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Many biological materials contain fibrous protein networks as their main
structural components. Understanding the mechanical properties of such
networks is important for creating biomimicking materials for cell and
tissue engineering, and for developing novel tools for detecting and diagnos-
ing disease. In this work, we develop continuum models for isotropic,
athermal fibrous networks by combining a single-fibre model that describes
the axial response of individual fibres, with network models that assemble
individual fibre properties into overall network behaviour. In particular,
we consider four different network models, including the affine, three-
chain, eight-chain, and micro-sphere models, which employ different
assumptions about network structure and kinematics. We systematically
investigate the ability of these models to describe the mechanical response
of athermal collagen and fibrin networks by comparing model predictions
with experimental data. We test how each model captures network behav-
iour under three different loading conditions: uniaxial tension, simple
shear, and combined tension and shear. We find that the affine and three-
chain models can accurately describe both the axial and shear behaviour,
whereas the eight-chain and micro-sphere models fail to capture the shear
response, leading to unphysical zero shear moduli at infinitesimal strains.
Our study is the first to systematically investigate the applicability of popu-
lar network models for describing the macroscopic behaviour of athermal
fibrous networks, offering insights for selecting efficient models that can
be used for large-scale, finite-element simulations of athermal networks.
1. Introduction
Many biological materials consist of fibrous protein networks as their main
structural components, and such networks play a critical role in determining
their mechanical properties and other functions [1–6]. For instance, the extra-
cellular matrix (ECM) of tissues contains a random network of collagen and
elastin [7,8]. Changes in the structure of these networks can give rise to abnor-
mal mechanical properties of tissues that disrupt cell mechanosensitive
responses and, in turn, initiate or exacerbate pathologies [9,10]. Blood clots
are composed of networks of fibrin, whose structure and mechanical properties
are crucial for preventing bleeding [11–14]. Thus, understanding and quantify-
ing the mechanical behaviour of fibrous networks is important not only for
designing biomimetic materials that serve as physiologically relevant environ-
ments for cell engineering, but also for developing novel diagnostic
techniques for disease [15,16]. With this as motivation, this paper is concerned
with the development of continuum models for fibrous networks.

Fibrous networks can be classified into thermal and athermal networks,
depending on the nature of the constituent fibres [3]. A network is said to be
thermal when its fibres are subjected to significant thermal fluctuations, such
that the fibre’s persistence length (i.e. the length over which the fibre appears
straight in the presence of Brownian forces) is much smaller or comparable to
its contour length [2]. Examples include molecularly crosslinked, flexible
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Figure 1. Schematics for the geometry and deformation of different network models under simple shear. (a) Affine model. Each point on the spherical surface
represents a unique fibre orientation, with only one representative fibre shown in the figure. (b) Three-chain model, where each fibre is aligned with one of the
edges of the unit cell. (c) Eight-chain model, where each fibre connects the centre of the unit cell to one of the cell vertices. (d ) Micro-sphere model. Each point on
the spherical surface represents a unique fibre orientation, with all the fibres stretched to the same degree. The rotation of the fibres, however, is not well defined;
thus, fibre deformation is not shown in the figure.
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networks like rubbers and polyacrylamide gels, in which the
fibre persistence length is far less than its contour length and
the fibre appears as a random coil [17]. Another example is
given by semiflexible, cytoskeletal networks like actin and
intermediate filament networks, in which the fibre has a per-
sistence length comparable to its contour length or the
distance between network crosslinks [2]. In this case, the
bending energy of the fibre just outcompetes the entropic ten-
dency of the fibre to crumple into a random coil, and the fibre
exhibits small but significant thermal fluctuations around a
straight conformation. On the other hand, a network is said
to be athermal when its fibres are large enough or rigid
enough to be negligibly affected by thermal fluctuations,
with the fibre’s persistence length being much larger than
its contour length [3,18]. Examples of athermal networks
include collagen networks in the ECMs and fibrin networks
in blood clots. These athermal fibres often behave
mechanically like slender elastic beams.

Continuum modelling of fibrous networks treats the
network as amechanical continuum, with the goal of develop-
ing a constitutive relation that describes the macroscopic
response of the network in relation to the properties of the con-
stituent fibres and the network structure [19]. Such modelling
efforts typically comprise two steps. The first step is to derive a
force–extension relation for single fibres along their axial direc-
tion (i.e. the direction connecting the two ends of the fibre). For
flexible fibres, entropic models of Gaussian or Langevin type
are usually used [17]. The Gaussian model assumes that the
fibre is a freely jointed chain of rigid rods, being infinitely
stretchable without approaching its fully extended state; this
results in a linear force–extension relation. By contrast, the
more realistic Langevin model accounts for the finite stretch-
ability of the fibres yielding a strain-stiffening force–
extension relation. For semiflexible fibres, different models
have been proposed (e.g. [20,21]) building upon the classical
worm-like chain model [22], treating fibres as continuous
and smooth filaments with well-defined local curvatures.
Then, fibre behaviour can be described by the free energy of
bending of fibres induced by thermal fluctuations. As a fibre
is stretched, the amplitude of its transverse thermal undula-
tions decreases, causing a decrease in available fibre
conformations and thus an entropic strain-stiffening of the
fibre. Different from the above entropic models, models for
athermal fibres are intrinsically energetic, so that the force–
extension relation can be derived from the stored elastic
energy of the fibres. These fibres often exhibit a linear elastic
or strain-stiffening response under axial tension, but can
buckle when subjected to axial compression, thus having a
limited compression resistance [3,23].

