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Purpose: To develop a novel evaluation system for retinal vessel alterations caused by hypertension using a
deep learning algorithm.

Design: Retrospective study.
Participants: Fundus photographs (n ¼ 10 571) of health-check participants (n ¼ 5598).
Methods: The participants were analyzed using a fully automatic architecture assisted by a deep learning sys-

tem, and the total area of retinal arterioles and venules was assessed separately. The retinal vessels were extracted
automatically from each photograph and categorized as arterioles or venules. Subsequently, the total arteriolar area
(AA) and total venular area (VA) were measured. The correlations among AA, VA, age, systolic blood pressure (SBP),
and diastolic blood pressurewere analyzed. Six ophthalmologistsmanually evaluated the arteriovenous ratio (AVR) in
fundus images (n ¼ 102), and the correlation between the SBP and AVR was evaluated manually.

Main Outcome Measures: Total arteriolar area and VA.
Results: The deep learning algorithm demonstrated favorable properties of vessel segmentation and arte-

riovenous classification, comparable with pre-existing techniques. Using the algorithm, a significant positive
correlation was found between AA and VA. Both AA and VA demonstrated negative correlations with age and
blood pressure. Furthermore, the SBP showed a higher negative correlation with AA measured by the algorithm
than with AVR.

Conclusions: The current data demonstrated that the retinal vascular area measured with the deep
learning system could be a novel index of hypertension-related vascular changes. Ophthalmology
Science 2021;1:100004 ª 2021 by the American Academy of Ophthalmology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Hypertension and arteriosclerosis are major public health
problems worldwide.1,2 Approximately 30% of adults
worldwide have hypertension,3 and 10.4 billion deaths have
been related to high systolic blood pressure (SBP) in the
past 3 decades.4 Because hypertension causes morphologic
changes in microvasculature, practical techniques to
evaluate hypertension-related vessel alterations have been
explored.5,6 The transparent structure of the eye enables us to
examine the retinal vasculature directly; therefore, fundus
examination has been used to assess alterations in
microvasculature in patients with hypertension.

The retinal arteriovenous ratio (AVR), the ratio between
retinal arteriolar and venular diameters, is a classic index to
evaluate retinal arteriolar narrowing, which is used widely and
routinely in clinical settings. An AVR of 2:3 is considered
healthy, and AVR decreases with age and blood pressure (BP)
elevation.7 Because retinal arteriolar narrowing is related to the
risk of various systemic diseases including diabetes,8

cardiovascular disease,8,9 and cerebrovascular
complications,10 estimating AVR estimation has been a
simplified but useful clinical technique in routine ophthalmic
practice. However, despite AVR being easy to use, an
ophthalmoscopic evaluation of retinal AVR is subjective and
lacks both intragrader and intergrader repeatabilities.
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Therefore, extensive efforts have been made to improve the
shortcomings and revolutionize AVR estimation using a
scientific approach. Consequently, a semiautomated system
was developed to calculate the retinal AVR using the
diameters of all arterioles and venules coursing in a specified
area surrounding the optic disc in fundus photographs.11

However, it was a semiautomated method supported by
human graders to choose the vessel segments, which may
hinder objective manipulation to analyze retinal vessels.
Therefore, to establish a more accurate and standardized
vascular measurement method and to assess a large number
of subjects, an automatic vessel segmentation method with
high accuracy is necessary. The aim of the present study was
to develop a fully automatic architecture assisted by a deep
learning system to measure separately the total area of retinal
arterioles and venules in fundus images.
Methods

