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Abstract

Animals routinely learn to associate environmental stimuli and self-generated actions with their 

outcomes such as rewards. One of the most popular theoretical models of such learning is the 

reinforcement learning (RL) framework. The simplest form of RL, model free RL, is widely 

applied to explain animal behavior in numerous neuroscientific studies. More complex RL 

versions assume that animals build and store an explicit model of the world in memory. To apply 

these approaches to explain animal behavior, typical neuroscientific RL models make implicit 

assumptions about how real animals represent the passage of time. In this perspective, I explicitly 

list these assumptions and show that they have several problematic implications. I hope that the 

explicit discussion of these problems encourages the field to seriously examine the assumptions 

underlying timing and reinforcement learning.

Predicting rewards is essential for the sustained fitness of animals. Since animals (including 

humans) experience events in their life along the continuously flowing dimension of time, 

predicting rewards fundamentally requires a consideration of this timeline (Fig 1). Several 

models have been proposed for how animals learn to predict rewards based on their 

experience (Balsam et al., 2010; Brandon et al., 2003; Dayan, 1993; Gallistel and Gibbon, 

2000; Gallistel et al., 2019; Pearce and Hall, 1980; Rescorla and Wagner, 1972; Schultz, 

2016; Sutton and Barto, 1998; Wagner, 1981). Among these, the most widely used class of 

models in neuroscience is reinforcement learning (RL). The core concept of RL models is 

that animals make an initial prediction about upcoming reward, calculate a prediction error 

— the difference between the experienced reward and the predicted reward, and then update 

their prediction based on this prediction error. The critical issue for a real animal is that it 

must learn not just that a reward is predicted but also when it is predicted. While RL models 

were inspired by psychological models such as the Rescorla-Wagner (Rescorla and Wagner, 

1972) or the Pearce-Hall (Pearce and Hall, 1980) models, mathematically rigorous versions 

of it have borrowed extensively from concepts in computer science. The fundamental issue 

that makes these newer models better suited to explaining animal behavior is that they 

attempt to solve the question of when the reward is predicted, while Rescorla-Wagner and 

Pearce-Hall models punt on this issue.
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Explaining how these newer models account for the passage of time is the key issue 

considered in this perspective. Briefly, these RL models contend that the learning agent 

(e.g. real animals) represents the structure of their world in a “state space” that abides 

by simplified principles such as Markov chains (Niv, 2009; Sutton and Barto, 1998). A 

state is any abstract representation of observable or unobservable events in their world, 

and Markov chains are a special kind of state space in which transitions between states 

do not depend on the history of previously experienced states. Commonly used Markov 

chain models discretize the flow of time (Niv, 2009; Schultz et al., 1997) or assume 

temporal basis functions during intervals between events (Gershman et al., 2014; Ludvig 

et al., 2008, 2012; Petter et al., 2018). These formulations have an intrinsic mathematical 

simplicity to them, which makes rigorous mathematical calculations possible (e.g., the 

Bellman equation for value update). Here, I show that these simplifying assumptions have 

problematic implications when applied to learning in real animals, as they often do not 

naturally account for the timeline of experience of real animals. My hope is that the 

explicit treatment considered here stimulates serious considerations of these issues. While 

the solutions remain to be fully worked out, I believe there will be no progress until the 

problems are recognized.

Example illustrative task

Perhaps the simplest RL task for animals is cue-reward learning. Most commonly, this is 

studied in Pavlovian conditioning experiments in which an environmental cue is predictive 

of an upcoming reward (Pavlov, 1927). Often, there is a delay between when the cue turns 

off and the subsequent reward delivery (e.g. Bangasser et al., 2006; Beylin et al., 2001; 

Coddington and Dudman, 2018; Kobayashi and Schultz, 2008; Schultz et al., 1997). This 

variant of the task is known as trace conditioning. I will use this simple illustrative example 

throughout this perspective. The main reason for doing so is to show that even the simplest 

tasks require problematic assumptions. Indeed, the problems laid out here become more 

severe for tasks requiring reward predictions based on actions. Another reason is that this 

type of learning, i.e., cue followed by delay followed by reward, is highly ethologically 

relevant. For instance, for wild foragers, environmental landmarks can often act as “cues” 

predictive of a reward after some distance (or delay) (Chittka et al., 1995; Wystrach et al., 

2019a, 2019b). Similarly, for many animals, cues reflecting the end of winter are predictive 

of an increased availability of food reward. It is then perhaps not surprising that even insects 

show evidence of such learning (Chittka et al., 1995; Dylla et al., 2013; Menzel, 2012; 

Toure et al., 2020; Wystrach et al., 2019a). I will first discuss the common mathematical 

formulation for representing state space in this task, before discussing implicit assumptions 

and their problematic implications.

