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Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Limited 

evidence suggests ALS diagnosis may be associated with air pollution exposure and specifically 

traffic-related pollutants.

Methods: In this population-based case–control study, we used 3,937 ALS cases from the 

Danish National Patient Register diagnosed during 1989–2013 and matched on age, sex, year of 

birth, and vital status to 19,333 population-based controls free of ALS at index date. We used 

validated predictions of elemental carbon (EC), nitrogen oxides (NOx), carbon monoxide (CO), 

and fine particles (PM2.5) to assign 1-, 5-, and 10-year average exposures pre-ALS diagnosis 

at study participants’ present and historical residential addresses. We used an adjusted Bayesian 

hierarchical conditional logistic model to estimate individual pollutant associations and joint and 

average associations for traffic-related pollutants (EC, NOx, CO).

Results: For a standard deviation (SD) increase in 5-year average concentrations, EC 

(SD=0.42μg/m3) had a high probability of individual association with increased odds of ALS 

(11.5%; 95% credible interval [CrI] −1.0%, 25.6%; 96.3% posterior probability of positive 

association), with negative associations for NOx (SD=20μg/m3) (−4.6%; 95% CrI 18.1%, 8.9%; 

27.8% posterior probability of positive association), CO (SD=106μg/m3) (−3.2%; 95% CrI 

14.4%,10.0%; 26.7% posterior probability of positive association) and a null association for 

non-EC PM2.5 (SD=2.37μg/m3) (0.7%; 95%CrI 9.2%,12.4%). We found no association between 

ALS and joint or average traffic pollution concentrations.

Conclusions: This study found high probability of a positive association between ALS 

diagnosis and EC concentration. Further work is needed to understand the role of traffic-related air 

pollution in ALS pathogenesis.

Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease,1 

currently without a cure.2 Approximately half of patients die within 3 years of symptom 

onset.3 Annually, there are nearly 30,000 cases of ALS in Europe and over 200,000 

worldwide.4 Known inherited genetic variants only account for 5–10% of ALS cases.5,6 

Environmental factors, therefore, are likely important in ALS pathogenesis.7 However, 

because the disease is relatively rare, it is challenging to conduct large-scale prospective 

studies. There is a recognized need for more evidence of the environmental contributors of 

ALS.5,8

Although air pollution is commonly studied in association with respiratory- and 

cardiovascular-related outcomes, e.g., references9–14, epidemiologic and toxicologic studies 

also support several plausible biologic mechanisms in association with the nervous 

system and neurodegeneration, e.g., references15–34. Ambient air pollution, especially 

urban air pollution, is a ubiquitous exposure that has been associated with several 

other neurodegenerative disorders, e.g., references16–21,35,36. and is consistently linked to 

systemic inflammation,22–24 oxidative stress,25–28 and neuroinflammation,15,29 all of which, 

in turn, have been reported as key pathways to ALS pathogenesis, e.g., references30–34.

Despite the compelling plausibility, few studies to date have evaluated the association 

between air pollution and ALS.35,37–39 A study in 2021 found that traffic-related air 
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pollutants may be driving observed associations.38 Another study of ALS and PM2.5 in 

Denmark examining critical windows of exposure found that more recent exposure to PM2.5 

(i.e., the previous 1 to 5 years) may be the most important driver of the potential association, 

though the constituents of PM2.5 were not analyzed, neither together nor separately.40 To our 

knowledge no study has hitherto attempted to understand the individual, joint, and average 

associations of the pollutants in a single model. Air pollutants have been consistently 

associated with adverse health, primarily in single pollutant analyses.13,17,41–43 However, 

they are highly correlated with one another.41 It is therefore a mixture modeling challenge 

to infer the association of multiple air pollutants and health outcomes.44 Using three air 

pollutants commonly used in health studies as traffic-related emissions tracers— elemental 

carbon (EC), nitrogen oxides (NOx), and carbon monoxide (CO)— we aimed to assess 

whether exposure to (a) each individual air pollutant is independently associated with ALS 

diagnosis, and estimate their (b) joint and (c) average traffic-related emissions associations. 