Deep Learning Architecture

Figure 1A shows the neural network process used in this study.
The neural network has an encoderedecoder structure, similar to
the U-Net, which is a traditional neural network model used
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previously for semantic segmentation.12 A fundus photograph with
red-green-blue (RGB) channels containing 704 � 704 pixels is
used as an input image. From the 1 deep learning tree, 2
probability maps of arterioles and venules are produced as
outputs. The probability map is binarized with a threshold set as
125. The threshold value was determined experimentally. In
Figure 1A, the blue bars with black border represent
DownBlock, whereas the orange and yellow bars represent the
UpBlock and multiple dilated convolutional block,13

respectively. The left-side path consists of repeated DownBlocks
connected to the corresponding UpBlocks. The connections are
called skip connections (Fig 1B, bold blue arrows). In addition to
the skip connections between DownBlocks and UpBlocks, each
DownBlock and UpBlock has additional short connections
internally, similar to ResBlock.14 The distinct skip connections
reduce the gradient loss in backpropagation and solve the
vanishing gradient problem as the network becomes deeper. The
multiple dilated convolutional block consists of 4 dilated
convolution layers with different strides. It is placed between the
left-side encoder and the right-side decoder, contributing to
capturing the global features. Sigmoid function is used to transform
the output of the network into a probability map.

Training Methods

We implemented the neural network on NNabla version 0.9.9
(Sony Corporation). Training images were augmented randomly by
flipping the images horizontally and rotating them within a 0.26
radian before inputting them into the neural network. To minimize
the overhead and use the graphic processing unit memory maxi-
mally, we prioritized the size of input images over the batch size.
For the NVIDIA GTX1080 graphic processing unit, we chose
704 � 704 square pixels and reduced the batch size to 2 samples.
The epoch size was set as 1000 with the early stopping method.
Binary cross-entropy loss function and Adam optimizer was used
with the following parameters: initial learning rate, 0.001; a, 0.001;
b1, 0.9; b2, 0.999; and ε, 1E-8.

Datasets

A public dataset known as Digital Retinal Images for Vessel
Extraction (DRIVE) was used to evaluate our deep learning algo-
rithm for comparison with other methods. Our original Hokudai
dataset consisting of fundus images acquired at the Keijinkai
Maruyama Clinic and Hokkaido University Hospital also was used
to develop the deep learning algorithm. Blurred fundus images
resulting from media opacities or inadequate imaging conditions
were excluded. The institutional review boards for clinical research
of the Keijinkai Maruyama Clinic (identifier, 20120626-1) and
Hokkaido University Hospital (identifier, 012-0106) approved the
study protocol. The requirement for informed consent was waived
because of the retrospective nature of the study. This research
adhered to the tenets of the Declaration of Helsinki.

The Hokudai dataset contained 102 color fundus photographs
obtained from patients who visited the Keijinkai Maruyama Clinic
for regular health checkups using an autofundus camera (AFC-330;
Nidek, LLC, Tokyo, Japan). The mean age was 52 � 8 years, the
mean SBP was 124 � 13 mmHg, and the mean diastolic BP (DBP)
was 79 � 10 mmHg. The corresponding ground truth images were
generated by manual annotation of retinal vessels by 2 ophthal-
mologists (M.S. and K.F.) in a precise fashion. The Hokudai
dataset then was divided into 82 images as the training set, 10
images as the validation set, and 10 images as the test set.

The DRIVE dataset, a public dataset containing 40 color fundus
photographs from a diabetic retinopathy screening program in The
Netherlands,15 has been used widely to evaluate the accuracy of
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automatic retinal vessel segmentation methods.15e27 The DRIVE
dataset contains 20 images as the training set, and 20 images for
validation and testing of the deep learning algorithm. The size of
each photograph in the DRIVE dataset is 565 � 584 pixels. To
apply our deep learning method, which accepts images with 704 �
704 pixels as input data, each input image was pasted on a black
background mount measuring 704 � 704 pixels. The verification
process was conducted based on the original size.

Verification of Vessel Segmentation Algorithms

To evaluate the vessel segmentation ability of our deep learning
architecture using the DRIVE dataset, the algorithm was arranged
to produce 1 output image. We combined the probability maps of
arterioles and venules that our network output to create a proba-
bility map of vessels to evaluate the neural network trained using
the Hokudai dataset.

