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Abstract

Computer vision is a tool that could provide livestock producers with digital body measures

and records that are important for animal health and production, namely body height and

length, and chest girth. However, to build these tools, the scarcity of labeled training data

sets with uniform images (pose, lighting) that also represent real-world livestock can be a

challenge. Collecting images in a standard way, with manual image labeling is the gold stan-

dard to create such training data, but the time and cost can be prohibitive. We introduce the

PreciseEdge image segmentation algorithm to address these issues by employing a stan-

dard image collection protocol with a semi-automated image labeling method, and a highly

precise image segmentation for automated body measurement extraction directly from

each image. These elements, from image collection to extraction are designed to work

together to yield values highly correlated to real-world body measurements. PreciseEdge

adds a brief preprocessing step inspired by chromakey to a modified GrabCut procedure to

generate image masks for data extraction (body measurements) directly from the images.

Three hundred RGB (red, green, blue) image samples were collected uniformly per the Afri-

can Goat Improvement Network Image Collection Protocol (AGIN-ICP), which prescribes

camera distance, poses, a blue backdrop, and a custom AGIN-ICP calibration sign. Images

were taken in natural settings outdoors and in barns under high and low light, using a Ricoh

digital camera producing JPG images (converted to PNG prior to processing). The rear and

side AGIN-ICP poses were used for this study. PreciseEdge and GrabCut image segmenta-

tion methods were compared for differences in user input required to segment the images.

The initial bounding box image output was captured for visual comparison. Automated digi-

tal body measurements extracted were compared to manual measures for each method.

Both methods allow additional optional refinement (mouse strokes) to aid the segmentation
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algorithm. These optional mouse strokes were captured automatically and compared.

Stroke count distributions for both methods were not normally distributed per Kolmogorov-

Smirnov tests. Non-parametric Wilcoxon tests showed the distributions were different (p<
0.001) and the GrabCut stroke count was significantly higher (p = 5.115 e-49), with a mean of

577.08 (std 248.45) versus 221.57 (std 149.45) with PreciseEdge. Digital body measures

were highly correlated to manual height, length, and girth measures, (0.931, 0.943, 0.893)

for PreciseEdge and (0.936, 0. 944, 0.869) for GrabCut (Pearson correlation coefficient).

PreciseEdge image segmentation allowed for masks yielding accurate digital body mea-

surements highly correlated to manual, real-world measurements with over 38% less user

input for an efficient, reliable, non-invasive alternative to livestock hand-held direct measur-

ing tools.

Introduction

Manual body measures for trait prediction

Trait prediction from animal body measurements taken manually or from images is not a new

concept [1–3]. The expense and inconvenience of using livestock scales to record weights [4–

6] has inspired decades of research into alternative methods to obtain reasonably accurate

weights for use in health, production and marketing livestock [4, 7, 8]. Body weights are

important for many decisions in livestock health, production, and marketing, and body size is

a preferred criteria to select breeding females, and conformation for breeding males in some

developing regions [9]. Weight gain is dependent on age, stage of lactation or gestation, nutri-

tional or disease status, and breed [10], and may inform traditional animal husbandry breeding

and production decisions. In genomics and genomic tool development, physical measure-

ments such as size and shape may be associated with productivity or with adaptive genes for

traits such as milk production, fertility, disease and parasite resistance, or growth rate. Alterna-

tively, physical measurements of size have long been used to estimate weight cheaply [4, 6, 7,

11–13]. Weight prediction formulas generally use some combination of chest girth, body

length, or height at the withers to predict body weight (BW) [14, 15]. Conversion tables are

available online for producers to predict body weights based on chest girth measures [14, 16,

17].

Researchers as early as the 1940’s and 1950’s investigated the most cost and time effective

methods for gathering livestock body measurements for accurate body weight prediction. A

critical research question was not only which body measures were the best predictors of actual

body weight, but given that animals will naturally move between repeated measurements,

causing the measurements to vary, how many times and how many observers should take the

measurements to ensure accuracy? Touchberry and Lush in their 1950 paper "The accuracy of

linear body measurements of dairy cattle", addressed the contradictory evidence at the time of

whether the time and expense of taking multiple linear body measurements over time or

observers was worth the effort. They gathered five common body measures (wither height,

chest depth, body length, heart girth, and paunch girth) over 15 years, taking each measure-

ment three times at specific ages. (Measurements as number of animals:age were 367:6 mo.