This study pairs with and complements the work of Nunez et al.40

Methods

Study Population and Outcome Assessment

We used data from the Danish National Patient Register during 1989–2013, through which 

details on demographic characteristics and certain health outcomes of all Danish residents 

can be linked based on a unique personal identifier.45 The Register was established in 

1977 and is comprehensive, including nationwide clinical and administrative records for all 

inpatient data, with outpatient data available since 1995.46

We identified ALS cases based on their International Classification of Diseases (ICD) 

discharge diagnoses, i.e., ICD-8 code 348.0 (ALS) until 1993 and ICD-10 code G12.2 

(motor neuron disease) thereafter, using the date of the first relevant code as the diagnosis 

date. This was the index date. We only included patients who were at least 20 years old 

when diagnosed because (i) cases younger than 20 years old were at a greater chance of 

misclassification, since ALS has been predominantly diagnosed in older adults,47 and (ii) 

the very few juvenile ALS cases have been explained to a much larger degree by genetic 

mutations (~40%).48 In our validation study, Register data for ALS ascertainment were 

highly reliable; working with a specialist ALS neurologist to review medical records and 

comparing to death certificates and hospital discharges, the Danish National Patient Register 

was found to have an overall predictive value for ALS of 82%.49

We obtained controls through the Danish Civil Registration System, established in 1968 and 

updated daily, which includes administrative records (e.g., date and place of birth, sex, vital 

status, and history of civil status and addresses since 1971) on all persons living in Denmark; 

records are kept even when a person dies or emigrates.50 We randomly matched five controls 

per case by age, sex, year of birth, and vital status. Controls were alive and free of diagnosed 

ALS at the ALS diagnosis date of the matched case (index date). The control-sampling 

scheme followed a risk-set matching pattern, so cases could have served as controls before 

diagnosis of ALS.51
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We obtained all addresses of cases and controls from 1 January 1979 onwards from the 

Danish Civil Registration System,50 including the dates of moving to and from each address, 

before the index date. We then obtained the geographical coordinates at the door of each 

house of the residential history of the participants, with previous evidence of the high 

accuracy of this method of geocoding of addresses in Denmark.17

This study was approved by the Institutional Review Board Committee at Columbia 

University and the Danish Data Protection Agency.

Exposure data

We obtained predictions on monthly concentrations of elemental carbon (EC), nitrogen 

oxides (NOx), carbon monoxide (CO), and fine particles (PM2.5) (as well as ozone, 

O3, for a sensitivity analysis, usually negatively correlated with other pollutants due to 

its chemistry52), at residential addresses of study participants from the validated spatio-

temporal air pollution modeling system DEHM-UBM-AirGIS that provides full space and 

time coverage over the study period, described in detail elsewhere.53–56 In brief, DEHM-

UBM-AirGIS is a human exposure modeling system for traffic pollution, developed for 

application in Danish air pollution epidemiologic studies. The modeling system integrates 

air pollution dispersion models, digital maps, national and local administrative databases, 

concentrations of air pollutants at regional, urban background and street level, meteorologic 

data, and a Geographic Information System (GIS). The modeling system is therefore able to 

generate street configuration and traffic data based on digital maps and national databases, 

which enables estimation of air quality levels at a large number of addresses in an automatic 

and effective way. These predicted pollutant concentrations have been extensively used in 

previous air pollution epidemiologic studies in Denmark.17,40,57–59 The models have good 

predictive accuracy, with average monthly correlations between measured and modeled 

results of 0.79 for EC, 0.85 for NOx, 0.91 for CO, 0.92 for O3, and 0.83 for annual 

concentrations of PM2.5.53,56 Because traffic is a major source of PM2.5 and EC one of the 

main PM2.5 components in urban environments,60 we removed the EC concentration from 

the total PM2.5 mass concentration (non-EC PM2.5) by subtraction to avoid overadjustment 

when including both in the models simultaneously; this was valid since the DEHM-UBM-