The second step of continuum modelling is to develop a
network model that relates the stretch of individual fibres
to the macroscopic network deformation, so that the overall
response of the network can be computed by adding contri-
butions from fibres over all orientations. Over the years,
several network models have been developed for isotropic
fibrous networks. These network models can be categorized
into affine and non-affine models. The affine model (also
called the full network model) [17,24,25] considers fibres iso-
tropically distributed in the orientation space and assumes
that the fibres deform according to the macroscopic
deformation of the network (figure 1a), i.e. the axial stretch
of any fibre is taken to be identical to the corresponding
macro-stretch of the continuum along the fibre’s direction.

The development of non-affine models, however, is
motivated by the fact that the true fibre deformation is
usually non-affine [2,3]. One type of such non-affine models
is the unit-cell model [19], which idealizes the actual structure
of the network as a periodic array of unit cells, each of them
containing a certain number of fibres with prescribed
arrangements. The most popular unit-cell models are perhaps
the three-chain model [26] and the eight-chain model [27]. In
the three-chain model, the unit cell is initially cubic contain-
ing three mutually orthogonal fibres along its edges (figure
1b). Under a prescribed macroscopic deformation, the three
fibres are taken to be aligned with the principal directions
of the deformation, and the stretch of the fibre is determined
by the corresponding principal stretch value. The eight-chain
model has a setting similar to that of the three-chain model,
the key difference being that the unit cell contains eight
fibres connecting the centre of the cell to the eight cell vertices
(figure 1c). Due to the symmetry of such a network structure,
the stretch of all the eight fibres equals the root mean square
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of the principle stretch values. Another type of non-affine
model is the so-called micro-sphere model [28], which also
considers fibres isotropically distributed in the orientation
space (figure 1d ). In this model, however, the axial stretch
of a given fibre differs from the corresponding macro-stretch
of the continuum, and is obtained by minimizing the average
free energy of the fibrous networks. This minimization pro-
cedure yields an effective axial stretch of all the fibres to be
the p-root average of the macro-stretch over all orientations,
where p is a material parameter describing the network’s
non-affinity. For the special case of p = 2, the micro-sphere
model recovers the eight-chain model.

These different network models, along with appropriately
chosen force–extension relations for individual fibres (e.g,
Langevin model for flexible fibres, and worm-like chain
model for semi-flexible fibres), have been extensively used to
study the overall behaviour of thermal networks, such as
rubber [19,25], actin [20,29,30] and intermediate filament net-
works [31]. These networks are either incompressible
themselves (e.g. dry rubber networks), or embedded in an
incompressible fluid (e.g. actin networks in cytosol). Since
these thermal networks typically have small pore sizes,
fluids do not have enough time to migrate through the net-
work on a timescale of seconds to minutes. Therefore, in
these scenarios, thermal networks can be modelled as incom-
pressible, hyperelastic materials. In particular, for the various
network models described above, fairly good agreement
between model predictions and experimental data was gener-
ally found. Compared with the affine and three-chain models,
the eight-chain model was found to be better at simul-
taneously capturing the behaviour of rubber networks under
different loading conditions (e.g. uniaxial tension, biaxial ten-
sion, and simple shear) [19,27]. The micro-sphere model,
which includes the eight-chain model as a special case, further
improves model capacity and provides better predictions for
the behaviour of rubber and actin networks [28].

Despite the extensive and systematic study of network
models for thermal networks, it remains unclear if these
models can be extended to accurately describe the macroscopic
behaviour of athermal networks, such as collagen and fibrin
networks. Different from thermal networks, athermal net-
works often have a much more open structure with large
pore sizes; consequently, fluids can flow in and out of the net-
works on a similar timescale, causing significant changes in
the network volume [18,32]. However, in this work, we do
not consider the dynamic network response induced by fluid
flow; instead, we are interested in the quasi-static behaviour
of the networks after fluid flow has completed and the net-
work has reached an equilibrium state, in which case the
athermal networks can be modelled as compressible, hyperelas-
tic materials. In particular, we ask the following question:
given that the affine, three-chain, eight-chain and micro-
sphere models have been widely used to describe the mechan-
ical properties of incompressible, thermal networks, can they
be further generalized to capture the quasi-static behaviour
of compressible, athermal networks?

To answer this question, we develop various continuum
models for athermal networks by combining each of the
above network models (the affine, three-chain, eight-chain
and micro-sphere models) with a single-fibre model that
has been found to successfully capture the axial response of
athermal fibres. This single-fibre model was first developed
by Steinwachs et al. [5], assuming that the fibre can stiffen
under axial tension and soften under axial compression.
Further, to account for the compressibility of the network,
we incorporate into our models a volumetric energy term
that can describe nonlinear volumetric responses of the
network, following the earlier work of [33]. Thereafter, we
systematically evaluate the models’ performance by assessing
how well they fit available experimental data for collagen and
fibrin networks subjected to various loading conditions,
including uniaxial tension, simple shear, as well as combined
tension (or compression) and shear. We also analyse why
different models may have different capacities in capturing
the true behaviour of athermal networks. Finally, we end
with the conclusions of this study.
2. Continuum models for athermal fibrous
networks

In this section, we develop various continuum models for
isotropic, athermal fibrous networks. As already discussed
in the Introduction, these models contain two parts: (i) a
single-fibre model that describes the axial force–extension
response of individual fibres and (ii) a network model that
describes the structure and kinematics of the networks, as
well as determines the overall network behaviour by
adding contributions from all the fibres. Next, we discuss
these two components.

2.1. Single-fibre model
There are two types of single-fibre models that are widely used
to describe the axial response of athermal fibres. These include
the (i) physics-based models, such as those based on the
worm-like chain models [34] or the elastic beam models
[35,36]; and the (ii) phenomenological models [5,37] that
employ simple, empirical functions (e.g. exponential functions)
to characterize fibre behaviour. Both types of models have
their respective advantages and disadvantages. Specifically,
the physics-based models have clear physical meanings but
can have rather complex forms (e.g. [30,31]). By contrast, the
phenomenological models may lack clear physical origin, but
typically have simple forms and are easy to use.