Accuracy of vessel segmentation in the predicted images was
evaluated by calculating the number of false-positive (FP) results,
false-negative (FN) results, true-positive (TP) results, and true-
negative (TN) results in pixel drawings of retinal vessel struc-
tures. Using the parameters, indices to evaluate the accuracy of the
deep learning system, such as sensitivity, specificity, overall ac-
curacy, Dice coefficient, and area under the receiver operating
characteristic curve (AUC), also were calculated from the equa-
tions below:

Sensitivity ¼ TP = ðTP þ FNÞ;
Specificity ¼ TN = ðTN þ FPÞ;

Overall accuracy ¼ ðTP þ TNÞ = ðTP þ FP þ TN þ FNÞ; and
Dice coefficient ¼ ð2 � TPÞ = ð2 � TP þ FP þ FNÞ:

The AUC was calculated from sensitivity and specificity using
scikit-learn module 0.19.1. using Python version 3.6.4.

Verification of Arteriovenous Classification
Algorithms

Accuracy of the arteriovenous classification in the predicted images
was assessed by the misclassification rates of arterioles (MISCa)
and misclassification rates of venules (MISCv), and overall accu-
racy of the arteriovenous classification calculated using TP arteri-
oles (TPa), TP venules (TPv), FP arterioles (FPa), and FP venules
(FPv) from the equations below26:

MISCa ¼ FPv = ðTPa þ FPvÞ;
MISCv ¼ FPa = ðTPv þ FPaÞ; and

Overall accuracy of the arteriovenous classification ¼ 1
� ðMISCa þ MISCvÞ = 2:

The number of the pixels identified as both arteriole and venule
was calculated in the output images produced from the test set of
Hokudai dataset (10 images).

Vascular Area Measurement

Color retinal photographs (n ¼ 10 571) obtained from patients who
visited the Keijinkai Maruyama Clinic for a regular health checkup
were used to analyze the vascular area measured by the deep
learning algorithm. The 102 images from the Hokudai dataset used
for the training of the deep learning system are included. The mean
age was 49 � 10 years, the mean SBP was 117 � 16 mmHg, and
the mean DBP was 74 � 11 mmHg. Predicted images of the ar-
terioles and venules were generated from color fundus photographs
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using the trained neural network. The sum of each probability map
was defined as total arteriolar area and total venular area.

Repeatability of Vascular Area Measurement

To examine the repeatability of vascular area measurement by the
deep learning algorithm, 2 consecutive fundus photographs of both
eyes of 10 healthy volunteers were obtained and the areas of ar-
terioles and venules in each photograph were measured.

Arteriovenous Ratio Measurement

For a manual AVR measurement, we sought to extract approxi-
mately 100 photographs from the original fundus photograph set
(n ¼ 10 571). We used random stratification to extract the photo-
graphs, which obtain the same distributions of age and BP as the
original population. Consequently, a total of 102 photographs were
extracted as a result of random stratification. The mean age was 52
� 9 years, the mean SBP was 117 � 14 mmHg, and the mean DBP
was 73 � 9 mmHg. Subsequently, well-trained ophthalmologists
manually evaluated the AVR of these photographs between 0 and 1
in 0.1 steps and used the average value as the representative AVR
value. In accordance with a previous study,7 the evaluation was
performed visually after choosing a pair of arterioles and
matching the venules from the photographs. The intergrader
agreement of AVR was analyzed by calculating the intraclass
correlation coefficient value using RStudio version 1.1.456.

Statistical Analysis

Pearson’s product-moment correlation was used for the statistical
analysis to calculate the correlation efficiency between vessel areas
and other parameters using RStudio version 1.1.456 statistical
software.