Markov Chains

The mathematical concept of Markov chains is the building block for state space 

representations in RL. Briefly, a Markov chain is formed by a set of states, S = {1, 2, 

…, n}. An implicit assumption is that all the relevant states in the world have been specified 

in S. The process is assumed to start from one state and successively moves to another 

state (possibly itself) with a probability pij (where i and j are indices for the starting and 
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ending states and can be equal). Each move is called a step. Each step results in a transition, 

which could be a self-transition to the same state. Crucially, the “transition probabilities” 

from a given state do not depend on the history of states. If we index the step number (a 

measure of time) by a subscript t, this means that the conditional probability p(st|st-1, st-2, 

…, s1)=p(st|st-1). This absence of history dependence is known as the Markov property and 

allows some convenient mathematical representations.

The state space in RL is typically such a Markov chain. In more realistic RL formulations, 

the animal can also take a set of actions A={a1, …,am} that transitions the agent from one 

state to another with a conditional probability of p(sj | si, ak). These transition probabilities 

can collectively be represented by a transition matrix P. The state space for an RL agent 

is fully described by S, A and P. This more general state space that includes an ability of 

agents to interact with its states using actions is the Markov Decision Process used in RL.

For simplicity, I will only consider the example illustrative task discussed above, in which 

a reward follows a cue after a delay. Hence, I will omit considerations of actions and the 

dependence of P on actions. In this task, the states can be minimally specified as the cue 

state and the reward state. Representing these stimuli as states allows an animal to store 

the sensory properties of these states in memory. For instance, the animal could learn that 

an auditory cue has a specific set of sensory attributes such as frequency profile, loudness, 

duration etc. Similarly, the sensory properties of a type of reward can be represented as 

a reward state. These various attributes can be stored as part of the memory of that state. 

Additionally, it is assumed that animals learn a representation of a scalar value for reward. In 

RL, the reward values are typically denoted by R(s, a), a scalar value associated with each 

state-action pair. For our purpose, I will denote the reward function by R(s). For the cue and 

reward state formalism that I adopt, R(cue)=0 and R(reward)=reward value. Thus, S, P, and 
R completely describe the cue-reward task of interest.

Dealing with time in Markov chains

The biggest problem with the above state space model is that there is no representation of 

time. The task of interest contains a delay between the cue and reward, and a delay from 

the reward to the next presentation of the cue (typically called the intertrial interval or ITI). 

However, there is no representation of these delays in the above Markov chain.

Neuroscience-related RL models solve this problem using the idea of “microstates” (Fig 

2). The simplest such model assumes that the delay from cue to reward is represented by 

a series of states of equal duration (example 1 in Fig 2). This is known as the complete 

serial compound model of the state space (Moore et al., 1998; Schultz et al., 1997; Sutton 

and Barto, 1990). Here, the set of states is S={cue, delay1, delay2, … ,delayn, reward}. This 

representation (with scalar reward values associated with each state) was used in early work 

to model temporal difference learning in tasks such as the example considered here (Schultz 

et al., 1997). An immediate problem with this model is that it does not represent the ITI, an 

interval that has been shown repeatedly to affect conditioning (Gibbon and Balsam, 1981; 

Holland, 2000; Kalmbach et al., 2019; Lattal, 1999). The ITI is almost always a random 

variable with a specified probability distribution. Since Markov chains assume that all the 
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states must be specified, there is no obvious way to break up the ITI into a fixed set of 

equal duration states obeying the Markov property, unless it is exponentially distributed 

(K Namboodiri et al., 2021). This problem is usually avoided by only modeling the “trial 

period”, i.e., the delay between cue and reward. However, this is evidently an incomplete 

representation of the task, the stated goal of a state space. In fact, the moment at which a 

reward appears in the inter-cue interval can determine whether the observed conditioning 

to the cue is excitatory or inhibitory (Kaplan, 1984). Thus, modeling only the trial period 

is evidently insufficient. Nevertheless, this model has proven to be quite successful at 

explaining numerous aspects of conditioning and thus, has been referred to as a “useful 

fiction” (Ludvig et al., 2012; Sutton and Barto, 1998).