348:1 yr., 329:2 yr., 244:3 yr., 161:4 yr., 108:5 yr., and 38: 7 yr.) They found that assuming there

was no egregious error in the manner of taking measurements, that while a small reduction in

accuracy was possible, a single measurement is accurate for practical purposes [18]. The
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minimal variation between observers and thus the validity of using one observer to take live-

stock measurements has stood the test of time [19, 20]. In fact, even in the field of anthropome-

try (the study of human external morphological trait measurement) it has been shown that

intra and inter-observer measurements are very similar, and thus the costs in time and effort

for multiple observers adds little statistically to the results [21–23]. We describe collection of

manual body measures on goats to use in comparison to digitally extracted body measure-

ments from images. Due to the evidence outlined above, the manual measurements for this

study were taken by one highly trained observer. This approach is expected to minimize varia-

tion while providing high accuracy in the manual body measurement values used to compare

digitally extracted body measures.

Digital image body measures for trait prediction

Image segmentation provides an essentially non-invasive data collection method on a broad

range of scales [24]. It is often focused on collecting or analyzing morphology data, from

remote sensing used to assess large land mass features, or in diagnostic medical imaging from

a whole body, to organs, down to cells or for imaging plants to measure height, shape, size or

color of plants or their flowers or grain heads. Measurements taken over time can provide

dynamic phenotype information such as growth rates and more [25–27]. Image segmentation

can be used to separate a feature or region of interest (e.g. subject animal) from the back-

ground using techniques involving intensity, color, edge, and texture [28]. The PreciseEdge

algorithm is designed for image segmentation to enable extracting biologically relevant animal

body measurements for developing predictive models of important livestock traits, such as

body weight.

Non-invasive image measuring tools can be useful in a variety of situations where physical

measurements are difficult because of distance, or that could be disruptive, dangerous, or dam-

aging to the object or organism being measured. This is particularly relevant when working

with live animals. Applications using digital images hold great promise for the future of high

throughput phenotyping systems in livestock, but are in the early stage of development [29].

PreciseEdge image segmentation algorithm aims to reduce user input compared to GrabCut

image segmentation algorithm, while maintaining or improving image edge detection preci-

sion. The highest edge detection precision is required so that digital measuring of the subject

region of interest (ROI) will be an accurate representation of the subject in real life.

Image segmentation has many described approaches in the literature, often the modifica-

tion or generation of basic techniques to address a unique image segmentation challenge,

rather than a broad range of problems [25, 30]. The two major approaches to image segmenta-

tion include user defined backgrounds, and natural settings backgrounds [31]. Further, image

segmentation can be either a fully automated process, or a procedure that requires some level

of user input. The concept of capturing people or objects in the foreground of images with a

user defined solid blue background to remove and replace the blue background with images

from other scenes was applied in the movie industry in the 1930’s, long before the advent of

digital images and video. The technique has been refined over the years, and applied to digital

photography [32]. PreciseEdge is inspired by this concept, called the ’chromakey’ technique of

’matting’ an image (Fig 1). The purpose of chromakey is to make a composite of two or more

video streams so well integrated that they appear to have been captured in a single scene in real

life. In contrast, PreciseEdge removes a blue background without replacement, to clarify the

ROI edges and enhance the results of the GrabCut algorithm by reducing user input (mouse

strokes). The PreciseEdge algorithm segmentation mask allows measurements extracted from

the image that correspond closely to real-life measurements of the animal in the photograph.
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This accurate correspondence of measures derived from digital images to the animal pictured

is essential for digital images to be relevant in non-invasive, high-throughput digital phenotyp-

ing, and for development of measuring tools that can inform decisions on animal health and

productivity. Such tools have the potential to minimize animal handling required to gather

measurements, which in turn may reduce animal stress or discomfort. These changes could

then result in more accurate and consistent measurements compared to manually collected

data.

