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GIMAPs are recognized as an important regulator in the carcinogenesis and development of lung cancer, but the function of
GIMAP4 in the tumor microenvironment (TME) of lung cancers is unclear. In this study, we investigated the expression and
variation of GIMAP4 in lung adenocarcinoma (LUAD), to explore its association with infiltration of immune cells. The Cancer
Genome Atlas (TCGA) data and Gene Expression Omnibus (GEO) data were analyzed. Infiltration of immune cells was
identified with TIMER (Tumor Immune Estimation Resource) and TISIDB (an integrated repository portal for tumor-immune
system interactions). GIMAP4 expression declined in non-small-cell lung cancer (NSCLC), correlated with a poor overall
survival (OS) in LUAD, indicating that GIMAP4 was a promising prognostic biomarker in LUAD. GIMAP4 mutation
frequency was 1.76% in TCGA cohort and was relevant to the expression of immune components. TIMER and CIBERSORT
analysis further confirmed that high GIMAP4 expression possibly promoted immune cell infiltration into the TME, with low
GIMAP4 impairing the efficacy of immunotherapies targeting common immune check point inhibitors (ICI). GO (Gene
Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed to provide insights into
biological processes involved in LUAD. GIMAP4 was expected to be a prognostic biomarker in LUAD and provides potential
adjuvant or neoadjuvant therapeutic strategies for targeting ICIs.

1. Introduction

Despite significant improvements in survival rates due to the
early diagnosis using low-dose computed tomography and
innovative application of tyrosine kinases inhibitors [1],
lung cancer remains the leading cause of cancer death
worldwide [2]. Early diagnosis and effective intervention
are crucial [3, 4], and thus, biomarkers for selection of
patients and treatment monitoring are needed in clinical set-
tings. Particularly, efficient biomarkers for immunotherapy

are highly desirable but unavailable yet. Recent studies reveal
the role of tumor microenvironment (TME) in carcinogene-
sis and disease progression [5]. Moreover, accumulating evi-
dence suggests that tumor-infiltrating immune cells (TIC),
including B cells, dendritic cells, and T cells, are intimately
involved in the development of lung cancer [6–8]. Simulta-
neously, therapeutic strategy involving immune stimulant
led to remarkable prolonged survival against diverse lung can-
cer cases. Therefore, the understanding of dynamic TME and
profiles of tumor infiltrating immune cells may lead to
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discovery of efficacy biomarkers and new strategies for immu-
notherapy, e.g., immune checkpoint therapy [9, 10].

GTPase of immunity-associated proteins (GIMAP) are
extensively expressed in the immune system, which engage
in early Th cell differentiation. GIMAP was also found to
be correlated with the immune components of the TME.
In GIMAP family, GIMAP4 is rarely investigated, and much
about its function(s) remains unknown. Recent studies
imply that GIMAP4 is involved in Th cell secretory pro-
cesses [11]. In cervical cancer, the prognostic potential of
GIMAP4 has been identified, and the immunoscore of TICs
is strongly related to GIMAP4 [12]. Moreover, in breast can-
cer, GIMAP4 might be a protective factor [13]. However,
there was limited knowledge regarding roles of GIMAP4 in
NSCLC, including its expression, pathological features, sur-
vival, and prognosis [14]. In this study, we identified gene
mutations and differentially expressed genes (DEG) that ver-
ify differences in GIMAP4 expression between lung cancers
and normal lung tissues. We found its related pathway con-
tributes to the tumor immune response. We primarily ascer-
tained its function on immune cell infiltration and immune
response in lung adenocarcinoma (LUAD). Immune check-
points (ICP) CD274 (PDL1), PDCD1 (PD1), CTLA4, and
LAG3 were noted positively correlated with GIMAP4
expression, and further pathways under immune checkpoint
inhibitors (ICIs) were explored. GIMAP4 participated in T
cells activation based on our findings through GSEA. Even-
tually, an immune landscape in LUAD was constructed
based on gene expression and distribution in the local
microenvironment. Our results direct to a complex tumor
immune microenvironment and provide the theoretical
basis for immunotherapy of next generation.