An extension of this model is to treat the states in the delay not as fixed duration states, but 

as a set of basis functions (also known as microstates or microstimuli) (Ludvig et al., 2008, 

2012) (example 2 in Fig 2). A convenient idea is that the delay after a cue is spanned by a 

consecutive set of Gaussian states (Ludvig et al., 2008, 2012). In this view, each subsequent 

state has progressively smaller amplitude and larger width (to approximate scalar timing). 

This model of state space has benefits over the complete serial compound, as it allows 

efficient generalization and flexibility due to the non-zero value of many microstates at 

any given moment (Gershman et al., 2014; Ludvig et al., 2008, 2012; Petter et al., 2018). 

There is also some evidence for microstate-like activity patterns in brain regions such as the 

striatum (Mello et al., 2015), hippocampus (MacDonald et al., 2011; Pastalkova et al., 2008; 

Salz et al., 2016), and the prefrontal cortex (Tiganj et al., 2017). Remarkably, these neural 

representations can flexibly scale when the delays are altered (MacDonald et al., 2011; 

Mello et al., 2015). Thus, this microstate model is more consistent with neural data and is 

functionally advantageous over the complete serial compound. There are many variants of 

this general idea of a series of microstates (i.e. sequential set of delay states) following a 

cue (e.g., Brandon et al., 2003; Desmond and Moore, 1988; Grossberg and Schmajuk, 1989; 

Machado, 1997; Mondragón et al., 2014; Vogel et al., 2003; Wagner, 1981). I will not review 

these in detail here.

Implicit assumptions

The fundamental premise of the above models is that the delay between different 

environmental stimuli is a sequence of states in an animal’s state space. By breaking the 

flow of time into such sequences of states, these models make some implicit assumptions. 

These are often not immediately obvious. I will list some here.

1. Every cue has its own associated set of microstates: the idea of microstates works 

only if separate cues have separate sets of microstates. Thus, if the animal is 

learning that cue1 predicts reward1 after delay1 and cue2 predicts reward2 after 

delay2, the set of microstates during delay1 must be different from the set of 

microstates during delay2. If not, value learning will be mixed up between the 

two cues and cannot appropriately assign credit.

2. The microstates are specified before value learning: this may be the most 

important assumption. The entire idea of RL (with value updates to satisfy the 

Bellman equation) works only if the state space is specified. Thus, before value 
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learning can occur, the set of sequential microstates following a cue must already 

exist. I will discuss the problems with this assumption in more detail in the next 

section.

3. Number and form of microstates are free parameters: another major assumption 

is that the number and form (e.g., are the basis functions Gaussian?) of 

microstates are treatable as free parameters for model-fitting. While the lack 

of principles for the formation of microstates is an obvious problem, this 

assumption is especially problematic as conditioning in the laboratory can occur 

over delays of milliseconds or even twenty-four hours (Etscorn and Stephens, 

1973; Hinderliter et al., 2012; Kehoe and Macrae, 2002). Presumably, the 

resolution of microstates evoked over delays of milliseconds is very different 

from those evoked over hours. However, how does the brain know which 

microstates to trigger on the first experience of the cue? It is unclear what, if 

any, principles govern the formation of microstates in the brains of real animals 

over spans of five orders of magnitude.

4. The microstates during the cue to reward delay are fundamentally different from 

the microstates during the ITI: In the microstate framework, different delay 

periods that contain no external stimuli must be treated differently. Thus, the 

set of microstates during the cue to reward delay must be different from the 

set of microstates from the reward to cue delay. An explicit treatment of this 

formulation is found in the SOP model (Wagner, 1981).

5. Learning occurs in trials: another implicit assumption is that value learning 

occurs progressively by accumulation across trials. It is this trial duration that 

is assumed to be split into microstates. However, experiments such as the truly 

random control (Rescorla, 1967, 1968) throw the validity of this assumption into 

question. In this experiment, the rate of rewards is programmed to be the same 

during the presence or absence of the cue. Worse, because the events are Poisson 

processes, they are equally likely to occur at any moment in time. In this case, it 

is unclear what, if anything, can be treated as a “trial” in the animal’s brain.