State-of-the-art in automated body measures

Machine learning methods to train models to extract livestock body measurements automati-

cally from digital image data are beset with three major challenges around acquiring labeled

image training data sets, namely 1) the labeled data sets are not readily available in large

enough numbers, 2) the labeled (mask) data sets are not of the precision required for extract-

ing body measurements similar to real-world body measurements, and 3) high quality labeled

image data sets can be generated manually, but this is time consuming and expensive [26, 33–

36]. The technology and automation is advancing, however high precision for livestock body

measurements still requires some manual inputs [37–39].

Segmentation for simple classification is trivial in comparison to segmentation intended to

directly extract complex measurements for further analysis to predict traits with real-world

impact. One example is in particle image velocimetry (PIV) for multiphase flows where such

imprecise segmentation could have environmental implications in enhanced oil recovery or

ground water remediation work and more [40]. Similarly in livestock, precision is required,

and the interest in this paper is to extract accurate body measures of live animals from images.

Refinement of current methods for measuring or examining animals in a non-invasive way,

could improve animal welfare and productivity, the safety of both animals and humans, as well

as improving the measurements themselves used to make animal health and welfare decisions.

Animal measurements taken by hand are notoriously variable across different observers and

this is mitigated by using only one observer with negligible statistical penalty. As described in

the section above ’Manual Body Measures for Trait Prediction’, and specifically examined by

Touchberry and Lush, this variation is due to animal movement between repeated measures

more so than human error [18]. Digital tools will provide consistency across sampling situa-

tions. Therefore, in the case of measurements taken by many individuals across different loca-

tions, such tools are sorely needed. A particular challenge is photographing animals in a wide

array of locations, including fields, barns, or even in wild or natural settings. Establishing a

Fig 1. Image Matting, a) original image, b) alpha matte or mask image.

https://doi.org/10.1371/journal.pone.0275821.g001
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reasonable correlation between measurements extracted from images and real-world biologi-

cal significance is a logical first step to ensure development and adoption of digital tools that

will deliver data and analysis for those studying or caring for animals.

Manually generated image annotations are the gold standard for developing machine learn-

ing training data. The manual methods often start out with a bounding box drawn by a user

with the computer mouse, to identify the object of interest and simultaneously, to identify the

background pixels outside of the bounding box. Some workers have attempted to automate

drawing the bounding box [41] and for livestock, combining that with convoluted neural net-

works (CNN) and standardized cow images found online [42, 43]. This method provides

promising segmentation; however, the values are ’relative’ but not directly related to real-

world biological measures. Additionally, the cattle images used were found online and show

the animals in a relatively consistent pose, they do not represent real-world conditions. These

are professional marketing photos that are often retouched or include fake backgrounds which

likely impact image segmentation. Still other researchers used machine generated bounding

boxes from video to train CNN models with only the best masks moving from one model gen-

eration to the next [34]. Developing CNN models to target select features have also been

applied [44]. However, these attempts still overlook the problem of needing a large supply of

consistently taken images that also represent a variety of animals in the real-world to develop

automated tools to extract digital body measurements.

GrabCut algorithm

The GrabCut algorithm begins with a user drawing a bounding box around the region of inter-

est (ROI), and it was developed to segment images with highly complex background features,

as in a natural environment using graph-based segmentation[45]. A modified version of Grab-

Cut is integrated into the PreciseEdge algorithm, whereby only the ’sure foreground’ and ’sure

background’ data is identified and input into the GrabCut algorithm leaving out the ’possible

foreground’ and ’possible background’ data described in the original GrabCut paper. The base

techniques employed by GrabCut are graph cuts and border matting. Matting is the generation

of a binary mask image or ’alpha matte’ that shows the foreground opacity, and results in an

image where the foreground ROI pixels are shown in white, and the background pixels are

shown in black [31]. Mask pixel values are 1 for white and 0 for black, and the mask can be

multiplied with the original image to leave only the foreground, or ROI (Fig 1). This process is

done by segmentation of an ROI, or foreground object by estimating the background color,

and the foreground color and opacity (alpha matte) interactively, with the user marking the

foreground and background manually on the image with the computer mouse [46]. GrabCut

begins with iterative graph cuts, and then refines that segmentation with border matting

around the likely edges identified by graph cuts, reducing the amount of user interaction

required, and regularizing the alpha values in its border matting step, which reduces visible

artifacts [47].