Results

Verification of the Vessel Segmentation Ability

In the present study, the proposed deep learning system
output the predicted images in which retinal vessels were
distinguished as clusters of arterioles and venules (Fig 1C).
Using the predicted images, we assessed the accuracy of the
newly developed deep learning system in automatic
segmentation of arterioles and venules directly from
fundus images, as reported previously (Fig 2A).26 In the
assessment of the vessel segmentation ability in the
DRIVE dataset, parametric statistics were as follows:
sensitivity, 0.778; specificity, 0.985; overall accuracy,
0.967; Dice coefficient, 0.800; and AUC, 0.98. The
present data indicated the favorable ability of the deep
learning system for vessel segmentation (Table 1).
Alternatively, using the Hokudai dataset, the statistics
were as follows: sensitivity, 0.833; specificity, 0.994;
overall accuracy, 0.983; Dice coefficient, 0.871; and AUC,
0.99.

Verification of the Arteriovenous Classification
Ability

We assessed the algorithm of the deep learning system for
classification of vessels into arterioles and venules using the
validity indices reported previously (Fig 2B).26 In the
assessment of the arteriovenous classification ability in
the Hokudai dataset, parametric statistics were as follows:
MISCa, 1.065%; MISCv, 0.930%; and overall accuracy of
the arteriovenous classification, 0.99. In comparison with
the indices of the previously reported deep learning
system to classify arterioles and venules in fundus
images,26,28e31 the current deep learning system also
showed a favorable ability of arteriovenous classification.
For further verification, we calculated the number of pixels
identified as both arteriole and venule. The average per-
centages of overlapping pixels of the total arteriole area,
total venule area, and total pixels were 0.18%, 0.14%, and
0.006%, respectively.

Total Arteriolar and Venular Areas

Using the deep learning system, we automatically measured
the total arteriolar and venular areas in fundus images
(n ¼ 10 571). The mean total area of arterioles was 12 929 �
287 pixels per fundus image, whereas that of venules was
22 046 � 3169 pixels per fundus image (Fig 3A, B). In
addition, the arteriolar and venular areas showed a
moderate positive correlation (R ¼ 0.59; n ¼ 10 571; P <
0.001; Fig 3C). The repeatability of vascular area
measurement was evaluated using 2 consecutive fundus
photographs of both eyes of 10 healthy volunteers, and
the correlation coefficients of arteriole area and venule
area were r ¼ 0.8775429 (n ¼ 20; P < 0.001) and
r ¼ 0.6809523 (n ¼ 20; P < 0.001), respectively.

Correlation between the Retinal Vascular Area
and Age

To investigate the relationship between the retinal vascular
area and age, we assessed the correlation of age with the
arteriolar and venular areas separately. Age showed negative
correlations with the retinal arteriolar area (R ¼ e0.32;
n ¼ 10 571; P < 0.001) and the retinal venular area
(R ¼ e0.54; n ¼ 10 571; P < 0.001; Fig 4A).

Correlation between the Retinal Vascular Area
and Blood Pressure

To investigate the relationship between the retinal vascular
area and BP, we calculated the correlation of SBP and DBP
with the arteriolar and venular areas separately. Systolic BP
showed negative correlations with both the retinal arteriolar
area (R ¼ e0.29; n ¼ 10 571; P < 0.001) and the retinal
venular area (R ¼ e0.25; n ¼ 10 571; P < 0.001; Fig 4B).
Similarly, DBP showed a negative correlation with both the
retinal arteriolar area (R ¼ e0.26; n ¼ 10 571; P < 0.001)
and the retinal venular area (R ¼ e0.22; n ¼ 10 571; P <
0.001; Fig 4B).

Arteriovenous Ratio versus Retinal Vascular
Area Accuracy as an Index of Blood Pressure
and Age

To assess the clinical significance of the retinal vascular area
as an index of hypertension-related alterations in retinal
vessels, the correlation coefficient between SBP or DBP and
the retinal vascular area was compared with that between
SBP or DBP and AVR. Arteriovenous ratio, which was
3



Figure 1. Proposed deep learning method. A, Schematic view of the deep learning model. The numbers written beside each layer represent the number of
feature maps � width (pixels) � height (pixels). B, Detailed expositions of the DownBlock, UpBlock, multiple dilated convolutional (MDC) block, and
signs (arrows and layers). C, Representative input image, manually annotated ground truth, and automatic vessel segmentation of the digital retinal images
for vessel extraction dataset (top row) and representative input image, manually annotated ground truth, and automatic vessel segmentation of the Hokudai
dataset (bottom row).

