average STOI and PESQ scores over babble and cafeteria noises for the four test corpora 

and at 2 SNR conditions. The vertical bars at the top of the plots indicate 95% confidence 

interval. We can observe that adding the proposed attention mechanism after each layer 

in RNN leads to significant improvements for all the test conditions. This suggests that 

self-attention is an effective mechanism for improving cross-corpus generalization of RNN-

based speech enhancement. Note that improvements in cross-corpus generalization due to 

self-attention is not necessarily achieved in all architectures, as we find that DCN [32], a 

dense convolutional network with self-attention, fails to obtain similar improvements on 

untrained corpora (see Table I and Table II later).

C. Attention Mechanisms

We compare two different attention mechanisms for SARNN in causal and non-causal 

settings. Comparison results are plotted in Fig. 8. The first mechanism, denoted as A1, 

is the attention mechanism described in Section III-C. The second mechanism, denoted 

as A2, is borrowed from [38], where we use one encoder layer without positional 

embeddings. We explore single-headed and 8-headed attention for this mechanism, which 

are respectively denoted as A2–1 and A2–8. We can observe that all the three attention 

mechanisms obtain statistically similar objective scores for both causal and non-causal 

speech enhancement. This suggests that even though self-attention is an effective technique 

for speech enhancement, changing the attention mechanism in SARNN does not lead to 

statistically significant changes in the enhancement performance.

Next, in Fig. 9, we plot the number of parameters in SARNN for the two attention 

mechanisms. We can see that there is a dramatic increase in the number of parameters 

when adding attention to an RNN-only network. However, the increase in the number of 

parameters due to A1 is roughly half of that due to A2. Also, we find A1 to be faster than A2 

in both training and evaluation. As a result, we select A1 as the default attention mechanism 

in the remaining model comparisons.

D. Complex Spectral Mapping vs Time-domain Enhancement

We evaluate RNN and SARNN for both complex spectral mapping and time-domain speech 

enhancement. For complex spectral mapping, the input is the noisy STFT and the output is 

the estimated clean STFT. The real and the imaginary part of the STFT are concatenated 

together to obtain real-valued vectors. For time-domain enhancement, the input is the frames 

of the noisy speech and the output is the frames of the estimated clean speech. Average 

STOI and PESQ for two test noises and at two SNRs are plotted in Fig. 10. We can observe 

that time-domain enhancement is better than complex spectral mapping for most of the 

test cases; however, the performance difference is not statistically significant. Similar trends 

are observed with RNN and SARNN for both causal and non-causal speech enhancement. 

This suggests that, with training on a large corpus such as LibriSpeech, complex spectral 

mapping and time-domain enhancement obtain similar results.
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E. Frame Shift

Our previous studies in [37] and [22] suggest that a smaller frame shift leads to better 

speech enhancement on untrained corpora. As a result, a frame shift of 4 ms is proposed for 

complex spectral mapping in [22]. In this work, we are able to further decrease the frame 

shift from 4 ms to 2 ms with the help of automatic mixed precision training, which reduces 

memory consumption by half and improves training time significantly. Frame shifts of 4 ms 

and 2 ms are compared for RNN and SARNN in Fig. 11. We observe that, except for the 

causal SARNN at WSJ, a smaller frame shift leads to significant improvements for most 

of the test conditions. Similar performance trends are observed with RNN and SARNN for 

both causal and non-causal enhancement. This further strengthens the argument that using a 

smaller frame shift is an effective technique for improving cross-corpus generalization. Note 

that it was reported in [22] that for a gated convolutional recurrent network (GCRN) [21], 

a smaller frame shift does not always lead to better cross-corpus generalization. It might be 

due to the fact that the receptive field of a convolutional neural network is constant, and as a 

result, reducing the frame shift leads to a reduction in the effective receptive field.

F. Comparison with Baselines

Table I and Table II respectively report average STOI and PESQ scores over babble and 

cafeteria noises for causal and non-causal speech enhancement. First, we observe that 

DCCRN has the lowest objective scores for both causal and non-causal speech enhancement. 

This suggests that DCCRN is not effective in low SNR conditions, especially for the 

challenging IEEE corpus. Next, we observe that RNN-TCS is better than RNN-IRM for 

non-causal speech enhancement. For causal speech enhancement, RNN-TCS is better than 

RNN-IRM in terms of STOI, but for PESQ, RNN-IRM has similar or better scores for many 

test conditions. Further, we notice that DCN does not obtain good scores on all the corpora. 