2. Materials and Methods

2.1. Work Flow of Current Work. RNA-seq profiles from
TCGA and GEO were used to identify differential expression

of GIMAP4 in LUAD, which was targeted as grouping and
sorting basis for subsequent analysis. Parallel results were
gained in TCGA survival data, indicating a relationship
between GIMAP4 expression and tumor staging. ESTI-
MATE algorithm was employed to calculate immunoscore
as an alternative separating factor. DMGs were identified
based on the median GIMAP4 expression. GSEA-based
GO and KEGG analyses were conducted. Simultaneously,
CIBERSORT and TIMER algorithms were employed to ana-
lyze TICs. Finally, correlations between GIMAP4 expression
and several cytokines and between GIMAP4 expression and
immune checkpoints were obtained using Spearman correla-
tion test, respectively. The whole workflow of our work was
presented in Figure 1.

2.2. TCGA and GEO Cohort Analysis of GIMAP4 Expression.
Totally, 513 lung adenocarcinoma (LUAD) positive and 59
LUAD negative samples were collected from The Cancer
Genome Atlas (TCGA) database [15]. The same screening
process was carried out in patients diagnosed with lung
squamous cell carcinoma (LUSC), with 501 diseased sam-
ples and 49 normal ones. Statistical analyses were per-
formed using R software package ggplot2. The statistical
significance was tested by log rank test, and the significant
threshold of p value was set to 0.05. GIMAP4 expression
in protein aspect was displayed using THPA dataset
(https://www.proteinatlas.org/). 116 samples were screened
from the GEO database in GSE32863 dataset in format
MINIML with 58 LUAD samples and 58 normal tissue
[16]. Meanwhile, we downloaded 35 LUSC RNA-seq samples
and 28 paracancerous tissue samples in GSE12472 dataset to
conduct differential analysis [17]. Box plot of GIMAP4
expression was drawn by R software package ggpuber.

2.3. Survival Analysis. RNA-seq data for 513 samples and
corresponding clinical information were downloaded from
TCGA. The criteria for exclusion are as follows: (1) normal

GEO TCGA

Verified

GIMAP4 (DEGs)

Clinical and sequence data

GSEA Immune profile Clinical data

TICs in LUAD With dif sCNA status In WT & normal tissues

Correlation with ICPs

Clinical correlation Survival and prognosis analysis

Paper review

Figure 1: The analysis workflow of this study. Abbreviation: DEGs: differentially expressed genes; GSEA: gene set enrichment analysis;
TICs: tumor-infiltrating immune cells; sCNA: somatic copy-number alteration; WT: wild type; ICPs: immune checkpoints; LUAD: lung
adenocarcinoma.
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samples; (2) samples with a survival time shorter than one
month; (3) samples with incomplete information. Informa-
tion was analyzed, and a scatter plot of gene expression
was produced using R package (ggrisk). Survival and surv-
miner packages were employed for creation of KM curves.
The timeROC package was utilized to construct time-
dependent ROC of GIMAP4. All analytical methods and R
packages were performed using R software version v4.0.3.
A p value less than 0.05 was considered as statistically
significant.

2.4. Clinical Bioinformatics Verifying GIMAP4 Mutations in
LUAD. Lollipop plots, oncoplots, and cohort summary plots
were used to display mutation distribution, somatic land-
scape, and, distribution of variants, which can indicate a
high mutation frequency of GIMAP4 in LUAD (https://
www.aclbi.com/static/index.html#/). Totally, 513 patients
were enrolled with pathological diagnosis confirmed to be
NSCLC with stage I-IIIA. We analyzed mutation, transcrip-
tion, and clinical data to identify the somatic mutation rate
of LUAD patients. Mutation data was downloaded and visu-
alized using “maftools” package in R software [18].

2.5. Identification of DEGs. DEGs were identified by differen-
tial analysis via LinkedOmics (http://www.linkedomics.org/
login.php) [19]. Heatmaps and volcano plot were made to
visualize gene regulation. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed with Gene Set Enrichment Analysis (GSEA),
aiming to reveal characteristic pathways in LUAD by search-
ing relevant upstream and downstream genes.