Ophthalmology Science Volume 1, Number 1, March 2021
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Figure 2. Verification of automatic vessel segmentation and arteriovenous classification. A, Representative input image, ground truth image, output image
by automatic vessel segmentation, and merged image (top row). In merged images, yellow pixels are regarded as false negative results, pink pixels are regarded
as false positive results, white pixels are regarded as true positive results, and black pixels are regarded as true negative results. Magnified images of the boxed
area in each image above appear in the bottom row. B, Representative input image (left). Representative predicted arteriole image (middle). Red pixels
represent the area belonging to the arteriole in ground truth and predicted as an arteriole by the deep learning program. Blue pixels represent the area
belonging to the venule in ground truth, but predicted as an arteriole by the deep learning program. Representative predicted venule image (right). Blue
pixels represent the area belonging to the venule in ground truth and predicted as a venule by the deep learning program. Red pixels represent the area
belonging to the arteriole in ground truth, but predicted as a venule by the deep learning program.
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evaluated manually by well-trained ophthalmologists,
showed negative correlations with SBP (R ¼ e0.27; n ¼
102; P < 0.01) and DBP (R ¼ e0.25; n ¼ 102; P < 0.05;
Fig 5A). Likewise, the retinal arteriolar area showed
negative correlations with SBP (R ¼ e0.31; n ¼ 102;
P < 0.01) and DBP (R ¼ e0.26; n ¼ 102; P < 0.01;
Fig 5B), indicating that retinal vascular area measurement
by the deep learning architecture can be applied clinically
for the evaluation of hypertension-related vessel alterations
as a state-of-the-art technique. The intraclass correlation
coefficient value of manually evaluated AVR was relatively
low at 0.104.
5



Table 1. Comparison of Vessel Segmentation Algorithms

Method Authors Year Data Set Sensitivity Specificity Overall Accuracy

Ensemble classifiers-based methods Orlando et al 2014 DRIVE 0.78 0.97 N/A
Orlando et al 2017 DRIVE 0.79 0.97 N/A
Lupascu et al 2010 DRIVE 0.67 0.99 0.96
Fraz et al 2012 DRIVE 0.74 0.98 0.95

Statistical learning-based methods Staal et al 2004 DRIVE N/A N/A 0.94
Soares et al 2006 DRIVE N/A N/A 0.95

Neural network Marin et al 2011 DRIVE 0.71 0.98 0.94
Vega et al 2014 DRIVE 0.74 0.96 0.94
Wang et al 2015 DRIVE 0.82 0.97 0.98
Li et al 2016 DRIVE 0.76 0.98 0.95
Mo et al 2017 DRIVE 0.78 0.98 0.95
Xu et al 2018 DRIVE 0.94 0.96 0.95
Yan et al 2018 DRIVE 0.76 0.98 0.95

Proposed method 2021 DRIVE 0.78 0.99 0.97

DRIVE ¼ Digital Retinal Images for Vessel Extraction; N/A ¼ not available.
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Discussion

In the present study,we investigated the clinical usefulness of a
novel deep learning architecture for retinal vessel segmentation
and arteriovenous classification that enables 2-dimensional
assessments of the retinal vasculature and provides a more
accurate evaluation axis for hypertension-related vascular
changes than pre-existing AVR evaluation methods. The ar-
chitecture showed that the retinal venular area is larger than the
Figure 3. Total arteriolar and venular areas. A, Representative visualization of th
deep learning method. B, Graph showing distributions of the total arteriolar a
correlation between the total arteriolar and venular areas. Solid lines show 95%
n ¼ 10 571, and P < 0.001.