In this work, we characterize the axial response of
individual fibres using the phenomenological model of
Steinwachs et al. [5], for simplicity. This model has been
used to successfully describe the behaviour of athermal
collagen fibres, capturing the asymmetric response of fibres
to tension and compression. In particular, the fibre is
assumed to be wavy in its unloaded state and to exhibit
three distinct regimes in response to external forces. When
the fibre is axially stretched, it has an initially constant stiff-
ness, up to the point where the fibre is fully straightened.
Upon further stretching, the fibre gradually stiffens with a
stiffness that increases with tensile strain. On the contrary,
when the fibre is axially compressed, it softens with a
stiffness that decreases with compressive strain. More
specifically, the fibre’s differential stiffness, κf, is given by

k f ðl f Þ ¼ k0

eðl f�1Þ=d0 , if l f , 1,
1, if 1 � l f , ls,

eðl f�lsÞ=ds , if l f � ls:

8><
>: ð2:1Þ

In the above expression, λf is a kinematic variable denoting
the axial stretch of the fibre, as given by the ratio between
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the end-to-end length of the deformed fibre and that of the
undeformed fibre. Moreover, κ0 is the initial stiffness of the
fibre, λs is the critical stretch at the onset of fibre stiffening
(i.e. when the fibre is just straightened), ds is a coefficient
describing the exponential stiffening of the fibre and d0 is a
coefficient describing the exponential softening of the fibre;
these material parameters define the material properties of
a single fibre and are determined from experimental data.
We note that ds (or d0) can be interpreted as the strain scale
of fibre stiffening (or softening), where smaller values of ds
(or d0) correspond to faster rate of stiffening (or softening).

For later use, we also determine the axial force, Ff, and the
strain energy, wf, associated with a single fibre. Following
earlier studies, we assume that the fibre is force-free and
has a zero strain energy in its unloaded state. Then, making
use of the relation F0f(λf ) = κf(λf ) and w00

f(λf ) = κf(λf ), we may
compute Ff and wf by integrating κf with respect to λf once
and twice, respectively. Consequently, we have the results
that

F f ðl f Þ ¼ k0

d0[eðl f�1Þ=d0 � 1], if l f , 1,
l f � 1, if 1 � l f , ls,

ls � 1þ ds[eðl f�lsÞ=ds � 1], if l f � ls,

8><
>:

ð2:2Þ

and
In
terface
Focus

12:20220
wf ðl f Þ ¼ k0

d0[d0 eðl f�1Þ=d0 � l f � d0 þ 1], if l f , 1,

ðl f � 1Þ2=2, if 1 � l f , ls,

ðls � 1Þ2=2þ ðls � ds � 1Þðl f � lsÞ þ d2s [e
ðl f�lsÞ=ds � 1], if l f � ls:

8><
>: ð2:3Þ
043
Other phenomenological models, such as the linear model
of [38,39] and the exponential model of [37,40], have also
been used to describe the axial response of individual
fibres. Those models typically assume that fibres cannot sus-
tain compressive forces, as would be the case if d0→ 0 in
(2.1)–(2.3). However, we do not make such an assumption;
instead, we treat d0 as a material parameter and determine
it by fitting the model to experimental data. As will be seen
below, d0 determined from experimental data is indeed very
close to 0.

Finally, we note that the main objective of this paper is to
explore the applicability of different network models (see the
next section) to describe the network behaviour. As will be
seen later, whether a given network model works or not
depends largely on the underlying assumptions made in
the network model, regardless of the choice of the single-
fibre models (provided that the single-fibre model is reason-
ably good at describing the axial response of individual
fibres). Thus, we expect the conclusions of our study to
hold for different single-fibre models.
2.2. Network models
In this subsection, we present network models for isotropic
fibrous networks. We also combine each of these network
models with the above single-fibre model to develop full
continuum models for athermal fibrous networks.

As already mentioned in the Introduction, we focus on
the quasi-static behaviour of athermal networks, which can
be modelled as compressible, hyperelastic solids. Then, the
mechanical behaviour of the networks can be fully described
by a strain energy density function, W [41]. Following earlier
works on compressible hyperelastic solids [19], W may be
written in an additive form

WðFÞ ¼ W1ðFÞ þW2ðJÞ, ð2:4Þ
where F = ∂x/∂X is the deformation gradient tensor, with x
and X being the positions of a material point in the deformed
and undeformed configurations, respectively, J = det(F) is the
Jacobian, W1 is the strain energy density associated with a
chosen network model (see below), and W2 is the volumetric
strain energy density due to volume changes. Different
models forW2 have been proposed in the literature; interested
readers are referred to the excellent book of Anand &
Govindjee [42] for a comprehensive review. Here, we
employ the model developed by Bischoff et al. [33], which
has the capacity to describe general nonlinear volumetric
response of a material. In this model, W2 is given by

W2ðJÞ ¼ B
a2 fcosh½aðJ � 1Þ� � 1g, ð2:5Þ

where B determines the bulk modulus of the material, and α
describes the nonlinearity of the volumetric response. Note
that W2 is empirical in nature, and both B and α are material
parameters to be determined from experimental data. Also
note that W2 serves to control the material’s overall compres-
sibility (which for protein networks comes largely from the
fluid flow through the fibre mesh, and is both variable and
usually unmeasured). In particular, when B→∞, the material
is incompressible, whereas when B has small values, the
material is highly compressible.