6. Microstates of a cue must be reproducible across repeated presentations: for 

learning to occur, if cue1 evokes a set of microstates on one presentation, the 

same set of microstates must be evoked on the next presentation, to ascribe value 

to the “correct” microstate.

In the next section, I take a deeper dive into these assumptions and show that the apparent 

simplicity of the microstate model belies a gargantuan complexity of representation imputed 

in animal brains. I am by no means the first to discuss some of the problematic implications 

of these assumptions (Gallistel et al., 2014, 2019; Hallam et al., 1992; Hammond and 

Paynter Jr, 1983; Luzardo et al., 2017). Nevertheless, the following section focuses on 

a particularly problematic aspect of these assumptions that has not received as much 

discussion in the literature.
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How bad is the problem really?

The problem is brought into sharp relief when considering initial learning. Remember that 

the whole point of the formulation of a state space is to explain reward prediction learning. 

Thus, I will now critically examine the implications of these assumptions for initial learning.

Imagine an animal that is first experiencing a cue that will be followed later by a reward. 

On this first experience, the animal knows nothing of the significance of this cue (other than 

its general “salience” or intensity). Indeed, cues are galore in the environments of animals. 

Nearly every sensory feature of the world could in principle be a cue predictive of a future 

reward. For instance, maybe a sound is predictive of a future reward. If an animal indeed 

learns to predict this reward, the above RL algorithms would require the assumption that the 

sound evokes microstates until the reward before first learning the relationship of the sound 
to reward. This is the whole point of RL: it is a model of learning after all.

What does this imply? This implies that any cue that could in principle be predictive of 

reward must evoke microstates during every presentation. Every sensory stimulus could 

in principle be such a cue. Hence, for the microstate model to work, animal brains must 

produce microstates for every sensory stimulus in the experience of the animal. Worse, if 

cue1 was experienced on two separate days, the set of microstates that were evoked by 

cue1 should be the same. Thus, the brain must store in memory all the microstates for the 

nearly infinite number of sensory stimuli, and they must all be discriminable and reliably 

reproducible on repeated presentations of the stimuli.

The problem is actually significantly worse. This is because the animal does not know at 

what delay a reward will follow a cue on the first experience of the cue. Indeed, these delays 

can span five orders of magnitude (Etscorn and Stephens, 1973; Hinderliter et al., 2012; 

Kehoe and Macrae, 2002). As mentioned above, the data that are often taken as evidence 

of the existence of neural microstates show that these time representations remap when the 

delay changes (MacDonald et al., 2011; Mello et al., 2015). How then does the brain know 

what exact microstates to trigger on the first presentation of the cue, much before the delay 

to reward is known or learned? Worse still, the brain also must trigger microstates during the 

delay from the reward to the next cue, for every reward and cue, to learn the distribution of 

intertrial intervals. How does the brain produce distinct microstates during the ITI and delay 

to reward on the first presentation of the cue and reward? How does the brain know that 

two delay periods during which no external sensory stimuli exist are fundamentally different 

before learning that there is a relationship between cue and reward? How also does the brain 

know that delays between different cue-reward-cue triplets are different?

Finally, for simplicity, we have illustrated our main point using the simplest form of RL—

one in which the selection of actions to maximize future rewards is not considered. The 

consideration of time delays becomes even more important for action selection. For instance, 

real animals often perform reward-related actions after a delay from the corresponding 

reward-related cues. Indeed, rewards are often predicted by (cue, action) pairs only when 

there is a specific temporal relation between these events (Miyazaki et al., 2020; Namboodiri 

et al., 2015; Narayanan and Laubach, 2009). Defining microstates to span these delays 
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worsens the combinatorial explosion of the state space, as these microstates need to then 

depend on both external cues and internal actions. Thus, the issues discussed here become 

even more vexing in this setting.

It is hopefully clear from this examination that the assumption of microstates, while 

seemingly simple, introduces an untenable solution for an animal brain. Solving these issues 

is crucial as these issues riddle application of RL to animal learning in even one of the 

simplest use cases considered here.

Do animals make such assumptions?