2.6. Tumor Immune Estimation Resource (TIMER) Analysis.
Infiltration of B cells, CD4+, CD8+, neutrophil, and macro-
phage cells in LUAD patients was performed using TIMER

(http://timer.cistrome.org/#) [20]. GIMAP4 expression in
tumors and healthy tissue was compared in Exp model.
Changes of immune infiltration between tumors with
GIMAP4 mutated and wild type (WT) were performed in
violin plots, as was correlation between immune infiltration
level and different somatic copy-number alteration (sCNA)
status of GIMAP4.

2.7. Analysis of TICs. Samples acquired were identified by
comparing high- and low- immunity cohorts using package
limma [21]. CIBERSORT was then loaded to evaluate the
proportion of TICs profile in LUAD samples [22]. A p value
less than 0.05 was considered statistically significant.

2.8. TISIDB Database. TISIDB database (http://cis.hku.hk/
TISIDB/index.php) was used to explore the correlation
between GIMAP4 expression and immune subtypes in LUAD
or LUSC [23]. Spearman correlation between GIMAP4
expression and receptors, immunoinhibitors, immunostimu-
lators, chemokines, MHC molecules, and lymphocytes was
visualized using heatmaps.

2.9. Analysis of ICPs. The data were downloaded from
TCGA. The multigene correlation map was constructed with
the pheatmap package. We used Spearman’s correlation
analysis to visualize relationship between quantitative vari-
ables without a normal distribution. A p value less than
0.05 was considered statistically significant.

3. Results

3.1. GIMAP4 Expression Declined in LUAD. GIMAP4
expression in tumors versus adjacent normal tissues is
shown in Figure 2.

Significant changes of GIMAP4 were showed in breast
cancer, cervical squamous cell carcinoma, LUAD, LUSC, etc.

A
CC

.T
um

or
 (n

 =
 7

9)
BL

CA
.T

um
or

 (n
 =

 4
08

)
BL

CA
.N

or
m

al
 (n

 =
 1

9)
BR

CA
.T

um
or

 (n
 =

 1
09

3)
BR

CA
.N

or
m

al
 (n

 =
 1

12
)

BR
CA

‒B
as

al
.T

um
or

 (n
 =

 1
90

)
BR

CA
‒H

er
2.

Tu
m

or
 (n

 =
 8

2)
BR

CA
‒L

um
A

.T
um

or
 (n

 =
 5

64
)

BR
CA

‒L
um

B.
Tu

m
or

 (n
 =

 2
17

)
CE

SC
.T

um
or

 (n
 =

 3
04

)
CE

SC
.N

or
m

al
 (n

 =
 3

)
CH

O
L.

Tu
m

or
 (n

 =
 3

6)
CH

O
L.

N
or

m
al

 (n
 =

 9
)

CO
A

D
.T

um
or

 (n
 =

 4
57

)
CO

A
D

.N
or

m
al

 (n
 =

 4
1)

D
LB

C.
Tu

m
or

 (n
 =

 4
8)

ES
CA

.T
um

or
 (n

 =
 1

84
)

ES
CA

.N
or

m
al

 (n
 =

 1
1)

G
BM

.T
um

or
 (n

 =
 1

53
)

G
BM

.N
or

m
al

 (n
 =

 5
)

H
N

SC
.T

um
or

 (n
 =

 5
20

)
H

N
SC

.N
or

m
al

 (n
 =

 4
4)

H
N

SC
‒H

PV
+.

Tu
m

or
 (n

 =
 9

7)
H

N
SC

‒H
PV

‒.T
um

or
 (n

 =
 4

21
)

KI
CH

.T
um

or
 (n

 =
 6

6)
KI

CH
.N

or
m

al
 (n

 =
 2

5)
KI

RC
.T

um
or

 (n
 =

 5
33

)
KI

RC
.N

or
m

al
 (n

 =
 7

2)
KI

RP
.T

um
or

 (n
 =

 2
90

)
KI

RP
.N

or
m

al
 (n

 =
 3

2)
LA

M
L.