PreciseEdge algorithm

PreciseEdge addresses the problems of quantity and quality of labeled images, including reduc-

ing the user input required to develop them, from image collection to image processing and

data extraction. We add a pre-processing step to a GrabCut inspired by ChromaKey to reduce

user input required by GrabCut. A fully automated image processing algorithm to extract

body measurements directly from the images was used on output masks from GrabCut-only

and PreciseEdge for comparison. PreciseEdge combines human and automated inputs to gen-

erate labeled images that are so precise, that digital measures can be taken directly from the
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image rather than via model generated predictions. We describe in detail how PreciseEdge

uses a two-step image segmentation to prepare image masks for automated extraction of digital

measurements for accurate body measures. To apply PreciseEdge, all images are collected with

the African Goat Improvement Network Image Collection Protocol (AGIN-ICP) we devel-

oped [48, 49].

Materials and methods

Individuals holding goats depicted in the images included in this manuscript, supplementary

materials, and data have given written informed consent (as outlined in PLOS consent form)

to publish these images.

Image capture and data extraction

Seventy-five goats were carefully measured by hand with a tape measure by one highly trained

technician and photographed at public animal shows with written permission of the owners.

The photo set up and posing of animals were done according to the African Goat Improve-

ment Network Image Collection Protocol (AGIN-ICP) [49], which includes a sign for size and

color calibration to be included in the images and blue plastic tarps behind and beneath the

subject goat. A Ricoh Digital camera was used, and high and low light levels for four sets of

two poses for each sample animal for a total of 300 images. The rear and sign poses were used

to generate masks with both the PreciseEdge or GrabCut image segmentation algorithm to cre-

ate image masks for extracting body measures and calibration data. Image region of interest

(ROI) measures extracted were converted from pixel count values to centimeters using the

extracted calibration sign measurements. Calibration signs are rectangular, and thus easily

extracted using GrabCut, and the measurements were converted to centimeters to convert

extracted digital body pixel measurements.

Compression format—JPG conversion to PNG

It is not always mentioned, but images processed through any analysis are impacted by the

image compression method, which can cause a loss of data making the file smaller and easier

to store, but that may lose precision in image segmentation. The predominant image format

used by digital cameras today is JPG, also known as JPEG. These files are RGB raster files

using lossy compression to produce a smaller file needing less storage space and that is easier

to share across the internet. Lossy compression uses the discrete cosine transform (DCT) [50],

where high frequency data are removed, so are lost in the compression. The resulting image is

typically acceptable to the human eye, as people cannot perceive the missing data. However, to

obtain accurate measurements from images, this type of unrecoverable data loss is problematic

[51]. Therefore, a lossless compression for the raster RGB image, such as the portable network

graphics (PNG) [52] would preserve the image data. PNG compression is the chief lossless for-

mat found on the internet. For PNG compression, the image is first passed through a filter,

where each pixel is represented with its value difference from an adjacent pixel for each color

channel (red, green, blue), for each row of pixels in the image. These are then compressed,

row-by-row based on pattern matching of these differences. Each pattern is saved on the first

instance, and then that instance is referred to whenever it is repeated in the image [53]. The

type of filtering and the number of patterns within each image will vary the compression ratio,

or level of reduction in size.

Testing image compression formats of JPG (as the images come out of the camera) versus

conversion to PNG format was conducted. JPG images were converted to PNG images by

changing the image file name extensions from JPG to PNG. Automated capture of user input
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was done by counting pixel points (x, y) locations marked by the user on each image in Grab-

Cut-only and PreciseEdge Step 2, and each point counted as one ’stroke’ of the mouse. Mask

outputs, and mean stroke counts were compared for JPG versus PNG images, and it was deter-

mined that PNG images result in increased mask precision, and reduced user input for both

segmentation algorithms. Therefore, for the following comparison of GrabCut versus Preci-

seEdge algorithms, all images were processed using PNG format.