W1 in (2.4) denotes the strain energy density predicted by
a chosen network model. Such models account for the net-
work structure, first computing the stretch of individual
fibres from the macroscopic network deformation, and then
computing the total strain energy of the network by summing
up the energy of all the fibres. In the following, we will briefly
summarize various network models, including the affine,
three-chain, eight-chain and micro-sphere models. As will
be seen, these models differ in how they describe the isotropic
network structure, as well as in how they compute the axial
stretch of individual fibres from the macroscopic network
deformation.

Before introducing the network models, we note that we
will make the following assumptions that will apply to all
models. First, although different fibres in a random network
generally have different shapes (e.g. the end-to-end length
and the contour length), we assume, for simplicity, that all
the fibres have the same shape. This shape can be interpreted
as the average shape of all the fibres, as can be described by
the average end-to-end length and the average contour
length of all the fibres. Second, in order to ensure that
the fibrous networks are stress-free in the undeformed con-
figuration, we assume that all the fibres are initially force



royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20220043

5
free. In reality, the initial state of a fibre (i.e. force free, pre-
stretched, or pre-compressed) depends sensitively on the
local polymerization conditions of the network. A detailed
account of these effects, however, is beyond the scope of
this work.

2.2.1. Affine model
The affine model accounts for all the fibres isotropically
distributed in space, and assumes that these fibres deform affi-
nely with the continuum [17,19] (figure 1a). As a result, the
axial stretch of each fibre, lafff , is given by the macro-stretch
of the continuum along the direction of that fibre, i.e.

lafff ¼ jFMj, ð2:6Þ

with M being the unit vector along the fibre orientation in the
undeformed configuration, and | · | denoting the norm of a
given quantity. Thus, the strain energy density associated
with the affine model can be computed by integrating the
strain energy of fibres over the entire orientation space

Waff
1 ðFÞ ¼ N

4p

ð
S
wf ðlafff ÞdS

¼ N
4p

ðp
0

ð2p
0

wf ðjFMjÞsinu df du: ð2:7Þ

Here, N is the number of fibres per unit volume of the unde-
formed network, S is the surface of a unit sphere
representing the orientation space, with each point on S denot-
ing a unique fibre orientation, and θ and ϕ are, respectively, the
polar angle and the azimuthal angle in a spherical coordinate.
Note that M can be expressed in terms of θ and ϕ as
M = [sinθcosϕ, sinθsinϕ, cosθ]T.

2.2.2. Three-chain model
In the three-chain model [3,26], the network is idealized as a
periodic array of initially cubic unit cells, each containing
three fibres located along the edges of the cell (figure 1b).
These fibres deform with the unit cell, such that the end-to-
end vector of a fibre always coincides with the corresponding
cell edge. For a prescribed network deformation, the unit cell
deforms into a general cuboid, with the cell edges (or the
fibres) always aligned with the principal directions of the
deformation, and the stretches of the edges (or the fibres)
equal to the corresponding principal stretch values. As
such, the strain energy density associated with the three-
chain model can be computed by summing up the strain
energy of the three classes of fibres

W3ch
1 ðFÞ ¼ N

3

X3
i¼1

wf ðliÞ, ð2:8Þ

where the λi (i = 1, 2, 3) denote the principal stretches
associated with the deformation gradient F.

The deformation of fibres predicted by the three-chain
model is generally non-affine. This can be easily seen when
the network is subjected to simple shear deformation. As
the shear deformation progresses, the three classes of fibres
rotate simultaneously while remaining mutually orthogonal
(figure 1b). This is in contrast to what would happen if
these fibres deformed affinely with the continuum, in
which case the angles between these fibres would change
during the course of the simple shear deformation. Finally,
we note that the three-chain model can be viewed as a
method of sampling the rotation and stretching of fibres
along the three principal directions of the deformation.
2.2.3. Eight-chain model
The eight-chain model is similar to the three-chain model, the
main difference being that there are eight fibres connecting
the centre of the unit cell to each of the eight cell vertices
[27] (figure 1c). Due to the symmetry of this network struc-
ture, the end-to-end lengths of all the fibres equal half of
the length of the unit cell’s body diagonal. Thus, the axial
stretch of each fibre is given by the root mean square of the
principal stretch values, i.e.

l8chf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23

3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðCÞ

3

r
, ð2:9Þ

where C =FTF is the right Cauchy–Green deformation tensor.
Consequently, the strain energy density associated with the
eight-chain model is given by

W8ch
1 ðFÞ ¼ Nwf ðl8chf Þ: ð2:10Þ

Fibre deformation predicted by the eight-chain model is
again non-affine, as can be also seen when the network
undergoes simple shear deformation. If the deformation of
fibres were affine, then as shear progresses some of the
fibres would be stretched whereas the rest would be com-
pressed. This scenario, however, differs from the predictions
of the eight-chain model, where all the fibres are stretched
to the same degree (see (2.9) and figure 1c), implying that
fibre deformation is generally non-affine for this model. We
also note that the eight-chain model can be viewed as a
method of sampling the rotation and stretch of fibres in
eight directions relative to the principal directions of the
deformation.
2.2.4. Micro-sphere model
The original micro-sphere model [28] considers all the fibres
isotropically distributed in space (figure 1d ), with each fibre
subjected to a tube constraint. This tube constraint accounts
for the conformational constraints placed on a fibre by its
neighbours, having important ramifications on the fibre con-
formational entropy. However, since in this work, we focus
on athermal networks, whose mechanical response is domi-
nated by the fibre elastic energy and is negligibly affected
by its conformational entropy, we expect the tube constraint
to have no significant effects on the mechanical behaviour
of the network. Thus, we neglect the tube constraint. Similar
simplifications have also been used in [30], where the authors
found that typical parameters for the tube constraint have a
minor influence (less than 4%) on the final result at small to
intermediate strains (around 20%).