AirGIS modeling system constructed PM2.5 concentrations by adding from specific species 

of pollutants, one of which was EC.53–56

Based on the residential history of each case or control, we calculated 1-, 5-, and 10-year 

average exposure to each pollutant ending at 1 year before the index date, as diagnosis 

has been shown previously to occur at a median of 12 months after symptoms onset.61 

Specifically, each case or control average value (1-, 5- or 10-year) was calculated as the 

mean of all concentrations recorded across time at the recorded addresses within each time 

window. A small number of Danish residents lack a complete address history (1.7%; lack 

of house number). To ensure we were including participants with adequately complete 

exposure records, we set the following minimum criteria for number of complete exposure 

record months to include cases and controls: (i) 1-year averages: 9 of 12 months, at least one 

measurement in each season; (ii) 5-year averages (main exposure): 30 of 60 months; and (iii) 

10-year averages: 60 of 120 months.
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Covariate data

We included a set of covariates based on as close as possible to index date to account 

for potential confounding bias, including household socioeconomic status (SES) based on 

last-reported job title at index date; civil status at index date, last reported place of residence 

at index date, and place of birth. We used a five-category, individual-level SES definition 

developed by the Danish Institute of Social Sciences, based on job titles from income 

tax forms, which has been associated with ALS diagnosis in Denmark,62 as well as how 

quickly one is identified as having ALS in the Danish Civil Registration System.63 Group 1 

(highest status) includes corporate managers and academics; group 2: proprietors, managers 

of small businesses and teachers; group 3: technicians and nurses; group 4: skilled workers; 

and group 5: unspecialized workers, such as entry-level positions within food and retail 

environments. We also included a group for participants whose job title was unknown 

(group 9). For each married participant, we used the higher of the couple’s individual 

SES categories, when available. We also used information on civil status (never married, 

married, divorced, widowed) due to the influence that a spouse may have on visiting a 

family physician,64 last reported place of residence from postcode (Greater Copenhagen, big 

cities of Denmark, rest of Denmark, Greenland) to account for various local environmental 

and behavioral stressors,7 and place of birth (Greater Copenhagen, big cities of Denmark, 

rest of Denmark, Greenland, foreign, unknown) to adjust for other potential family-specific, 

location-specific, and early-life confounders, which may have an impact on the probability 

of developing ALS.65 Ultimately, we were limited by what was available in the Danish 

Civil Registration System.63 As part of a sensitivity analysis, we also included parish-level 

SES, measured by percentage of residents with greater than high-school education, in the 

model. In Denmark, parishes are administrative units with an average population of ~2,500 

residents.

Statistical analysis

We analyzed the association between ALS diagnosis (binary) and exposure to traffic-related 

pollutants by applying a Bayesian formulation of the conditional logistic model, with 

Bayesian hierarchy on the traffic-related pollutants (EC, NOx, CO).66,67 The conditional 

approach examines contrasts within matched strata, i.e., groupings of case and matched 

controls, implicitly adjusting for matching factors (age, sex, year of birth, vital status) 

within each matched stratum.66 Matching by finer scale than year of birth was not possible. 

Bayesian inference allows for full distributional estimation of parameters of interest.67 

We employed a Bayesian hierarchical formulation because it enables estimates of (a) 

independent pollutant–outcome associations, (b) a joint association of the three pollutants 

(i.e., total percentage change in odds of ALS diagnosis with a simultaneous increase in 

each of EC, NOx, CO), and (c) an average traffic association (i.e., average percentage 

change in odds of ALS diagnosis with increases in each of EC, NOx, CO), while accounting 

for the variance–covariance structure between the highly correlated exposures and their 

coefficients.67 We included a linear term for each included pollutant and adjusted for 

individual- and parish-level SES, civil status, last reported place of residence, and place 

of birth.