We cannot ask animals what assumptions they make during learning. Even in the case of 

humans where asking is possible, it is unclear if we have conscious access to the neural 

representations that our brains use for learning. Thus, in some sense, it is impossible to 

know the exact assumptions used by real animals. Hence, the best approach is likely to make 

the most parsimonious assumptions that solve the real-world problems faced by animals, in 

which the timescales of associative relationships are not known a priori.

To this end, the answer to a simple question can be illuminative. Is behavioral learning 

of real animals timescale-invariant or timescale-dependent? The microstate models are 

inherently dependent on a timescale since the shape and width of the microstates need to be 

specified prior to learning. In contrast, there is now considerable evidence accumulated over 

more than fifty years that behavioral learning is largely timescale-invariant. For instance, 

Fig 3 reproduces a meta-analysis of work in many labs showing that increasing the delay 

between a cue and outcome does not in fact increase the number of trials until acquisition 

if the outcome-to-outcome delays are correspondingly scaled by changing the ITI (Gallistel 

and Gibbon, 2000; Gibbon and Balsam, 1981). Another paper has shown that deleting 7 out 

of 8 trials does not reduce learning if the temporal spacing between the remaining trials is 

left unaltered (Gottlieb, 2008). In other words, decreasing the number of trials by a factor 

of 8 while increasing the ratio between outcome-outcome and cue-outcome intervals by 

8 produces the same amount of conditioning. The timescale-invariance observed in these 

experiments makes little sense if animals make timescale-dependent assumptions about the 

associative structure of their environment.

Why is the ITI so important in conditioning? Here, I will present a simple intuition for this 

effect. Imagine that an animal is learning the association between a cue and a reward that 

follows 10 s later. Now imagine two extreme values of the ITI: 100 s and 1 s. When the ITI 

is 100 s, the structure of the world is indeed that the cue predicts the reward, as intended 

by the experimenter. However, when the ITI is 1 s, the delay between a reward and the next 

cue is much shorter than the delay between a cue and the next reward. In this case, the 

reward predicts the cue rather than the other way around. Thus, what predicts what depends 

fundamentally on both the trial and intertrial intervals in an experiment. Once it is clear 

that the causal structure of a cue-reward association depends on the ITI, it is also relatively 

straightforward to see that this is likely timescale-invariant. For instance, say we agree that 

when a cue-reward delay is 10 s, a “reasonably” long ITI to interpret the experiment as cue 

predicting reward is 100 s. What would such a reasonably long ITI be when the cue-reward 
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delay is 20 s instead of 10 s? A simple answer is that the corresponding ITI must be 

increased to 200 s for the structure to remain consistent. This is because when the ITI is 

scaled to 200 s when the cue-reward delay is increased to 20 s, the corresponding timeline 

can be perfectly superimposed after scaling on the timeline with 10 s cue-reward delay and 

100 s ITI. Thus, what matters to the interpretation of the causal structure is not the absolute 

value of the cue-outcome delay, but the ratio between that delay and the outcome-outcome 

delay. This informal intuitive argument rationalizes the observations of timescale-invariance 

discussed in the previous paragraph.

Similarly, the notion of what constitutes a trial also depends on the ITI. For instance, in the 

previous examples, when the ITI is 1 s and the cue-reward delay is 10 s, the “experiment” 

can be thought of as backward conditioning (i.e., reward predicts cue), in which case, the 

“trial” is demarcated by the reward-to-cue delay instead of the cue-to-reward delay. Indeed, 

though Rescorla’s work was one of the earliest popularizers of the idea of a trial, he knew 

that the notion of a trial is unlikely to apply to his subjects, as has been discussed in detail 

(Gallistel, 2021).

A discussion of alternative frameworks and current limitations

At a superficial level, a major issue is that the assumption of microstates is not a realistic 

representation of the passage of time for real animals. This issue has been pointed out 

multiple times (Elman, 1990; Gershman et al., 2014; Ludvig et al., 2008) and can be 

addressed using more realistic models of timekeeping in the brain (e.g., Buonomano and 

Merzenich, 1995; Mauk and Buonomano, 2004; Namboodiri et al., 2016; Petter et al., 

2018; Simen et al., 2011). However, the more important issue I raise here is regarding the 

assumptions needed for learning, when timescales are not specified a priori. In this light, 

it is useful to consider a recent highly successful model for conditioning that combines a 

Rescorla-Wagner rule applied to a drift diffusion model of timing (Luzardo et al., 2017). 