The micro-sphere model incorporates non-affine fibre
deformations by allowing axial fibre stretches to fluctuate
around the corresponding macro-stretches of the continuum.
In particular, the axial stretches of fibres are determined by
minimizing the network strain energy density, under the ad
hoc constraint that the p-root average of axial fibre stretch
equals that of the macro-stretch. Here, p is a material
parameter describing the non-affinity of the network. This
minimization procedure leads to the result that the axial
stretches of all the fibres equal the p-root average of the



royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20220043

6
macro-stretch, i.e.

l
msph
f ðFÞ ¼ 1

4p

ð
S
jFMj p dS

� �1=p

¼ 1
4p

ðp
0

ð2p
0

jFMjpsinudf du
� �1=p

: ð2:11Þ

Here, we recall that S denotes the surface of a unit sphere,
where each point on S represents a unique fibre orientation,
M. Thus, the strain energy density associated with the
micro-sphere model is given by

Wmsph
1 ðFÞ ¼ Nwf ðlmsph

f Þ: ð2:12Þ

Note that when p = 2, equations (2.11) and (2.12) can be
shown to reduce to (2.9) and (2.10), respectively, so that the
micro-sphere model recovers the eight-chain model.

In summary, the hyperelastic response of the compressi-
ble athermal networks can be characterized by the strain
energy density W in (2.4), with W2 given by (2.5), and W1

given by (2.7), (2.8), (2.10) or (2.12), depending on the
choice of the network model. Then, the first Piola–Kirchhoff
stress, P, of the fibrous network is given by

P ¼ @W
@F

¼ @W1

@F
þ B
a
sinh[a(J � 1)] JF�T: ð2:13Þ

Remarks.

1. In the literature, the names ‘affine,’ ‘three-chain,’ ‘eight-
chain’ and ‘micro-sphere’ have been used to describe
different types of network models, which are independent
of the choice of single-fibre models. However, since we
have combined these network models with the single-
fibre model in §2.1 to develop full continuum models,
we will henceforth use these names to describe the
corresponding continuum models.

2. Both the affine and micro-sphere continuum models
require the computation of two-dimensional integrals
over the surface of a unit sphere (see, e.g. (2.7) and (2.11)).
These surface integrals are computed by discretizing the
surface with 808 triangular elements and employing
linear finite element interpolations. This number was
found to be sufficient to guarantee convergence [43,44].

3. The affine, three-chain and eight-chain continuum models
each contain a set of six material parameters,
c ¼ fK, d0, ds, ls, B, ag, where K =Nκ has been treated as
a single material parameter (recall that κ is the stiffness
of individual fibres at small strains, and N is the number
density of fibres). On the other hand, the micro-sphere
continuum model contains a set of seven material
parameters, c ¼ fK, d0, ds, ls, B, a, pg.

3. Results and discussion
In this section, we evaluate the performance of the affine,
three-chain, eight-chain and micro-sphere models in describ-
ing the mechanical properties of athermal networks,
including collagen and fibrin networks. Specifically, we test
how well these models capture the network behaviour
under three different loading conditions, including (i) uniaxial
tension, (ii) simple shear and (iii) combined tension and shear.
These loading conditions are commonly used to measure the
mechanical properties of fibrous networks. For each loading
condition, we fit each of our models to available experimental
data (for both collagen and fibrin networks), and assess the
accuracy of the model by quantifying the mismatch between
model predictions and experimental measurements.
3.1. Uniaxial tension
In this subsection, we examine the ability of different models
to capture the response of fibrous networks under uniaxial
tension. In particular, we compare model predictions with
the experimental data of Roeder et al. [45] for collagen net-
works, and with that of Purohit et al. [46] for fibrin networks.

In standard uniaxial-tension tests, network samples are
stretched along a given direction and are allowed to deform
freely in directions perpendicular to the loading direction.
Thus, we assume that the networks undergo a homogeneous
deformation, with the deformation gradient given by

F ¼
m 0 0
0 m 0
0 0 l

0
@

1
A: ð3:1Þ

Here, λ denotes the axial stretch along the loading direction,
and μ denotes the corresponding lateral stretch, which is
chosen in such a way that the lateral stresses predicted by a
given model are zero. (Without loss of generality, we have
assumed that loading is applied in the z direction.) Then,
for each model, we may compute the axial stress, Pzz, as a
function of the axial stretch, λ, using (2.13).

We fit the above-predicted stress–stretch (Pzz− λ)
response of the network to available experimental data by
solving a minimization problem, with the goal of finding
the set of material parameters, c, that minimizes the cost func-
tion

p(c) ¼
Xn
i¼1

[Pzz(l̂i; c)� P̂i]
2, ð3:2Þ

where ðl̂i, P̂iÞ (i = 1,…, n) are the pairs of experimental data for
the axial stretch and axial stress, respectively, with n denoting
the total number of experimental data points. We note that
under uniaxial tension, most fibres in a network are extended;
thus, network behaviour is governed mostly by fibre tensile
properties, and not by their compressive properties. Conse-
quently, uniaxial-tension data alone are insufficient for
determining material parameters that describe compressive
responses, such as d0 in equation (2.1). Thus, in the above mini-
mization problem, we set d0 = 1 × 10−2 for all models, and solve
for the rest of the material parameters. This choice of d0 is
motivated by the fact that athermal fibres typically buckle
easily under compression, so that d0 (which describes the
strain scale of softening) is expected to be very close to 0.