Specifically, via a logit function, we modeled the log-odds of ALS diagnosis, as follows:
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logit Pr Yci = 1 = αc +
βECECci +  βNOxNOxci + βCOCOci +

βPM2.5 non‐EC PM2.5ci +

βSESSESci  + βCivil StatusCivil Statusci + βResidenceResidenceci + βBirthBirthci,

where Yci denotes whether subject i in matched stratum c was diagnosed with ALS, i.e., c 
represents a case and its matched controls; αc the matched stratum-specific intercepts (not 

estimated in conditional logistic models); βEC, βNOx, βCO, βPM2.5 the individual pollutant 

coefficients (log-odds) per standard deviation (SD) increase in concentration of EC, NOx, 

CO, non-EC PM2.5 respectively, scaled by their respective SDs and centered at their means, 

with each β an individual pollutant association adjusted by other terms in the model 

and the rest as coefficients for subject-specific covariates. Interquartile range (IQR) could 

equivalently be used to scale pollutant concentrations. If other sources of air pollution are 

associated with ALS, then including non-EC PM2.5 adjusts for PM2.5 from other sources,68 

as well as indicating whether pollution from other sources not explicitly quantified might 

also have associations with ALS. Therefore, βPM2.5 is interpreted as the association with 

air pollutants not specifically included in our analysis. In urban European environments, 

traffic-related pollutants typically represent on-average 14% of PM2.5 concentrations.69 In a 

sensitivity analysis, we included O3 in the model, as O3 concentrations have been associated 

with many adverse health outcomes,70 and were negatively correlated with traffic-related 

pollutants, and added ns SESparishci , as a natural spline with three degrees of freedom.

In our model, βEC, βNOx, and βCO represent the independent individual pollutant 

associations with ALS diagnosis. In the same model, we estimated the joint association 

between these three pollutants and ALS diagnosis as:

TrafficJoint = ∑
p = EC, NOx, CO

βpp .

This sum quantifies the association (log-odds) with ALS of a one-SD increase in the three 

pollutants simultaneously.

Finally, we assumed that the traffic-related individual pollutant associations arise from a 

distribution of the average traffic association with ALS diagnosis. We placed a hierarchy 

on the traffic-specific individual pollutant terms in the model to account for the fact that 

the traffic-related pollutants, EC, NOx, CO, originate from common sources and primarily 

traffic in urban environments:

βTraffic = βEC, βNOx, βCO ,

βTraffic MV N μ, Σ ,
μ N λ, σλ ,
Σ = τΩτ,
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where λ denotes the average one-SD association of traffic-related pollution with variance 

σλ. Σ, the estimated variance–covariance matrix among individual pollutant estimates, was 

expressed as a decomposition into a positive-definite correlation matrix Ω and scale matrix 

τ.71

We used weakly informative priors so that data drove parameter estimation. Hyper-priors 

for coefficients on non-EC PM2.5 and covariates were N(0,10); for σλ and τ we used 

Half-Cauchy(0,10), as recommended by Gelman, Polson, and Scott as a weakly-informative 

prior;72,73 Ω was defined by the weakly-informative prior LKJCorr(1).74 The exception to 

this was the prior for λ, the average association of traffic-related pollutants, for which 

estimates became unrealistically high (approaching infinity and not converging with further 

iterations) with a more weakly-informative prior. We therefore used a prior of N(0,0.1), 

which did not affect estimates of other parameters. We conducted sensitivity analyses to 

understand the influence of priors and the robustness of the results.