ROI isolation with GrabCut and PreciseEdge

The PreciseEdge algorithm (Figs 2–5) is a two-step process for user input. Step 1 is a color step

removing the blue background in the image (Fig 6). Step 2 uses the output image from Step 1

and applies GrabCut to further refine the ROI. Once the ROI is identified, the images are sub-

jected to fully automated processes to complete the refinement of the mask, image labeling,

and measuring the animal’s body and generation of output images and data files. Further

refinement was done using OpenCV morphologyEx functions [54].

Fig 2. PreciseEdge algorithm overview.

https://doi.org/10.1371/journal.pone.0275821.g002
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To compare PreciseEdge and GrabCut, only the PreciseEdge images went through the

color step, (Step 1, Fig 6), as a pre-processing step inspired by chromakey. Chromakey sepa-

rates the image foreground and background so the background can be removed and replaced

with another scene from a different image for dramatic effects. In contrast, PreciseEdge works

with just one image with the goal of producing an output image that ’helps’ the GrabCut pro-

cess separate the foreground and background. GrabCut-only images skipped the color step,

Step 1, and used the original full color images for Step 2 (S1 Table).

Three hundred images were processed through the same software with the only difference

for PreciseEdge being that the images went through the brief, pre-processing chromakey color

step (Figs 3 and 5). Post-ROI processing for generating masks and measures was identical, and

fully automated for both algorithms. The images were taken with a Ricoh digital camera (JPG),

outside or inside barns, of 75 goats pictured from the side and rear in two different settings

each, for four images per goat. The collection procedure images included a custom calibration

feature to transform pixel measurements to real world measures. The goats were manually

Fig 3. PreciseEdge algorithm step 1 overview.

https://doi.org/10.1371/journal.pone.0275821.g003
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measured, weighed and photographed per the AGIN-ICP. To mitigate variation, all the man-

ual measures were taken by one highly trained person, and the digital measures user input

were also taken by one highly trained person. Digital measures were correlated with the three

most common manual livestock body measures of body height, length, and chest girth.

Images from digital cameras (usually JPG format) input to PreciseEdge are first resized so

they will fit on the computer screen and their extensions changed to PNG for processing. The

first step in the PreciseEdge algorithm is inspired by chromakey (Figs 3 and 5), and the second

step is a modified GrabCut (Fig 4), with user input identifying the ’sure’ foreground and back-

ground data, and not using ’probable’ data as outlined in the original GrabCut paper.

PreciseEdge—step 1. In step one (Fig 5), the resized color image (RGB) is split into its

individual color channels. Image pixels are arranged in three spatial dimensions, (k = 3) with

the vertical and horizontal planes represented as i and j, respectively. Each k dimension repre-

sents intensity values for red (R), green (G), and blue (B) color channels, respectively (Eqs 1, 2,

and 3).

rij ¼ RGBij8ij ð1Þ

gij ¼ RGBij8ij ð2Þ

bij ¼ RGBij8ij ð3Þ

Each channel array is changed from the OpenCV default image number type, unsigned

integer ‘uint8’ (0–255), to integer ‘int64’ (-263 to 263) for signed integer calculations (Eqs 4, 5,

and 6), where R, G, and B are the color channels, red, green, and blue, and rij, gij, and bij are

individual pixel intensity values in each channel. The resulting values from converting

unsigned values will be positive, thus the modulus is the positive range for ‘int64’ (0 to 263

Fig 4. PreciseEdge algorithm step 2 overview.

https://doi.org/10.1371/journal.pone.0275821.g004

PLOS ONE PreciseEdge raster RGB image segmentation algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275821 October 13, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0275821.g004
https://doi.org/10.1371/journal.pone.0275821


Fig 5. PreciseEdge algorithm step 1 detail.

https://doi.org/10.1371/journal.pone.0275821.g005
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scale).