Tu
m

or
 (n

 =
 1

73
)

LG
G

.T
um

or
 (n

 =
 5

16
)

LI
H

C.
Tu

m
or

 (n
 =

 3
71

)
LI

H
C.

N
or

m
al

 (n
 =

 5
0)

LU
A

D
.T

um
or

 (n
 =

 5
15

)
LU

A
D

.N
or

m
al

 (n
 =

 5
9)

LU
SC

.T
um

or
 (n

 =
 5

01
)

LU
SC

.N
or

m
al

 (n
 =

 5
1)

M
ES

O
.T

um
or

 (n
 =

 8
7)

O
V

.T
um

or
 (n

 =
 3

03
)

PA
A

D
.T

um
or

 (n
 =

 1
78

)
PA

A
D

.N
or

m
al

 (n
 =

 4
)

PC
PG

.T
um

or
 (n

 =
 1

79
)

PC
PG

.N
or

m
al

 (n
 =

 3
)

PR
A

D
.T

um
or

 (n
 =

 4
97

)
PR

A
D

.N
or

m
al

 (n
 =

 5
2)

RE
A

D
.T

um
or

 (n
 =

 1
66

)
RE

A
D

.N
or

m
al

 (n
 =

 1
0)

SA
RC

.T
um

or
 (n

 =
 2

59
)

SK
CM

. T
um

or
 (n

 =
 1

03
)

SK
CM

.M
et

as
ta

sis
 (n

 =
 3

68
)

ST
A

D
.T

um
or

 (n
 =

 4
15

)
ST

A
D

.N
or

m
al

 (n
 =

 3
5)

TG
CT

.T
um

or
 (n

 =
 1

50
)

TH
CA

.T
um

or
 (n

 =
 5

01
)

TH
CA

.N
or

m
al

 (n
 =

 5
9)

TH
YM

.T
um

or
 (n

 =
 1

20
)

U
CE

C.
Tu

m
or

 (n
 =

 5
45

)
U

CE
C.

N
or

m
al

 (n
 =

 3
5)

U
CS

.T
um

or
 (n

 =
 5

7)
U

V
M

.T
um

or
 (n

 =
 8

0)

0G
IM

A
P4

 ex
pr

es
sio

n 
le

ve
l (

lo
g 2

 T
PM

)

2

4

6

8
∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗ ∗ ∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Figure 2: GIMAP4 expression in tumors versus adjacent normal tissue. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. GIMAP4 is significantly
expressed higher in NSCLC than adjacent normal tissue.
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Figure 3: Continued.
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The expression level of GIMAP4 was significantly down-
regulated in clinical LUAD specimens compared to adjacent
noncancerous lung tissue (Figure 3(a)). Significant decline of
GIMAP4 protein expression (Figure 3(b)) in both LUAD
and LUSC tissue were observed compared with normal lung
tissue. From GEO datasets, LUAD set GSE32863, and LUSC
set GSE12472 were used to verify GIMAP4 expression. It is
noteworthy that the fold change in expression between
LUSC and adjacent normal lung samples did not reach sta-
tistical significance (Figure 3(c)). Given the heterogeneity
of LUSC and the intrinsic limitation of online public data,
additional investigation into the role of GIMAP4 in LUSC
is required. GIMAP4 expression across different immune
subtypes (C1: wound healing, C2: IFN-γ dominant, C3:
inflammatory, C4: lymphocyte depleted, C6: TGF-β domi-
nant) of LUAD and LUSC was elucidated in Figure 3(d).
Considering the aim of current work, subtype C5 (immuno-
logically quiet) was excluded.

Significant differences in GIMAP4 expression were
observed among five immune subtypes (wound healing,
IFN-gamma dominant, inflammatory, lymphocyte depleted,
TGF-b dominant), implying potentially diverse function of
GIMAP4 during separate immunologic processes.