We evaluate the ability of each model to capture the true
network response by computing the relative error, which
describes how closely the predicted network response
matches the measured network response. In particular, we
define the relative error as

eðc�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 [Pzz(l̂i; c�)� P̂i]
2Pn

i¼1 P̂
2
i

s
, ð3:3Þ

where c* is the set of optimal material parameters that
minimizes the cost function (3.2).
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that εs = λs − 1 denotes the critical strain for fibre stiffening (obtained by data fitting).
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Figure 2 presents the stress–stretch curves predicted by
different models when fitted to the experimental data for col-
lagen and fibrin networks. The optimal material parameters
obtained from data fitting, as well as the relative errors, are
shown in tables S1 and S2 in the electronic supplementary
material. We observe that for both the collagen and fibrin net-
works, the slope of the stress–stretch curve (i.e. the tangent
modulus of the material) increases with stretch, indicating a
nonlinear strain-stiffening response of these networks. This
nonlinear behaviour can be captured fairly well by all the
continuum models, with relative errors below 14% (see elec-
tronic supplementary material, tables S1 and S2). We note,
however, that the fitted parameters differ for different net-
work models. This is because in order to obtain similar
overall network behaviour (as was done in data fitting),
different models would require different sets of parameters
(the same set of parameters would cause different models
to have rather different model predictions).

There are two possible mechanisms responsible for the
strain-stiffening behaviour of the network. First, as defor-
mation progresses, fibres rotate towards the direction of the
maximum principal stretch (i.e. the uniaxial loading direction),
leading to realignment along that direction, and thus to strain
stiffening of the network. This mechanism of fibre realignment
is purely geometric, independent of the properties of
individual fibres. Second, strain stiffening of individual fibres
can also cause overall strain stiffening of the network. This
mechanism comes into effect only after the fibres are stretched
beyond the critical strain (εs = λs− 1) at which fibre stiffening
occurs. How each mechanism contributes depends on the net-
work model used to infer the experimental data. For example,
for the collagen networks, εs = 4.15 × 10−6 for the affine model,
suggesting that fibre stiffening kicks in at very small strains,
thus contributing to overall stiffening of the network much
earlier than fibre realignment. On the other hand, εs = 0.5 for
the eight-chain model, suggesting that in the considered defor-
mation range fibres are linear elastic and do not stiffen;
consequently, the nonlinear network response is solely due
to fibre realignment. These observations suggest that the infer-
ence of the underlying physics depends on the particular
choice of models.
3.2. Simple shear
In this subsection, we test the ability of various models to
describe the network behaviour under simple shear. To do
this, we compare model predictions with the experimental
data of Storm et al. [31] for collagen networks and that of
van Oosten et al. for fibrin networks [32].
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The deformation gradient for simple shear can bewritten as

F ¼
1 0 g
0 1 0
0 0 1

0
@

1
A, ð3:4Þ

where γ denotes the amount of shear. (Here, we have assumed,
without loss of generality, that shear is applied in the x–z plane
along the x-direction.) Thus, for each model we can compute
the shear stress, Pxz, together with the nominal shear modulus,
G = Pxz/γ, as a function of γ, using (2.13). We fit the predicted
modulus–strain (G–γ) curve to the available experimental
data (for both collagen and fibrin networks) by solving a mini-
mization problem analogous to the problem in §3.1. We also
evaluate the relative errors using an expression that is similar
to (3.3).

Since simple shear deformation is volume conserving (J =
1), the last term in (2.13) vanishes, implying that network be-
haviour under simple shear is insensitive to the values of B
and α (which describe how a network responds to volume
changes). As a consequence, the values of B and α cannot
be inferred from shear response. Motivated by this obser-
vation, when performing curve fitting, we solve for
material parameters other than B and α.

The best-fit G–γ curves, along with the corresponding
experimental data, are shown in figure 3. The optimal
material parameters and the associated relative errors are
shown in tables S3 and S4 in the electronic supplementary
material. It can be seen from figure 3 that for both the
collagen and fibrin networks, the shear modulus increases
with shear strain, again indicating a nonlinear strain-
stiffening behaviour of the networks.

From figure 3, we observe that both the affine and three-
chain continuum models accurately describe the network’s
nonlinear shear responses. Moreover, since the critical strains
for fibre stiffening are rather small for these models, stiffening
of individual fibres contributes to the overall material nonli-
nearity much sooner than fibre realignment. On the other
hand, the eight-chain and micro-sphere models capture
network response at large strains, but significantly underesti-
mate the shear modulus at small strains. In particular, as the
shear strain tends to zero, the shear modulus predicted by
both models also tends to zero, indicating that the networks
are mechanically unstable at small shear strains. These pre-
dictions significantly differ from the true network properties.

Upon closer inspection, we identify two reasons that
explain why the eight-chain and micro-sphere models lead
to unstable network response at small strains. First, in both
models, under a prescribed network deformation all the
fibres are stretched to the same degree described by a
single, effective stretch (see (2.9) and (2.11)). (By contrast, in
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the affine and three-chain models, fibres along different direc-
tions are generally stretched to different extents, as would be
expected in real situations.) Second, all fibres are assumed to
be force free at zero strain. It can be shown (see the appendix)
that taken together, these two factors lead to a vanishing
shear modulus at small strains. Also, we note that the failure
of these models is due to the underlying assumptions made
in describing network kinematics, independent of the
choice of the single-fibre models.

In this context, we note that if all the fibres are taken to be
initially pre-stretched, the eight-chain and micro-sphere
models (as well as the affine and three-chain models) do
give rise to stable network responses with positive shear
moduli. However, it is known from more detailed, discrete
fibre network simulations that pre-stress is not necessarily
required for the stability of athermal networks [1,3,18,47].
Therefore, the reliance of the eight-chain and micro-sphere
models on pre-stress to achieve network stability is an
unwanted feature, restricting their utility in describing the
mechanical behaviour of athermal networks.