Rij ¼ ½rij modð2
63 þ 1Þ�8ij ð4Þ

Gij ¼ ½gij modð2
63 þ 1Þ�8ij ð5Þ

Bij ¼ ½bij modð2
63 þ 1Þ�8ij ð6Þ

Matrices of difference values between channels, (Eqs 7 and 8), where R, G, B are the ‘int64’

transformed channels, are created,

BRij ¼ ½Bij � Rij�8ij ð7Þ

GRij ¼ ½Gij � Rij�8ij: ð8Þ

Pixels are identified, where B and R, and G and R are all close in value which will retain red

hues—browns, oranges, etc. Boolean matrices are created for B to R (eqBRij), and B to G (eqB-
Gij) equivalencies whereby a value of 1 is given for pixel locations with small difference values

of 5 or less, and the value of 0 is given otherwise (Eqs 9 and 10).

eqBRij ¼
1ðxi; yjÞ 2 Relationð� 5Þ

0ðxi; yjÞ=2Relationð� 5Þ
8ij

(

ð9Þ

eqBGij ¼
1ðxi; yjÞ 2 Relationð� 5Þ

0ðxi; yjÞ=2Relationð� 5Þ
8ij

(

ð10Þ

The truth value is computed of the Boolean equivalencies to a matrix “equivpxls” to identify

pixel locations with a value of 1, where all three (R, G, B) values are within 5 of each other, and

represented by a zero otherwise (Eq 11).

equivpxlsij ¼
1ðeqBRij; eqGRijÞ 2 Relationð1; 1Þ

0ðeqBRij; eqGRijÞ=2Relationð1; 1Þ
8ij

(

ð11Þ

Fig 6. PreciseEdge Color Step GUI, reference image (left), interactive image (right).

https://doi.org/10.1371/journal.pone.0275821.g006
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The locations where blue difference from red (B–R) is large are identified, and a graphical

user interface (GUI) is set up so the user can specify and test a (B–R) range lower threshold for

each image, and then save the finished image. The user is shown the output name for the fin-

ished image, and the image is displayed in a window, “PreciseEdge output”, for real-time pro-

cessing by the user, see Fig 6.

A track bar is created to set the threshold on the window, 40 is the initial low setting, which

works for most images, and thus requires only one-click confirmation by the user. The highest

possible value is 120, the lowest is zero. A variable is created to capture the final track bar posi-

tion when the user saves the image. A Boolean matrix, called “bminusrslide” is created, where

the (b-r) difference values are large, (between the track bar position and 256) are set to zero, all

others are set to one (Eq 12).

bminusrslideij ¼
1ðbminusrijÞ=2Relationðtrack bar value � 256Þ

0ðbminusrijÞ 2 Relationðtrack bar value � 256Þ
8ij ð12Þ

(

The matrices, bminusrslide and equivpxls, are added and the result called bGTr (b is greater

than r) (Eq 13). This yields a Boolean matrix, bGTr, with values of zero where b-r is large, and

a value of one where differences between B, G, and R, are all less than 5.

bGTrij ¼ ½bnimusrslideij þ equivpxlsij�8ij ð13Þ

A color mask array is created for each channel, by multiplying each of R, G, and B, by the

matrix bGTr (Eqs 14, 15, and 16). This will return values of zero for xi yj values in the channel

positions where b—r is large (will yield black where the original image showed blue). It will

retain the original intensity values where b, g, and r, are all within 5 intensity values of each

other. Each mask is converted back to the original data type, unsigned integer, uint8 (0–255
scale), for further processing.

rmaskij ¼ ½½R � bGTrij�mod 256�8ij ð14Þ

gmaskij ¼ ½½Gij � bGTrij�mod 256�8ij ð15Þ

bmaskij ¼ ½½Bij � bGTrij�mod 256�8ij ð16Þ

The image matrix is reconstituted by iteratively merging the mask matrices for each chan-

nel, (k = 1, 2, 3) i.e.[rmask], [gmask], [bmask], (Eq 17), and the user is shown the reconstituted

image such that they can see it change as they select different values on the track bar.

bmaskij ¼ ½½Bij � bGTrij�mod 256�8ij ð17Þ

PreciseEdge—step 2 (GrabCut). PreciseEdge Step 2 employs GrabCut (Fig 7). For the

