Table 1.
Method | Authors | Year | Data Set | Sensitivity | Specificity | Overall Accuracy |
---|---|---|---|---|---|---|
Ensemble classifiers-based methods | Orlando et al | 2014 | DRIVE | 0.78 | 0.97 | N/A |
Orlando et al | 2017 | DRIVE | 0.79 | 0.97 | N/A | |
Lupascu et al | 2010 | DRIVE | 0.67 | 0.99 | 0.96 | |
Fraz et al | 2012 | DRIVE | 0.74 | 0.98 | 0.95 | |
Statistical learning-based methods | Staal et al | 2004 | DRIVE | N/A | N/A | 0.94 |
Soares et al | 2006 | DRIVE | N/A | N/A | 0.95 | |
Neural network | Marin et al | 2011 | DRIVE | 0.71 | 0.98 | 0.94 |
Vega et al | 2014 | DRIVE | 0.74 | 0.96 | 0.94 | |
Wang et al | 2015 | DRIVE | 0.82 | 0.97 | 0.98 | |
Li et al | 2016 | DRIVE | 0.76 | 0.98 | 0.95 | |
Mo et al | 2017 | DRIVE | 0.78 | 0.98 | 0.95 | |
Xu et al | 2018 | DRIVE | 0.94 | 0.96 | 0.95 | |
Yan et al | 2018 | DRIVE | 0.76 | 0.98 | 0.95 | |
Proposed method | 2021 | DRIVE | 0.78 | 0.99 | 0.97 |
DRIVE = Digital Retinal Images for Vessel Extraction; N/A = not available.