We present all results as percentage change in odds of ALS diagnosis per SD increase 

in pollutant concentration (calculated via e.g., eβEC − 1, etc. obtained in the modeling 

process). Due to the risk-set matching pattern of our case–control study, odds ratios are 

also equivalently incidence ratios (IRs).66 We ran each model with four chains with a sample 

size of 1,000 each, after a warm-up of 1,000 samples, for 4,000 total samples. We assessed 

whether the models converged by checking that the Gelman–Rubin potential scale reduction 

statistic75 was below 1.1 for all estimated model parameters. The reported 95% credible 

intervals (CrI) are the 2.5th to 97.5th percentiles of each parameter’s posterior marginal 

distribution. To calculate the probability that an association estimate was greater than null, 

we used the 4,000 samples of the posterior distribution and took the proportion of samples 

which were above the null. A 50% probability means that it is as likely as not that the 

marginal estimate is null, a probability closer to 100% indicates that the association is more 

likely to be truly positive, with closer to 0% indicating more likely to be truly negative.

We conducted statistical analyses using the R Statistical Software, version 4.1.176 and 

R-STAN, version 2.21.2.67 All code for analysis, results from analysis, and visualization 

presented in this manuscript is publicly available via GitHub at https://github.com/rmp15/

traffic_air_pollution_als_denmark_epidemiology.

We assessed the sensitivity of our results to hyper-prior assignment; running more iterations 

and warm-up per chain; inclusion of O3; single traffic-related pollutant models adjusting 

for non-EC PM2.5; as well as adjusting by parish-level SES. From the parish-level SES 

sensitivity analysis we excluded those who lived in areas without parish-level SES data, 

namely: (i) 819 participants for 1-year average exposure; (ii) 826 participants for 5-year 

average exposure; and (iii) 838 participants for 10-year average exposure.

Results

After filtering the original 4,011 cases and 20,055 controls based on completeness of 

exposure records, we used information on 3,934 (98.1% of total) cases and 19,298 (96.2% 

of total) controls for 5-year average exposure. We also used 3,937 cases,19,333 controls 
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for 1-year average exposure and 3,929 cases, 19,250 controls for 10-year average exposure. 

Descriptive statistics of included cases and controls for 5-year average exposure can be 

found in Table 1. Descriptive statistics of controls for 5-year exposure by socioeconomic 

status, civil status, residence, and place of birth are found in eTables 1–4. For the main 

results, we present 5-year average exposure associations as a balance between representation 

of most recent exposure as well as long-term concentration.

The 5-year average traffic-related pollutant concentrations were 0.85 μg/m3 for EC 

(SD=0.42 μg/m3), 27 μg/m3 for NOx (SD=20 μg/m3), and 238 μg/m3 for CO (SD=106 

μg/m3) (Table 2). Figure 1 shows Spearman correlations between pollutants for 1-, 5-, and 

10-year average exposures. Traffic-related pollutants (EC, NOx, CO) were highly correlated 

in cases, controls and overall, ranging from correlations of 0.91 to 0.96. Otherwise, 

non-EC PM2.5 was most highly correlated with CO, ranging from 0.67 to 0.7. O3 was 

negatively correlated with other pollutants, ranging from −0.54 to −0.89. Maps of average 

concentration of included pollutants (EC, NOx, CO, PM2.5, O3) across Denmark for a 

representative year (2000; middle of study period 1989–2013) are also available in eFigure 

1.

For 5-year average pollutant concentrations, we observed the largest overall increase in 

odds of ALS diagnosis for the individual SD increase in EC (11.5%; 95% CrI: −1.0%, 

25.6% per 0.42 μg/m3; 96.3% posterior probability of positive association) (Figure 2). 

SD increases were associated with a decrease in odds of ALS diagnosis in NOx (−4.6%; 

95% CrI: −18.1%, 8.9% per 20 μg/m3; 27.8% posterior probability of positive association) 

and CO (−3.2%; 95% CrI: −14.4%, 10.0% per 106 μg/m3; 26.7% posterior probability of 

positive association). Non-EC PM2.5 was not associated with ALS diagnosis (0.7%; 95% 

CrI: −9.2%, 12.4% per 2.37 μg/m3; 54.1% posterior probability of positive association). 