3.2. Diminishing GIMAP4 Levels Correlates with Poor OS in
LUAD but Not in LUSC. GIMAP4 expression did not differ
significantly among disparate stages in LUAD (Figure 4(a))
or LUSC (Figure 4(b)). Sankey diagrams detailing correla-
tion between GIMAP4 expression and clinical characteristics
in LUAD and LUSC were constructed (Figures 4(c) and
4(d)). GIMAP4 in stage I LUAD patients seemed with little
difference. However, with grade increased, patients tended
to have lower expression of GIMAP4 and manifested worse
prognosis. In contrast, parallel relation between TNM stage,
GIMAP4 expression, and prognosis was not observed in
LUSC.

Analysis of gene expression, survival time, and survival
status of different sample genes suggested a correlation

between GIMAP4 upregulation and longer patient survival
(Figure 5(a)). As such, LUAD patients with lower GIMAP4
exhibited worse OS (Figure 5(b)). Time-dependent ROC
analysis of GIMAP4 level was exhibited in Figure 5(c). The
predictive ability of GIMAP4 was positively correlated with
AUC value, indicating GIMAP4 as a promising prognostic
biomarker in LUAD. Similar trends were present in LUSC
patients (Figures 5(d) and 5(f)), though no significant differ-
ence in OS was observed (Figure 5(e)), which implied limited
prognostic potential of GIMAP4 in LUSC. Consequently, we
focused on the potential biological and immunologic role of
GIMAP4 in LUAD.

3.3. Identification of GIMAP4 Mutations in LUAD. GIMAP4
mutations occurred in 5% LUAD cases, containing missense
mutation and amplification in majority (Figure 6(a)).
GIMAP4 gain and shallow deletion were predominant in
LUAD as evidenced by GIMAP4 copy numbers (Figure 6(b)).

Lollipop plots showed that the somatic mutation rate of
GIMAP4 was 1.76% and mainly in coding region
(Figure 7(a)). To identify any correlations between gene
mutation and immune component, we keenly investigated
differences in the genetic layer between high- and low-
immunity cohorts. The resulting waterfall plot displayed
the somatic landscape of the LUAD cohort with genes
ordered by their mutational frequency and samples ordered
by GIMAP4 expression (Figure 7(b)). Mutations of known
oncogenes, including TP53, accumulated in samples with
low level of GIMAP4. What is more, other mutated genes,
such as TTN, MUC16, and RYR2, all previously reported
to regulate tumorigenesis and chemoresistance in lung can-
cer, were the most common mutations in both cohorts [24,
25], indicating a lack of significant immune infiltration.
Cohort summary plots displayed the distribution of variants
according to variant classification type, variant type, and
SNV class, identifying missense, SNP, and C>A mutations
as the most common (Figure 7(c)). Moreover, top 10
mutated genes were revealed to be KRAS, XIRP2, ZFHX4,
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Figure 3: GIMAP4 expression in NSCLC subtypes. (a) Expression of GIMAP4 in lung adenocarcinoma (LUAD) and in lung squamous cell
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USH2A, TP53, LRP1B, CSMD3, RYR2, MUC16, and TNT
(Figure 7(c)).

3.4. Identification of DEGs with LinkedOmics. A total of 586
DEGs were identified using LinkedOmics, with 141 down-
regulated and 445 upregulated genes (Figure 8(a)). Heat-
maps were constructed to visualize negatively and
positively related genes (Figures 8(b) and 8(c)). Subsequent

enrichment analysis exhibited a strong correlation between
DEGs with immune-related processes, such as graft versus
host disease, IgA production, which were further confirmed
to be dominant in the TME (Figures 8(d)–8(g)). In addition,
pathways related with hormone function and development
of kidney and reproduction system were enriched. Notably,
the main functions of these DEGs were predominant devel-
opment and endocrine and immunomodulatory processes,
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Figure 5: Prognostic analysis of GIMAP4 in LUAD and LUSC samples using TCGA set. (a, d) The left is a scatter plot of gene expression
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suggesting that the immune component may interact with
several pathophysiological factors and play an important
role in LUAD development.