For many cases, DCN has even worse scores than RNN-IRM, suggesting that DCN fails to 

generalize to untrained corpora. Finally, we notice that even though DPSARNN scores are 

worse than SARNN, the difference is less than 1% for STOI and less than 0.1 for PESQ 

in most of the cases. For some cases, such as non-causal enhancement for IEEE Male, 

DPSARNN is significantly worse than SARNN.

In summary, using RNN with a smaller frame shift improves cross-corpus generalization. 

Complex spectral mapping and time-domain enhancement are comparable to each other 

but better than ratio masking. Adding self-attention to RNN further improves cross-corpus 

generalization. Although not comparable to SARNN, DPSARNN obtains good cross-corpus 

generalization.

G. Comparing Loss Functions

We compare two loss functions, MSE and PCM. This comparison is to establish the 

importance of the PCM loss for high SNR enhancement. Results are given in Table III. 

We observe that, at −5 dB, PCM is better than MSE for WSJ and TIMIT, but similar to 

or worse than MSE for IEEE Male and Female. At 5 dB PCM is better than MSE for all 

test conditions. Moreover, PESQ improvements are very significant for many cases. This 

suggests that, even though PCM is not consistently better in low SNR conditions, it is 

clearly a better loss function for high SNR speech enhancement. Therefore, we use the PCM 
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loss for training models on VCTK and DNS challenge dataset, which require evaluation in 

relatively high SNR conditions.

H. Evaluation on VCTK

We compare SARNN trained on VCTK with baseline models in Table IV. We can see that 

non-causal SARNN is significantly better than existing non-causal models. Causal SARNN 

also obtains state-of-the-art results. However, the difference between second-best causal 

model and causal SARNN is not as significant as between the second-best non-causal model 

and non-causal SARNN.

I. Evaluation on Real Recordings

Finally, we evaluate the causal SARNN trained on the DNS challenge dataset on the blind 

test set of the second DNS challenge, which consists of 650 real recordings and 50 synthetic 

mixtures. Results are compared with a baseline NSNet in Table V. We observe that SARNN 

is substantially better than NSNet for all the metrics and for all the speech classes. We 

also observe that SARNN is able to improve both DNSMOS-SIG and DNSMOS-BAK for 

English, tonal, non-English and singing. For emotional speech, however, we see a good 

improvement in DNSMOS-BAK but reduction in DNSMOS-SIG. Overall, DNSMOS-OVR 

is substantially improved for all speech classes except for a slight reduction in singing and 

emotional speech. This may be due to very few training utterances for these two classes. 

Out of 347K training utterances, only 5K belong to the emotional class and only 2K to the 

singing class.

VII. Concluding Remarks

In this study, we have proposed a novel SARNN for time-domain speech enhancement 

to improve cross-corpus generalization. SARNN comprises of RNN augmented with self-

attention and feedforward blocks. We have trained SARNN in a noise, speaker and 

corpus independent way and performed comprehensive evaluations on four untrained 

corpora for difficult nonstationary noises at low SNR conditions. Experimental results 

have demonstrated the superiority of SARNN over competitive algorithms, such as RNN, 

DCCRN, DCN and DPSARNN.

We have found that RNN with a smaller frame shift, such as 4 ms and 2 ms, is an effective 

technique for speech enhancement with improved cross-corpus generalization. Further, we 

have revealed that although attention can obtain significant improvements, the types of 

attention mechanism do not make a big difference. We have also evaluated RNN and 

SARNN for complex spectral mapping and time-domain speech enhancement. A key finding 

is that complex spectral mapping and time-domain enhancement are similar to each other, 

but are significantly better than ratio masking when trained on a large corpus. Further, we 

have examined frame shifts of 4 ms and 2 ms and reported significantly better results with 2 

ms frame shift.

We have also trained SARNN on the VCTK dataset for speech quality improvement in 

relatively high SNR conditions and obtained state-of-the-art results. Additionally, we have 

trained a causal SARNN to jointly perform dereverberation and denoising. For this training, 
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we utilized speech, noises, and RIRs from the DNS challenge dataset. The evaluation on a 

blind test set using a non-intrusive quality metric demonstrates that SARNN obtains strong 

quality improvements for real recordings. This illustrates that SARNN is a highly effective 

and robust model for speech enhancement.