GrabCut-only processed images, step 2 is the first step, and the original resized, and trans-

formed to PNG images are input directly. For the PreciseEdge images, this is the second step,

and the output images from step 1 (color step) are input to this GrabCut step. The color step

generally takes seconds to perform as it is a quick view of the image by the user to ensure the

default setting is adequate. It can easily be automated if images in the data set are uniform. We

have implemented a modified version of the ‘GrabCut interactive foreground extraction using

iterated graph cuts’ developed by Rother, et. al. [47]. The python code from the ‘grabcut.py’

sample on GitHub [55] was modified to omit the ’possible foreground’ and ‘possible back-

ground’ matrices that are not needed for either method for this study. It also included minor
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changes to adjust user input i.e., mouse click/line coloring, and modifications to manage input

and output of the individual and stacked images and filenames, based on the feature being iso-

lated. Examples of input images for PreciseEdge step 2 are shown in the first image of each trio

of images in the S1 Table in the center column ("Intermediate Images"). GrabCut-only testing

also uses the identical modified GrabCut version, but the input images are the original images,

note the blue background is intact, while the PreciseEdge input images show the blue back-

ground removed in the color step (Fig 6).

As each output image from PreciseEdge step 1 is processed with the modified GrabCut, the

input image (output image from step 1), and the interactive output image is shown to the user

Fig 7. PreciseEdge algorithm step 2 detail.

https://doi.org/10.1371/journal.pone.0275821.g007
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for reference. The user draws a bounding box around the feature of interest. Once the box is

set, the first iteration of GrabCut is run on the pre-processed image. If there are still some fore-

ground or background incorrectly segmented in the first iteration, the 0 and 1 keys in combi-

nation with the mouse are used to identify foreground and background. The best results if this

is needed, are obtained by drawing just inside the ROI along the edge for the foreground, and

just outside of the ROI for the background. To compare user input for PreciseEdge and Grab-

Cut, rear and side poses were run through GrabCut and PreciseEdge respectively.

PreciseEdge and GrabCut comparison

To compare user input needed for PreciseEdge and GrabCut-only methods, the software was

modified to capture the initial bounding box image for visual review (S1 Table "Intermediate

Images"). This provides an indication of how much additional refinement users may need to

do. To evaluate the intensity of refinement required under each method, the code was further

modified to capture the pixel locations of each line drawn by the user with the mouse, to iden-

tify sure foreground and sure background before saving the image (S1 Table "Intermediate

Images"). The pixel (x,y) coordinates added to each image were counted. Each pixel counted as

one stroke, with a higher stroke count meaning that the user had to draw more or longer lines

on the image to satisfactorily isolate the region of interest on each image. This is an indication

of how much additional refinement was required for each image in the second step (GrabCut).

Results and discussion

The stroke counts were evaluated for normal distribution (Fig 8), and to determine if they

were the same distribution by Kolmogorov–Smirnov tests. Non-parametric Wilcoxon tests

were performed to show the difference between the GrabCut and PreciseEdge stroke counts.

To see if digital images ROI isolated by PreciseEdge and GrabCut would yield measures

correlated to manually taken measures of the subject animals in real life, the digital measures

output from each method were correlated to the manual measurements. Again, the post Grab-

Cut masking and measuring processing was automated, and identical for each algorithm. Pear-

son correlations were done to compare the digital measures for body length and height, and

for chest girth with the same measurements taken manually for the goat pictured.

We tested and confirmed that image format or compression type is also a factor in the pre-

cision of masks output whether using PreciseEdge or GrabCut. This is due to differences in

lossy image compression in JPG developed by the Joint Photographic Experts Group (JPEG)

Fig 8. Histograms of GrabCut (A) and PreciseEdge (B) stroke count distributions, bin width is 50 (strokes). The

distribution of stroke count for PreciseEdge shows more consistency of images needing fewer strokes (38% fewer)

compared to GrabCut processed images.

https://doi.org/10.1371/journal.pone.0275821.g008
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[50], and lossless portable network graphics (PNG) [52] format. The lossy compression of JPG

images results in data removed from the original image to reduce file size. PNG compressed

images retain their information (lossless). A comparison of PreciseEdge with a sample in JPG

and PNG formats is shown in images in S2 Table. The JPG and PNG to isolate the ROI showed

PNG consistently returned a cleaner more precise mask (S2 Table).