One-year EC average exposure was associated with an increase in odds of ALS diagnosis 

(15.4%; 95% CrI: 1.6%, 25.6% per 0.42 μg/m3; 98.9% posterior probability of positive 

association). Single-pollutant models for each traffic-related pollutant adjusting for non-EC 

PM2.5 (eFigure 1; single traffic-related pollutant models D, E and F) resulted in positive 

associations for each of EC, NOx, CO, with positive associations for non-EC PM2.5 in all but 

the model with EC. The 95% credible interval for EC in the single-pollutant model (eFigure 

1; model F) overlapped with the credible intervals of the EC term in the multi-pollutant 

models (eFigure 1; models A to C, G to P). The joint association of traffic-related pollutants 

(EC, NOx, CO) was 2.3% (95% CrI: −3.3%, 7.7%), with an 77.8% posterior probability of 

a positive association. The average traffic association was null (−0.1%; 95% CrI: −17.4%, 

20.8%; 45.5% posterior probability of positive association). Compared to the 1- and 5-year 

results, the 10-year average exposure results were attenuated, as associations tended further 

to the null. Results from variations of the main model in the sensitivity analyses were robust 

to prior choices, inclusion of O3, and inclusion of parish-level SES (eFigure 2).

Discussion

In the largest case–control study of ALS and traffic-related air pollution to date (to our 

knowledge), we found that EC had the largest-in-magnitude independent association with 

ALS diagnosis, while associations with NOx and CO were negative with credible intervals 
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overlapping the null, and smaller in magnitude. A joint increase in concentrations of traffic-

related pollutants had a high probability of being associated with an increase in odds of ALS 

diagnosis. Sensitivity analyses demonstrated that for single pollutant models, the association 

for EC was smaller than for our main multi-pollutant model, which took into account 

the variance–covariance structure of traffic-related pollutants. Overall conclusions for the 

association between EC and ALS diagnosis were similar from the single- or multi-pollutant 

models. The inconsistent associations for NOx and CO in the multi- and single-pollutant 

models and the consistency of the EC association suggest that EC concentrations may have 

been more relevant than NOx and CO for ALS diagnosis, though further study is required. 

Our results indicate that traffic-related pollutants, hazardous in many ways,9–21,41–43 may 

also be associated with ALS diagnosis. Our finding—that increases in EC are potentially 

positively associated with ALS diagnosis—is plausible. A case–control study in the 

Netherlands from 2021 reported that ultrafine particles, another traffic emissions-related 

surrogate, were associated with ALS diagnosis,38 while another based in Catalonia, Spain 

found ALS cases clustered around key road infrastructure.77 Although we did not find an 

association with non-EC PM2.5 in our study, our results are not directly comparable to 

those of the other studies, as our PM2.5 effect estimates capture the PM2.5 components 

not accounted for by other pollutants in the analysis. A study examining critical windows 

of exposure of PM2.5 and ALS diagnosis in Denmark found that concentrations 1 to 5 

years before exposure may be driving the association with ALS onset,40 consistent with 

our findings that the most recent 1-year average EC concentration exhibited the largest 

association.

Our results indicate that EC exposure—a large part of which comes from diesel combustion 

and small combustion sources (such as wood stoves) in European urban centers, where 

prevalence of diesel cars is high78—has a high probability of a positive association with 

ALS diagnosis. In our previous study of ALS and occupational exposures in Denmark we 

found that those working in agriculture and construction, associated with exposure to diesel 

engine exhausts, were at higher relative risk than those in other employments.62 Truck 

drivers, for whom diesel exposure is common, are also at increased risk of sporadic ALS.79 

EC exposure has been associated with inflammation,80 mitochondrial dysfunction81 and 

DNA damage,81,82 all of which are plausible pathways of neurodegeneration. These factors 

have also previously been identified as particular pathways to pathogenesis of ALS.30–34

