Skip to main content
. 2021 Feb 23;1(1):100004. doi: 10.1016/j.xops.2021.100004

Table 1.

Comparison of Vessel Segmentation Algorithms

Method Authors Year Data Set Sensitivity Specificity Overall Accuracy
Ensemble classifiers-based methods Orlando et al 2014 DRIVE 0.78 0.97 N/A
Orlando et al 2017 DRIVE 0.79 0.97 N/A
Lupascu et al 2010 DRIVE 0.67 0.99 0.96
Fraz et al 2012 DRIVE 0.74 0.98 0.95
Statistical learning-based methods Staal et al 2004 DRIVE N/A N/A 0.94
Soares et al 2006 DRIVE N/A N/A 0.95
Neural network Marin et al 2011 DRIVE 0.71 0.98 0.94
Vega et al 2014 DRIVE 0.74 0.96 0.94
Wang et al 2015 DRIVE 0.82 0.97 0.98
Li et al 2016 DRIVE 0.76 0.98 0.95
Mo et al 2017 DRIVE 0.78 0.98 0.95
Xu et al 2018 DRIVE 0.94 0.96 0.95
Yan et al 2018 DRIVE 0.76 0.98 0.95
Proposed method 2021 DRIVE 0.78 0.99 0.97

DRIVE = Digital Retinal Images for Vessel Extraction; N/A = not available.