In the future, we plan to perform listening tests of SARNN on IEEE utterances in low 

SNR conditions; IEEE sentences are widely used in speech intelligibility evaluations. 

Additionally, we plan to further investigate DPSARNN, as it is found to be effective for 

cross-corpus generalization. We have observed that the architectures with larger numbers 

of parameters, such as RNN and SARNN, obtain better generalization compared to 

architectures with fewer parameters, such as convolutional neural networks. We plan to 

redesign DPSARNN architecture to expand its number of parameters to be comparable to 

that of RNN.

Even though we have compared causal and non-causal approaches, we have not considered 

parameter efficiency and computational complexity of models, as the primary goal of 

this study is to improve cross-corpus generalization. SARNN has significantly larger 

number of parameters compared to DPSARNN and DCN. A future research direction 

would be to optimize SARNN for real-world applications by using techniques such as 

model compression and quantization [75]. A related research direction is to explore 

DNN architectures that have fewer number of parameters but provide good cross-corpus 

generalization.
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Fig. 1: 
A diagram of SARNN. Layer Norm denotes a layer-normalization layer and ⨁ is an 

elementwise addition operator.
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Fig. 2: 
A diagram of an LSTM with three gates. Symbol ⊗ denotes elementwise multiplication.
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Fig. 3: 
Attention block in SARNN. The inputs to the block are qt, kt, and vt and the output from the 

block is at.
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Fig. 4: 
Feedforward block in SARNN.
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Fig. 5: 
The proposed SARNN for time-domain speech enhancement.
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Fig. 6: 
Learning curves for SARNN training on Librispeech with MSE Loss. We plot MSE loss, 

and STOI, PESQ and SNR scores on the validation set.
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Fig. 7: 
RNN comparisons with and without attention. a) Non-causal, b) causal.
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Fig. 8: 
Comparisons of different attention mechanisms. a) Non-causal, b) causal.
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Fig. 9: 
Number of trainable parameters in SARNN for different attention mechanisms.
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Fig. 10: 
Comparing complex spectral mapping and time-domain enhancement for RNN and 

SARNN. TCS stands for target complex spectrum and WAVE for waveform, which are 

respectively used as the training targets for complex spectral mapping and time-domain 

enhancement. a) Non-causal, b) causal.
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Fig. 11: 
Effects of frame shifts for RNN and SARNN. a) Non-causal, b) causal.
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TABLE III:

Comparing MSE loss and PCM loss at SNRs of −5 dB and 5 dB. a) Non-causal, b) causal.

Test Corpus WSJ TIMIT IEEE Male IEEE Female

Test SNR −5 dB 5 dB −5 dB 5 dB −5 dB 5 dB −5 dB 5 dB

Babble

STOI (%)

Noisy 58.6 81.2 54.0 77.1 55.0 79.4 55.5 80.3

(a)
MSE 91.1 97.1 84.5 96.1 82.3 95.6 85.6 96.8

PCM 92.0 97.6 84.9 96.7 81.5 95.9 84.8 97.2

(b)
MSE 88.3 96.6 80.2 95.3 77.7 94.6 80.1 96.1

PCM 88.8 97.1 80.4 95.9 77.7 94.9 78.4 96.5

PESQ

Noisy 1.54 2.12 1.46 2.08 1.45 2.06 1.12 1.86

(a)
MSE 2.82 3.36 2.43 3.31 2.45 3.31 2.48 3.36

PCM 2.98 3.57 2.52 3.48 2.41 3.40 2.47 3.57

(b)
MSE 2.50 3.25 2.15 3.13 2.16 3.14 2.10 3.18

PCM 2.57 3.42 2.14 3.27 2.08 3.20 1.99 3.37

SI-SNR

Noisy −5.0 5.0 −5.0 5.0 −5.0 5.0 −5.0 5.0

(a)
MSE 10.9 17.2 8.9 16.3 7.5 14.6 8.1 16.0

PCM 10.9 17.2 8.8 16.3 6.7 14.6 7.5 16.1

(b)
MSE 9.1 16.6 7.2 15.5 5.3 13.9 5.8 15.3

PCM 9.1 16.6 7.2 15.6 5.3 13.8 5.1 15.3

Cafeteria

STOI (%)