6

retinal arteriolar area in fundus images, as expected based on
previous findings obtained from vascular caliber measure-
ments.32,33 In addition,we elucidated as a novelfinding that the
correlation between the retinal arteriolar area and BP was
stronger than that between manually evaluated AVR and BP.
The current data indicated that the automatic measurement of
the retinal vascular area in fundus images could be an
alternative index for hypertension-related retinal changes,
which has been evaluated by AVR so far.
e input image and predicted arteriole and venule images using the proposed
nd venular areas measured by the proposed algorithm. C, Graph showing
confidence intervals. Dotted lines show 95% prediction intervals. R ¼ 0.58,



Figure 4. Graphs showing the correlation between the retinal vascular area and age or blood pressure. A, Correlation between the total arteriolar area and
age (left); R ¼ e0.32, n ¼ 10 571, and P < 0.001. Correlation between the total venular area and age (right); R ¼ e0.54, n ¼ 10 571, and P < 0.001. B,
Correlation between (top row) systolic blood pressure (SBP) and the total arteriolar area (R ¼ e0.29, n ¼ 10 571, and P < 0.001) or the total venular area
(R ¼ e0.25, n ¼ 10 571, and P < 0.001) and between (bottom row) diastolic blood pressure (DBP) and the total arteriolar area (R ¼ e0.26, n ¼ 10 571,
and P < 0.001) or the total venular area (R ¼ e0.22, n ¼ 10 571, and P < 0.001).

Fukutsu et al � Deep Learning for Hypertensive Retinopathy
Segmentation and classification of retinal vasculature are
indispensable processes for the automated measurement of
the total area of retinal arterioles and venules. Previously,
several approaches such as a graph-based approach28 were
challenged to develop a semiautomated system for
segmentation and discrimination of arterioles and venules
in fundus images. Thereafter, a deep learning strategy was
proposed for automated segmentation and
discrimination.17,19,20,24,26 In comparison with the previous
systems, the current architecture sufficiently achieved
desired accuracies of vessel segmentation and
arteriovenous classification. The robustness of our method
is presumably the result of the detailed manual annotation
for the ground truth images generated by well-trained oph-
thalmologists. In addition, combined models and a multi-
tude of skip connections might have enabled us to obtain the
high accuracy of the current architecture.

In the present study, using the novel deep learning ar-
chitecture we found as expected that the retinal venular area
was larger than the retinal arteriolar area. Because area
7



Figure 5. Graphs showing arteriovenous ratio (AVR) versus the arteriolar area as an index of blood pressure. A, Correlations between (left) systolic blood
pressure (SBP; R ¼ e0.27, n ¼ 102, and P < 0.01) or (right) diastolic blood pressure (DBP; R ¼ e0.25, n ¼ 102, and P < 0.05) and AVR. B, Correlations
between (left) SBP (R ¼ e0.31, n ¼ 102, and P < 0.01) or (right) DBP (R ¼ e0.26, n ¼ 102, and P < 0.01) and the total arteriolar area.
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calculation of retinal vasculature by a manual image analysis
has been technically impossible, the present work is, to the
best of our knowledge, the first attempt to measure the total
area of retinal arterioles and venules. Anatomically, retinal
arterioles and venules depicted in fundus photographs lie
within the superficial nerve fiber layer of the retina, and the
arteriolar diameter invariably is smaller than the venular
diameter running parallel in the retina. Previous image
analysis data demonstrated that the retinal venous caliber is
larger than the retinal arterial caliber. In full-term infants, the
mean arteriolar diameter in the retina is 85.5 mm, whereas the
venular diameter is 130.0 mm.34 The mean retinal arteriolar
and venular calibers expand to 162.7 and 226.8 mm,
respectively, at 6 years of age,35 and subsequently, both
retinal arteriolar and venular calibers decrease after middle
age.36 In accordance with previous findings, the current
data first showed that the retinal venular area is larger than
the retinal arteriolar area in fundus images. Second, we
found a negative correlation between age and retinal
vascular areas. In particular, the venular area showed a
stronger correlation with age than the arteriolar area,
possibly because of the susceptibility of retinal arterioles
against systemic variabilities, such as variations in BP.