Finally, we note that our results do not contradict earlier
findings that the eight-chain and micro-sphere models can
accurately describe the mechanical response of thermal
networks like rubber. In those cases, chains within the net-
work are always pre-stressed with an entropic, contractile
tendency (unless the two ends of the chains overlap). As a
result, the eight-chain and micro-sphere models are guaran-
teed to yield positive shear modulus and stable network
behaviour.
3.3. Combined tension and shear
In this subsection, we study the performance of different models
in characterizing network response under combined tension and
shear. Specifically, we compare model predictions with the avail-
able experimental data of van Oosten et al. [32] for collagen and
fibrin networks. In their experiments, cylindrical disc-shaped
network samples were sandwiched between the two parallel
plates of a shear rheometer. These samples were axially com-
pressed or stretched in steps by changing the gap between the
two plates. At each level of axial stretch, the axial stress of the
sample was measured after the fluid had re-distributed and
the material had reached an equilibrium state. In addition, a
small amount of shear strain was superimposed by rotating
one of the plates relative to the other. This was used to measure
the shear modulus of the sample at that level of axial strain.
Thus, both the axial stress and the shear modulus were recorded
as a function of axial strain.

Given that the network samples were very thin, and that
both the top and bottom surfaces of the samples were firmly
attached to the rheometer plates, we assume that the lateral
strain of the samples was zero. This assumption has also
been used in previous studies to simulate the loading con-
ditions in such experiments [18,48]. Thus, we may write the
deformation gradient as

F ¼
1 0 g
0 1 0
0 0 1

0
@

1
A

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
shear

1 0 0
0 1 0
0 0 l

0
@

1
A

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
stretch

¼
1 0 gl
0 1 0
0 0 l

0
@

1
A, ð3:5Þ
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where λ is the axial stretch, and γ is the amount of superim-
posed shear, with g ¼ 2% in the experiment.

For each model, we first set γ = 0 in (3.5) and use (2.13) to
compute the axial stress, Pzz, as a function of λ. We then set
g ¼ 2% and repeated the above procedure to compute the
nominal shear modulus, G = Pxz/γ, as a function of λ. There-
after, we simultaneously fit the stress–stretch (Pzz–λ) relation,
as well as the modulus–stretch (G–λ) relation, to the
corresponding experimental data for collagen and fibrin
networks. The stress data and the modulus data have rather
different magnitudes. To avoid bias in data fitting, in the
cost function, we use different weights for the two datasets.
In particular, we choose weights that are inversely
proportional to the squared magnitudes of the two datasets.

Figure 4 presents the best-fit curves and the correspond-
ing experimental data for collagen networks, with electronic
supplementary material, table S5 showing the calibrated
material parameters and the associated relative errors.
Figure 5 and electronic supplementary material, table S6
display the corresponding results for fibrin networks.

It can be seen from figure 4 that the stress–stretch behav-
iour of the collagen network displays strong tension–
compression asymmetry, with network behaviour being
much stronger under tension than under compression. Corre-
spondingly, the network shear modulus increases with
increasing extension, but decreases with increasing com-
pression. The stiffening of the network in tension can be
attributed, once again, to fibre realignment along the loading
direction and strain stiffening of fibres, whereas softening in
compression is primarily due to buckling of fibres [18,32].
Further, we observe from figure 4 that the affine and
three-chain models can reasonably characterize both the
axial and shear response of the network. On the other
hand, the eight-chain and micro-sphere models capture the
axial properties of the network, but not its shear properties.
In particular, the eight-chain model significantly underesti-
mates the networks shear modulus for all strains, and the
micro-sphere model underestimates the shear modulus for
small tensile and compressive strains. These discrepancies
can again be attributed to the fact that these two models
describe fibre deformations using a single effective stretch,
which is insufficient to simultaneously capture the multi-
axial response of the network. In particular, for the special
case when the axial strain is zero (λ = 1), the deformation gra-
dient in (3.5) reduces to simple shear in (3.4). In this case, the
shear modulus predicted by the eight-chain and micro-sphere
models will always be close to zero (as discussed in §3.2),
thus failing to match the experimental data. We note that
the predicted shear modulus is not exactly zero due to the
finite amount of shear strain, i.e. 2%, applied to the network.
As this shear strain tends to zero, the predicted shear mod-
ulus will tend to zero (as shown in the appendix). We also
make similar observations for the fibrin networks in figure 5.

In this context, we remark that the kinematics and mech-
anics of random athermal networks depend strongly on the
detailed structure of the network, such as the network con-
nectivity and cross link density [1,2,47]. In particular,
deformation of fibres in random networks is known to be
highly non-affine [8,49–51], partially due to heterogeneities
in network structure. These detailed structural features and
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complex fibre kinematics, are not captured by any of our con-
tinuum models, which all employ simplifying assumptions
about network structure and fibre kinematics [3]. However,
the affine and the three-chain models appear to have
sufficient complexity that they are able to represent the
macroscopic behaviour of the networks with reasonable accu-
racy. Thus, they can be used as efficient, reduced-order tools
to describe the macroscopic responses of athermal networks.
In particular, these models can be easily implemented in
finite-element packages to perform large-scale, structural
simulations for athermal networks.

Similar to our findings, a recent study on modelling of
fibrous tissues also suggests that, although the affine model
fails to describe the underlying non-affine fibre kinematics,
it can capture the macroscopic response of fibrous tissues
using appropriate material parameters obtained from data fit-
ting [52]. These material parameters, however, must be
interpreted with care, because they are tuned to compensate
for the model errors made in describing the network struc-
ture and kinematics. Consequently, their values (obtained
from data fitting) can differ significantly from those that
represent the true fibre properties.