We did not find a high probability of a positive association with NOx in our analyses, 

in contrast with a previous study, though that study did not include EC.38 NOx is 

also highly correlated with EC (0.94 to 0.96 in our study), which is expected given 

that they are both combustion products commonly associated with emissions in urban 

environments. EC exposure was more strongly associated with 1-year than for 5-/10-year 

average concentrations, which may indicate that the previous year of exposure may be 

the most relevant exposure window relevant to traffic-related exposures and ALS; this is 

biologically plausible, as this critical exposure window would be at the pre-symptomatic 

stage of underlying ALS progression, where traffic-related pollution exposure may add to 

the ongoing cellular or molecular process of the disease, to the point where the body can 

no longer compensate and subsequently enters the clinical phase.83–85 We do not expect that 

these results are attributed to reverse causation, as we have lagged these 1-year exposures 
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by one year already prior to diagnosis, and there was likely little substantial residential 

movement in the year before ALS diagnosis.86 We do not expect that calendar time was a 

potential source of confounding, as the controls were matched on age and year of birth. The 

null joint association, combined with the largest associations from traffic-related pollutant in 

all models found with EC, further indicates that EC may be driving the association of air 

pollution with ALS, though further analysis will be necessary to confirm this.

Our study had one of the largest numbers of ALS patients ever included in an environmental 

health study. Another strength of our study is that we leveraged highly correlated traffic 

pollutants and Bayesian hierarchical modeling and were able to estimate independent, joint, 

and average traffic-related pollutant associations. Although we have adjusted implicitly (by 

matching; age, sex, year of birth, vital status) and explicitly for many common covariates 

(SES, civil status, residence, place of birth), we cannot rule out residual confounding. 

Information on individual-level variables, such as body mass index (BMI) and smoking 

status is not currently available through the Danish Civil Registration System. These 

variables, while potential risk factors for ALS, are not likely confounders in this analysis as 

they are not expected to be associated with pollutant concentrations in a manner independent 

of neighborhood SES. If this information were available, it could be used to further 

adjust for SES.86 To the extent that the variables we included in our models to adjust 

for household- and neighborhood-level SES are adequate, we would expect any residual 

SES-related confounding to be minimal. Exposure measurement error is inevitable, as any 

modeled exposure will be inaccurate to some degree. However, any error is not likely 

correlated with ALS diagnosis, and therefore any bias would be towards the null.87 While a 

previous study found that ALS ascertainment from the Danish National Patient Register was 

highly reliable,49 outcome misclassification cannot be ruled out, nor can the possibility that 

date of diagnosis and symptom onset were irregularly aligned. While our analysis adjusted 

for marital status and household SES, many couples in Denmark cohabitate. This would not 

be captured by our analysis, and ALS diagnosis in relation to cohabitation status should be 

further investigated.88

Future research might use larger cohort data to understand the importance of each 

respective pollutant in a single model. Other mixture model methods, such as Bayesian 

Kernel Machine Regression89 might be useful in further exploring the robustness of joint 

associations in a different framework, though this method was not appropriate for our 

particular research question, since it is currently not available for case–control study 

applications. The timing of exposure will continue to be an important study route. ALS 

is projected to increase in prevalence over the next few decades all over the world.4 

Understanding ALS pathogenesis and identifying modifiable risk factors is critical for 

preventive action.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spearman correlation of 1,- 5-, and 10-year average pollutant concentrations.
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Figure 2. 
Percentage change in odds of ALS diagnosis per 1-, 5- and 10-year average standard 

deviation (SD) increase for each pollutant. Results are from the Bayesian hierarchical model 

including each of elemental carbon (EC), nitrogen oxides (NOx), carbon monoxide (CO), 

non-elemental carbon fine particles (non-EC PM2.5), and ozone (O3)together, and were 

additionally adjusted by age, sex, year of birth, vital status, socioeconomic status, civil 

status, last reported place of residence, and place of birth.
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Table 1.

Demographic characteristics of cases and controls for 5-year average exposure group.