Human BP is associated with retinal vascular calibers. It
was reported that narrowing or attenuation of the retinal ar-
terioles is proportional to the degree of elevation of BP, and
AVR evaluation has been used so far in clinical set-
tings.7,37,38 However, it has been argued that an
8

ophthalmoscopic evaluation of retinal AVR is subjective
and lacks intergrader repeatability, which was proven to be
quite low in this study. Recently, a more generalized
method was established to calculate the summary indices
reflecting the average width of retinal arterioles and retinal
venules, that is, central retinal artery equivalent and central
retinal vein equivalent. These indices showed that arteriolar
narrowing was associated strongly with higher BP11,39,40

and that venule narrowing also was associated with BP
elevation, independent of age.41 In our novel index, retinal
arteriolar and venular areas showed the same tendency as
reported previously. Furthermore, our present method had
several advantages over the past ones. Whereas central
retinal artery equivalent and central retinal vein equivalent
were defined by measuring the width of retinal vessels
between 0.5 and 1 disc diameters from the disc margin,
evidence is insufficient to establish that this zone is the
optimal region to evaluate the alterations in retinal vessels
because of systemic disorders. In contrast, our method
automatically and entirely assessed vascular areas in fundus
photographs without any bias. Therefore, the vascular area
measurement theoretically has the potential to assess the
overall condition of retinal vasculature with a higher
accuracy compared with the pre-existing methodology.

A meta-analysis revealed that the association between the
narrowed retinal arteriolar diameter and BP or hypertension
was consistent across different ethnic samples and age groups,
from children to older adults, and in both cross-sectional
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and longitudinal studies.42 In the present study, we also
elucidated a robust association between the retinal arteriolar
area and elevated BP. Moreover, the arteriolar area showed
a stronger correlation with SBP compared with manually
evaluated AVR in this study, suggesting that our novel
approach is at least comparable with previous methods,
such as AVR estimation and semiautomatic calculations of
central retinal artery equivalent and central retinal vein
equivalent.

This study has several limitations. First, because the deep
learning system adopts a multiclass multilabel classification, it
is possibledalbeit raredfor a single pixel to be classified into
both arteriolar and venular area when the score for that pixel is
above the threshold in both the artery and vein output images.
Second, the measurable vascular area in fundus images using
this architecture was restricted by several conditions, such as
the angle of view. The ultra-widefield retinal imaging tech-
nology may boost the current concept to use the retinal vessel
area instead of the vessel caliber. However, the versatility of
our deep learning architecture for the imaging method with
other settings was not examined in the current study. Third,
participants enrolled in this study ranged from themiddle-aged
to the elderly, because generally young people do not require
fundus photographs in regular health checkups. Investigating
the retinal vascular area across a wider age range may shed
light on the detailed aspect of this novel index. Finally, in the
present study the vascular areawas shown using dot pixels, but
not absolute metric, because the refractive value and axial
length data were not available, both of which are not measured
at a routine health check-up in Japan. Further studies are
mandatory to improve the quality of this deep learning
architecture.

In summary, we developed a novel deep learning archi-
tecture for retinal vessel segmentation that showed compa-
rable accuracy as previous methods. The automatic
approach for vessel classification into arterioles and venules
enables us to address objectively hypertensive alteration of
retinal vessels via vascular area measurement in an auto-
matic fashion. A meta-analysis of longitudinal studies
previously demonstrated the association between an ante-
cedent increase in peripheral vascular resistance and
subsequent development of hypertension.42 Therefore, this
newly developed deep learning system potentially is
useful in the prediction of hypertension.
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