Finally, we emphasize that our results do not imply that
the affine and three-chain models are better than the eight-
chain and micro-sphere models per se. In fact, as already men-
tioned, the eight-chain and micro-sphere models do a better
job in characterizing the mechanical behaviour of thermal
networks like rubbers [19,28]. Apparently, the relative per-
formance of various network models depends on specific
network types. Thus, we recommend that practitioners
should systematically investigate the behaviour of different
models and select the ones that are best suited for the tasks
at hand. Our study represents an example of one such effort.
4. Conclusion
In this work, we developed continuum models to describe
the compressible, hyperelastic behaviour of isotropic
athermal fibrous networks. For this purpose, we combined
a single-fibre model that captures the asymmetric axial
behaviour of athermal fibres, with various network
models—including the affine, three-chain, eight-chain and
micro-sphere models—that assemble individual fibre proper-
ties into overall network response. Then, we systematically
investigated the accuracy of these models by comparing
model predictions with available experimental data for col-
lagen and fibrin networks. Specifically, we tested how well
each model captures the true network behaviour under
three loading conditions: uniaxial tension, simple shear, and
combined tension and shear. We found that the affine and
three-chain models can reasonably describe both the axial
and shear response of the network. By contrast, the eight-
chain and micro-sphere models accurately describe the axial
behaviour, but are inadequate in capturing the shear behav-
iour. In particular, these models lead to zero shear modulus
and thus to unstable network response at infinitesimal
strains. We therefore recommended the use of the affine
and three-chain models to describe the mechanical beha-
viours of athermal networks. These models can be
implemented in finite-element codes to conduct large-scale,
structural simulations for biopolymer networks like collagen
and fibrin networks, serving as efficient tools to guide the
design of fibrous scaffolds for cell engineering, and to
understand the role of mechanics in pathologies.
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Appendix A
In this appendix, we employ the eight-chain and micro-
sphere models to compute the nominal shear modulus of
athermal fibrous networks, which undergo simple shear
deformations. In particular, we demonstrate that when all
the fibres are initially force free, the shear moduli predicted
by both models are zero at infinitesimal strains. We also
demonstrate that when the fibres are pre-strained, those
shear moduli become non-zero at infinitesimal strains.

A.1. Eight-chain model
The first Piola–Kirchhoff stress predicted by the eight-chain
model is given by (2.13), with W1 given by (2.10) and (2.9).
Substituting the simple-shear deformation gradient (3.4)
into (2.13), and using the definition of the nominal shear
modulus, G = Pxz/γ, we arrive at

G ¼ N
3l8chf

F f ðl8chf Þ: (A 1Þ

Here, we recall that N is the number density of fibres, Ff =W0
f

is a fibre’s axial force (see, e.g. (2.2)), and l8chf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg2 þ 3Þ=3p
,

with γ being the amount of shear in (3.4). Then, it can be
easily shown that

lim
g!0

G ¼ N
3
F f ð1Þ: (A 2Þ

If all the fibres are initially force free (i.e. Ff(1) = 0), limγ→0 G =
0, implying that the mechanical behaviour of fibrous net-
works is initially unstable.

Note that if all the fibres are pre-stretched (i.e. Ff(1) > 0),
limγ→0 G > 0. This is indeed the case for thermal networks
like rubbers, in which individual fibres are always pre-
stretched with a contractile tendency (unless the two ends
of a fibre coincide). On the other hand, if all the fibres are
pre-compressed (i.e. Ff(1) < 0), limγ→0 G < 0, leading to unphy-
sical results.

A.2. Micro-sphere model
The first Piola–Kirchhoff stress predicted by the micro-sphere
model is given by (2.13), with W1 given by (2.12) and (2.11).

https://github.com/songdawei1018/FibrousModel
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Figure 6. The normalized, nominal shear modulus G* predicted by the micro-sphere model for different values of p. Results are shown for (a) initially force-free
fibres (εpre = 0), (b) pre-stretched fibres (εpre = 0.1) and (c) pre-compressed fibres (εpre =−0.1). Note that G* = (4πG)/(Nκ0), with G given by equation (A 3).
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Substituting the simple-shear deformation gradient (3.4) into
(2.13), and using G = Pxz/γ, we arrive at

G ¼ N
4pg

F f ðlmsph
f Þ(lmsph

f )1�p
ðp
0

ð2p
0

(1þ gsin2u cosf

þ g2cos2u)ð p�2Þ=2ðsinu cosucosf

þ gcos2uÞsinudfdu, (A 3Þ
where we recall that p > 0 is a material parameter, and l

msph
f is

given by

l
msph
f ¼ 1

4p

ðp
0

ð2p
0

(1þ gsin2ucosfþ g2cos2u) p=2sinudfdu
� �1=p

:

(A 4Þ
Note that for the special case p = 2, equations (A 3) and (A 4)
can be evaluated analytically, and (A 3) can be shown to
reduce to (A 1). However, for general values of p, (A 3) and
(A 4) cannot be computed analytically and numerical
integration is required.
Next, we compute the normalized modulus, G* = (4πG)/
(Nκ0), as a function of γ, and study how G* behaves as γ→
0. (Recall that κ0 is a fibre’s stiffness at infinitesimal strains,
see (2.1).) To do this, we need to know the axial responses
of individual fibres.

Since the value of G* at infinitesimal strains is independent
of the axial responses of fibres at large strains, we assume, for
simplicity, that the fibres are linear elastic. Other forms of Ff
can also be used, but they will not affect the value of G* as
γ→ 0. In particular, we assume that Ff(λf ) = κ0(λf− 1 + εpre),
where εpre denotes the pre-strain of fibres. When the fibres
are initially force-free (εpre = 0), lim γ→0 G* = 0 for all values
of p (figure 6a), implying that the networks are initially
unstable. When the fibres are pre-stretched (e.g. εpre = 0.1),
lim γ→0 G* > 0 for all values of p (figure 6b), indicating that
the networks are stable. Finally, when the fibres are pre-com-
pressed (e.g. εpre =−0.1), lim γ→0 G* < 0 for all values of p
(figure 6c), suggesting that model predictions become
unphysical in this particular case.
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