According to its authors, the GrabCut algorithm enhances prior art by removing “visible

artifacts”, which is adequate for many applications [47]. However, they acknowledge in their

paper that invisible artifacts may remain to produce “blocky” masking and edge detection,

with true edges approximated. In working with GrabCut we discovered the artifact issues were

only seen with JPG compression (Fig 9). The GrabCut paper [47] does not specify the type of

image format to be used. We found that GrabCut ROI precision is significantly improved with

PNG images over JPG images, and the ’blocky’ mask resolved. Thus, all images are converted

to PNG prior to step 1 of PreciseEdge and for testing with GrabCut-only. The PreciseEdge seg-

mentation produces a nearly identical segmentation results compared to GrabCut when input-

ting PNG images, but with significantly less (over 38%) user input. Pearson correlation

coefficients for digital measures to manual measures of body height, length, and chest girth

were high at (0.936, 0. 944, 0.869) for GrabCut and (0.931, 0.943, 0.893) for PreciseEdge

(Fig 10).

With PreciseEdge, images require less user input beyond the initial drawing of the bound-

ing box. With GrabCut, there is often some background under the belly or under the neck of

the goat that needs to be removed by the user. The PreciseEdge step 1, color segmentation

method requires minimal user input in the color segmentation step, and it is possible for it to

be fully automated if the original input images are uniform and do not require varying seg-

mentation thresholds. The GrabCut or PreciseEdge user input depends on the quality of the

images, but the prior PreciseEdge color segmentation speeds up the GrabCut step consider-

ably. The mean stroke count for GrabCut is 577.08, with a standard deviation of 248.45. Preci-

seEdge is significantly less with a mean stroke count of 221.57, and a standard deviation of

149.45 (p = 5.115 e-49).

The output from the single iteration of GrabCut or PreciseEdge (bounding-box-only) dem-

onstrates the difference in user input that would be needed to correct the mask and are shown

in S1 Table. Table of Figures, input, process, and output comparison for GrabCut versus Preci-

seEdge ("Intermediate Images"). The "Output Images" show the final labeled images from

GrabCut and PreciseEdge. The rear poses are the most challenging for edge detection due to

Fig 9. GrabCut JPG image (invisible artifacts around edges) (a) and PreciseEdge PNG image (b), edges detected by

each approach (yellow line).

https://doi.org/10.1371/journal.pone.0275821.g009
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the closeness of the rear legs to each other, and their individual narrowness. Comparing the

bounding-box-only examples for both algorithms, demonstrates the additional user input

needed for GrabCut-only versus PreciseEdge with the pre-processing color step. The trio

images showing the bounding box plus additional user input required further illustrates the

additional user input required to define the ROI using GrabCut-only versus PreciseEdge. Final

digital body measurements were generated using the output ROI image from each algorithm

as input for the identical, fully automated process to further refine, then measure and label

each image for both GrabCut-only, and PreciseEdge. The final images shown in the column,

"Output Images", illustrate the final output is similar for both algorithms.

Conclusions

The PreciseEdge image segmentation algorithm was shown to produce masks that are precise

enough to extract consistent, high quality animal body measurements directly from digital

images. This was done with significantly less user input required (38%) than with GrabCut,

and both PreciseEdge and GrabCut performed better using PNG images. PreciseEdge gener-

ated image masks used to extract measurements from digital images were highly accurate

when compared with standard manual body measurements, and will allow important animal

health and productivity data to be collected without bothering the animals. The increased

speed of the image segmentation due to reduced user input and high correlation to actual ani-

mal body measurements made possible by the PreciseEdge image segmentation algorithm

make this a realistic option for livestock. This can reduce animal and human stress while

increasing the accuracy and consistency of measurements. Further, due to significantly

reduced user input while maintaining the high quality of the labeled output images, we believe

PreciseEdge image segmentation would be excellent for use in developing machine learning

model training data to advance the field of automated livestock body measurement.

Supporting information

S1 Table. Table of figures, input, process, and output comparison for GrabCut versus Pre-

ciseEdge.

(DOCX)

Fig 10. a) GrabCut (left) and b) PreciseEdge (right) correlations to body height and length and chest girth. Manual measures (ht, len, chest), digital

measures (sidewither, sidelength, girth).

https://doi.org/10.1371/journal.pone.0275821.g010
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S2 Table. Table of figures, PreciseEdge comparison of JPG and PNG input image formats.

(DOCX)
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