3.5. Relationship between GIMAP4 Expression and Immune
Infiltration. In order to confirm the direct relationship
between GIMAP4 expression and immune infiltration, with
the exception of B cells and dendritic cells in LUAD patients,
a strong positive correlation was observed between GIMAP4
expression and immune cell upregulation (CD4+T cells,
CD8+T cells, macrophages, myeloid dendritic cells, and neu-
trophils) (Figure 9(a)). These findings implied that GIMAP4
was closely intertwined with immune cells in lung cancer.
CIBERSORT was used to further confirm the relationship
between GIMAP4 expression and the immune components

(Figure 9(b)). In both high- and low-GIMAP4 groups of
LUAD patients, macrophages, plasma cells, CD4+T cells,
and CD8+T cells were the major infiltrating immune cells.
Differences in immune cell composition between high-
GIMAP4 cohort and low-GIMAP4 cohort were visualized
(Figure 9(c)), similar results among CD4+T memory resting
cells, CD8+T cells, macrophages, and neutrophils between
high- and low-GIMAP4 groups, indicating that high
GIMAP4 expression was positively correlated with immune
cell infiltration.

Likewise, ESTIMATE immune score were also employed
to sort samples, revealing significant differences in immune
cell composition according to the tumor immune microenvi-
ronment (Figure S1). LUAD patients with mutated GIMAP4
had significantly lower infiltrations of neutrophils, myeloid
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dendritic cells, CD4+ T cells, and B cells, suggesting some
disparity in immune response between mutated and wild-
type patients (Figure 10).

Additionally, heatmaps of spearman correlations
between GIMAP4 expression and receptors, chemokines,
immunoinhibitors, immunostimulators, MHC molecules,
and lymphocytes showed that GIMAP4 plays a vital role in
cancer immunomodulation (Figures 11(a)–11(f)).

By contrast, there was no close relationship between
immune infiltration level and different sCNA status of
GIMAP4 (Figure S2).

Associations between GIMAP4 and ICPs was further
probed with pheatmap. Resulting correlation matrices dem-
onstrate that GIMAP4 was positively correlated with CD274

(PDL1), PDCD1 (PD1), CTLA4, LAG3, and TIGIT expres-
sion in LUAD, illustrating the potential importance of
GIMAP4 in immunotherapies targeting common ICPs
(Figure 12).

4. Discussion

Among estimated number of incident cases and deaths
worldwide, lung cancer remained second according to GLO-
BOCAN epidemiological statistics in 2020. Lung adenocarci-
noma is the most prevalent lung cancer subtype, and
previous therapies have not slowed down the continuous
increase for incidence and deaths combined. Thus, early
lung cancer screening will promote to the direction of a
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Figure 8: Volcano plot, heatmap, and enrichment analysis of GO and KEGG. (a) Volcano plot. (b, c) Heatmap of upregulated and
downregulated genes. (d–g) GO and KEGG enrichment analysis for DEGs, terms with p and q < 0:05 were believed to be enriched
significantly. The green and red dots represent the significantly downregulated and upregulated genes, respectively, and the gray dots
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more comprehensive continuous advance of the cancer cure.
Our study first linked expression of GIMAP4 in lung cancer
tissues with immune components of TME and provide

insight into potential GIMAP4-based prognosis prediction.
In this paper, we checked differential expression state of
GIMAP4 among different tumor types and further found
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Figure 9: TICs profile in LUAD patients. (a) Relationship between GIMAP4 expression and the different subsets of immune cell infiltrates
in lung adenocarcinoma (LUAD) patients using the TIMER database. (b) Bar plot and box plot show the proportion of 22 types of TICs in
LUAD samples. (c) Boxplot of immune cell proportion, respectively, in high-GIMAP4 cohort and low-GIMAP4 cohort.
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that GIMAP4 matters in the pathogenesis, development, and
prognosis of LUAD. Then, we separated LUAD samples
from TCGA database into GIMAP4 high-expression and
low-expression cohorts in the following procedures. Accord-
ingly, 586 DEGs were subjected to GO and KEGG analysis,