Noisy 57.4 81.2 53.1 76.2 54.8 77.0 55.1 78.4

(a)
MSE 88.3 96.4 82.7 95.1 80.6 94.0 85.3 95.9

PCM 89.0 96.9 84.0 95.8 81.0 94.4 86.1 96.4

(b)
MSE 84.7 95.7 79.0 94.0 75.5 92.6 80.3 95.1

PCM 85.2 96.2 79.4 94.7 75.2 92.9 80.3 95.7

PESQ

Noisy 1.44 2.12 1.33 2.02 1.37 1.98 1.01 1.79

(a)
MSE 2.64 3.26 2.36 3.20 2.43 3.22 2.45 3.20

PCM 2.76 3.47 2.50 3.36 2.43 3.29 2.56 3.44

(b)
MSE 2.34 3.14 2.12 2.99 2.14 3.02 2.17 3.03

PCM 2.38 3.31 2.12 3.13 2.02 3.09 2.16 3.24

SI-SNR

Noisy −5.0 5.0 −5.0 5.0 −5.0 5.0 −5.0 5.0

(a)
MSE 9.6 16.2 9.0 15.9 7.2 14.2 8.4 15.9

PCM 9.5 16.1 9.0 16.0 7.1 14.3 8.4 15.9

(b) MSE 8.1 15.6 7.7 15.3 5.8 13.5 6.9 15.4
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Test Corpus WSJ TIMIT IEEE Male IEEE Female

Test SNR −5 dB 5 dB −5 dB 5 dB −5 dB 5 dB −5 dB 5 dB

PCM 8.2 15.6 7.8 15.3 5.6 13.5 6.8 15.5
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TABLE IV:

Comparing SARNN with baseline models on the VCTK dataset.

PESQ STOI (%) CSIG CBAK COVL Causal?

Noisy 1.97 91.5 3.35 2.44 2.63 -

SEGAN [24] 2.16 - 3.48 2.94 2.80 ✕

Wave U-Net [67] 2.4 - 3.52 3.24 2.96 ✕

SEGAN-D [68] 2.39 - 3.46 3.11 3.50 ✕

MMSE-GAN [69] 2.53 93 3.80 3.12 3.14 ✕

Metric-GAN [70] 2.86 - 3.99 3.18 3.42 ✕

Metric-GAN+ [71] 3.15 - 4.14 3.16 3.64 ✕

DeepMMSE [72] 2.95 94 4.28 3.46 3.64 ✕

Koizumi 2020 [43] 2.99 - 4.15 3.42 3.57 ✕

HiFi-GAN [73] 2.84 - 4.18 2.55 3.51 ✕

T-GSA [42] 3.06 - 4.18 3.59 3.62 ✕

DEMUCS [58] 3.07 95 4.31 3.40 3.63 ✕

NC-SARNN 3.21 96 (95.7) 4.42 3.63 3.83 ✕

Wiener 2.22 93 3.23 2.68 2.67 ✓

Deep Feature Loss [74] - - 3.86 3.33 3.22 ✓

DeepMMSE [72] 2.77 93 4.14 3.32 3.46 ✓

MHANet [44] 2.88 94 (93.6) 4.17 3.37 3.53 ✓

DEMUCS [58] 2.93 95 4.22 3.25 3.52 ✓

SARNN 2.96 95 (95.0) 4.21 3.46 3.59 ✓

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 March 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pandey and Wang Page 36

TABLE V:

Evaluating SARNN on the blind test set of the second DNS challenge using DNSMOS P.835.

Singing Tonal Non-English English Emotional Overall

BAK

Noisy 3.29 3.71 3.58 3.21 2.65 3.28

NSNet 3.53 4.33 4.32 4.23 3.45 4.10

SARNN 3.70 4.39 4.45 4.46 3.54 4.27

SIG

Noisy 3.45 3.98 3.99 3.98 3.46 3.87

NSNet 2.99 3.87 3.84 3.79 2.94 3.63

SARNN 3.54 4.07 4.18 4.22 3.00 3.98

OVR

Noisy 3.01 3.42 3.40 3.27 2.75 3.23

NSNet 2.64 3.63 3.59 3.49 2.58 3.34

SARNN 2.99 3.78 3.88 3.92 2.61 3.65
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