Characteristic Overall, N = 23,232 Case, N = 3,934 Control, N = 19,298

Average age (years) 66 (12) 66 (12) 66 (12)

Sex, n(%)

 Female 10,973 (47%) 1,854 (47%) 9,119 (47%)

 Male 12,259 (53%) 2,080 (53%) 10,179 (53%)

Socioeconomic status (SES), n(%)

 Group 1 (Highest) 2,337 (10%) 451 (11%) 1,886 (9.8%)

 Group 2 2,839 (12%) 499 (13%) 2,340 (12%)

 Group 3 4,360 (19%) 785 (20%) 3,575 (19%)

 Group 4 6,598 (28%) 1,076 (27%) 5,522 (29%)

 Group 5 (Lowest) 4,419 (19%) 717 (18%) 3,702 (19%)

 Group 9 (Unknown) 2,679 (12%) 406 (10%) 2,273 (12%)

Place of birth, n(%)

 Greater Copenhagen 4,858 (21%) 831 (21%) 4,027 (21%)

 Big cities of Denmark 7,923 (34%) 1,357 (34%) 6,566 (34%)

 Rest of Denmark 9,009 (39%) 1,548 (39%) 7,461 (39%)

 Greenland 243 (1.0%) 53 (1.3%) 190 (1.0%)

 Foreign 1,065 (4.6%) 122 (3.1%) 943 (4.9%)

 Unknown 134 (0.6%) 23 (0.6%) 111 (0.6%)

Civil status, n(%)

 Married 14,158 (61%) 2,411 (61%) 11,747 (61%)

 Divorced 2,703 (12%) 433 (11%) 2,270 (12%)

 Widowed 4,224 (18%) 726 (18%) 3,498 (18%)

 Never married 2,147 (9.2%) 364 (9.3%) 1,783 (9.2%)

Last reported place of residence, n(%)

 Greater Copenhagen 7,778 (33%) 1,328 (34%) 6,450 (33%)

 Big cities of Denmark 3,703 (16%) 618 (16%) 3,085 (16%)

 Rest of Denmark 11,747 (51%) 1,988 (51%) 9,759 (51%)

 Greenland 4 (<0.1%) 0 (0%) 4 (<0.1%)
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Table 2.

Summary of 1,- 5-, and 10-year average pollutant concentrations of elemental carbon (EC), nitrogen oxides 

(NOx), carbon monoxide (CO), non-elemental carbon fine particles (non-EC PM2.5), and ozone (O3) (all mean 

[SD] in μg/m3).

Pollutant Overall, N = 23,270 Case, N = 3,937 Control, N = 19,333

1-year average

EC 0.81 (0.42) 0.83 (0.44) 0.81 (0.42)

NOX 26 (19) 26 (20) 26 (19)

CO 224 (97) 226 (101) 224 (96)

non-EC PM2.5 11.17 (2.32) 11.20 (2.34) 11.17 (2.31)

O3 52.6 (6.1) 52.4 (6.2) 52.6 (6.1)

Pollutant Overall, N = 23,232 Case, N = 3,934 Control, N = 19,298

5-year average

EC 0.85 (0.42) 0.86 (0.45) 0.85 (0.42)

NOX 27 (20) 28 (21) 27 (20)

CO 238 (106) 239 (112) 237 (105)

non-EC PM2.5 11.76 (2.37) 11.78 (2.41) 11.76 (2.37)

O3 51.9 (6.0) 51.9 (6.1) 52.0 (6.0)

Pollutant Overall, N = 23,179 Case, N = 3,929 Control, N = 19,250

10-year average

EC 0.89 (0.43) 0.89 (0.46) 0.88 (0.43)

NOX 29 (20) 29 (22) 29 (20)

CO 253 (115) 255 (122) 253 (113)

non-EC PM2.5 12.53 (2.55) 12.55 (2.59) 12.52 (2.55)

O3 51.3 (6.0) 51.3 (6.1) 51.4 (6.0)
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