which revealed these genes were interacted with TME
remodeling: intestinal immune network for IgA production,
primary immunodeficiency. From ROC curve, we found that
GIMAP4 alone can predict the short-term survival of
patients to a certain extent. However, there is a lack of
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Figure 11: Heatmaps. Spearman correlation between GIMAP4 expression and (a) receptors, (b) chemokine, (c) immunoinhibitor, (d)
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subgroup analysis, and a multicenter cohort study on the
prediction effect of GIMAP4 is suggested. According to
immunocyte infiltration analysis, GIMAP4 differentiates
immunocyte subtypes in TME among samples, such as B
lymphocytes, T lymphocytes, monocytes/macrophages, and
eosinophils. Constant work should be devoted to give insight
into interaction between TME and other physiological pro-
cesses in LUAD.

Increasing studies have indicated that the TME plays a
critical role in the carcinogenesis and development of cancer
through immunocyte subtype composition remodeling. In
current immunotherapeutic area, identification of a media-
tor capable of transforming the TME from a tumor-
friendly to a suppressive environment is urgently needed.
Notably, studies revealed that GIMAPs are preferentially
expressed in immune cells with several GIMAP family mem-
bers being involved in the development of lymphocytes [26].
Consequently, GIMAPs are implicated in the development
of T-lymphopenia, leukemia, and autoimmunity by further
interaction with Bcl-2 family proteins [27]. So far, GIMAPs
have been recognized performing a wide range of functions
such as thymocyte development, apoptosis of peripheral
lymphocytes, and T helper cell activation. Deficiency or
mutation of these genes would be a strong risk factor regard-
ing diverse immunological diseases. For instance, GIMAP3
and GIMAP5 gene knockout mice presented development
and maturation defection of the thymus [28–30]. Consider-
ing its immune system regulating function, GIMAP4 might

be a potential cancer suppressor target. Indeed, Mégarbané
et al. once raised the hypothesis [13], now confirmed both
clinically and in silico, suggesting GIMAP4 as an accelerator
of programmed cell death [31].

A common feature of various tumors is their ability to
escape the host immune response by secreting Th2 cytokines
which favor an immune-suppressed TME [32]. Inversely,
the dominant state of Th1 cytokines suppresses tumor
growth, metastasis, and drug-resistance, in some cases
inducing tumor regression [33]. As a result, Th1/Th2 ratio
determines immunotherapeutic effect and regulatory factors
of Th1/Th2 shift are potential pharmaceutical target. Recent
research found that cancer immunotherapies employing
patients’ individualized TICs effectively treated NSCLC,
albeit without differential effects [34]. Additionally, previous
studies have proven that GIMAP4 is capable of generating
tumor-specific neoantigens and activating the immune sys-
tem [35, 36]. Therefore, Xu et al. [12] came to a conclusion
that GIMAP4 reversed the Th1/Th2 drifting effect and
enhanced the immunity of Th1. Recently, evidence indicated
IL-12 as a promising target for antitumor immunotherapy.
IL-12 is a proinflammatory cytokine composed of p40 and
p35 subunits [37]. IL-12 derives from antigen-presenting
cells, such as dendritic cells and macrophages, and is crucial
for the recruitment of immune killer cells [38]. Moreover, it
was verified essential in the differentiation of the Th1 lineage
and was found to upregulate GIMAP4 and Th1 cytokines as
well. This is corroborated by our immune cell components

1k

1.2k

800

600

400

200

0

m
RN

A
 ex

pr
es

sio
n 

(R
N

A
 se

q 
V

2 
RS

EM
): 

TI
G

IT

mRNA expression (RNA seq V2 RSEM):
GIMAP4 (7q36.1)

0 500 1 k 1.5 k 2 k 2.5 k 3 k

GIMAP4 vs. TIGIT

Spearman: 0.72
(p = 2.04e-37)

Pearson: 0.36
(p = 1.76e-32)

GIMAP4 mutated
LAG3 mutated
Both mutated
Neither mutated

(e)

2.02e-964.39e-1303.03e-893.57e-41

1.66e-794.13e-618.06e-32

5.17e-46 1.23e-159

2.11e-44

1 0.56 0.57 0.46 0.54

0.70.60.861

1 0.68 0.8

0.751

1

CD27
4

CD274

CTLA4

CTLA4

TIG
IT

TIGIT

LAG3

PDCD1

PDCD1

LAG3

Corr
1.0

0.5

0.0

–0.5

–1.0

(f)
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analysis; parallel alteration existed in T cell subgroup pro-
portion and GIMAP4 expression. Then, enrichment analysis
consolidated this hypothesis, wherein we demonstrated an
involvement of cytoplasmic component and cytoskeleton
function alteration in LUAD. A positive feedback loop may
exist between IL-12 and GIMAP4, providing a potential tar-
get of novel therapies. Taken together, a primitive therapeu-
tic strategy could be: (a) directly inject Th1 cytokines into
the body; (b) gene therapy with the above cytokines; (c)
inject anti-Th2 cytokine antibody to enhance Th1/Th2 shift;
(d) active immunotherapy to bolster classical immune
response pathways.

Cancer cells have been confirmed to disguise tumor-
specific antigens and escape immunological surveillance
via ICP pathways. A myriad of research has focused on
immune checkpoint inhibitors, mostly displaying a solid
antitumor effect against a broad spectrum of cancer types
[39, 40]. Case in point, Zhang et al. [41] carried out treat-
ment directly targeting ICPs, achieving tremendous success
in the history of anticancer worldwide. In this situation,
we hypothesized that GIMAP4 may trigger ICP-related
response. To explore mechanism of GIMAP4 underlying
tumor-immune regulation, we calculated the correlations
between GIMAP4 and 5 ICPs (CD274, CTLA4, TIGIT,
LAG3, and PDCD1) and identified similar trends in their
expression. This result provides theoretical support for
ICP treatment based on GIMAP4 expression-grouped
LUAD patients. Clinically, treatment targeting aforemen-
tioned ICPs in lung cancer exhibited significant efficacy
in certain studies [42–44]. LAG3 and TIGIT, two classical
ICPs, were detected in tumor-infiltrating lymphocytes and
showed a prominent association with other ICPs. In 90
samples treated with PD-1 axis blockers, high LAG3 was
associated with worse prognosis [45, 46]. Similar finding
was reported on TIGIT in another study [47]. We expect
to see further immunotherapies targeting anti-LAG3 and
anti-TIGIT pathways in the future. Simultaneously, we
hope that the specific mechanism between GIMAP4 and
ICI therapeutic strategies will be further investigated and
elucidated.

Since elevated ICP expression was observed in high-
GIMAP4 expressing group, GIMAP4 was probed as an
intrinsic resistance factor to immunotherapy. Nevertheless,
therapeutic strategies based on immune checkpoints inhibi-
tors, alone or in combinations, at present seemed to be
insufficient in prompting tumor regression in a large num-
ber of patients across a broad spectrum of advanced solid
cancers, due to the presence of intrinsic and acquired resis-
tance. Additionally, current studies prevailingly concentrate
on gene expression profile or somatic mutation data, which
placed limitations on our exploration into deeper mecha-
nisms. Furthermore, our research lacks clinical or wet-lab
components and mainly focuses on public databases. As
mentioned above, our research only focused on GIMAP4,
while GIMAP4 was reported to participate in a wide range
of biological function and interact with other factors. Inte-
gration of more related genes may strengthen its prediction
potential. In addition, GIMAP4 expression varies among
patients. There is a lack of subgroup analysis on the effect

of GIMAP4-based ROC curve. We will further conduct a
study on GIMAP4 to clarify its predictive value with multi-
ple clinical cohorts, based on multiple cox regression analy-
sis and multifactor ROC curves.

5. Conclusions

In this study, GIMAP4 was identified as a promising index
for predicting immune responses, which was also observed
as a prognostic biomarker in clinical outcomes, including
overall survival. Further studies should be conducted to clar-
ify the relationship between GIMAP4 and ICPs with Th1/
Th2, which may benefit LUAD patients.
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