In this model, cues are postulated to initiate an accumulating timer with a fixed threshold 

and an adaptable slope. A learning rule adapts the slope based on the knowledge of when 

the reward happens, thereby adapting the slope of the accumulator to eventually time the 

cue-reward delay appropriately. This model explains an impressive array of phenomena. It 

also has a major advantage over the microstate models as it does not postulate an arbitrary 

number of microstates that span time delays. Nevertheless, it too suffers from similar issues 

as above when applied to initial learning. For it to work for initial learning, there must be 

a timer for every cue that could in principle be predictive of reward. As we laid out above, 

there are almost an infinite number of such cues, each with an infinite set of possible delays 

to reward. Further, when a timer is initiated at cue onset on the first time that the cue was 

experienced, how does the timer know that it is timing a specific upcoming reward? What 

if the cue does predict reward at a fixed delay but there are other intermittent cues in this 

delay? What if this cue was only predictive of another cue and not a reward or was not 

predictive of anything in particular at all? What if the reward predicted by the cue is not 

the immediately following reward? How does the timer get feedback about exactly which 

interval it is supposed to time? These issues are solvable only if the animal knows that it is 

timing the interval between a specific cue state and a reward state, or in other words, after 
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learning that a specific cue and a specific reward may be related. Thus, this approach does 

not prescribe how an animal can initially learn the association between a cue and reward.

Another formalism within the general framework of RL is a semi-Markov/Markov renewal 

process model that explicitly learns the distribution of time intervals between consecutive 

state transitions (Bradtke and Duff, 1994; Daw et al., 2006; Namboodiri, 2021). Though 

very similar, there is one difference between a semi-Markov and Markov renewal process-

based state space. In a simple cue-reward task, a semi-Markov state space treats the state 

of the world as the cue state (or the interstimulus interval state) during the delay between 

cue and reward (Bradtke and Duff, 1994; Daw et al., 2006). As the value of states is 

tied to the currently active state in a semi-Markov model, the value is stationary for the 

duration of this entire state. However, in a Markov renewal process, the value function 

can be defined in continuous time, as the states and transition times are treated separately 

(Namboodiri, 2021). While these models avoid any issues with breaking up the flow of time 

into states, they nevertheless suffer from some limitations. The key limitation is that by 

only learning the intervals between consecutive events in the world, such learning is very 

sensitive to the presence of distractors. Though existing evidence supports the prediction that 

distractor states impede trace conditioning (Carter et al., 2003; Clark et al., 2002; Han et 

al., 2003; Manns et al., 2000), it is unclear how such learning can adapt to the real world 

where the delay between most cues and their predicted reward is filled with other sensory 

stimuli. How could an animal learn to treat these intermittent sensory stimuli as distractors 

and not themselves predictive of subsequent outcomes? If multiple Markov chains occur 

simultaneously in a mixture distribution, the above learning algorithms will not be able 

to demix them without additional mechanisms. Hence, these algorithms still have major 

limitations as currently prescribed.

Another possible solution to the problem is to move completely away from RL and propose 

that other quantities control learning in tasks such as the one considered here. A set 

of models that propose that animals learn contingency (defined as normalized gain in 

available information) between the timing of reward predictors and rewards belongs to this 

class (Balsam et al., 2010; Gallistel et al., 2014, 2019; Ward et al., 2012). These models 

are successful at explaining numerous aspects of the learning of conditioned responses 

in relation to the various time intervals. Further, they can work for initial learning in a 

timescale invariant fashion. This model solves essentially all concerns listed above regarding 

initial learning by proposing that animals store their timeline of experience in memory and 

operate on this temporal map to uncover associations. However, whether a complicated 

computation such as a timescale-invariant mutual information can be calculated in an online 

manner by a neural network needs to be demonstrated both theoretically and experimentally. 

Indeed, it has been suggested that such computations can only be performed offline by 

intracellular molecular machinery (Gallistel, 2017) (see (Akhlaghpour, 2022; Gallistel et 

al., 2020; Thornquist et al., 2020) for example models of such computations). Further, this 

theory makes the strong prediction that cue-outcome associations with any arbitrarily long 

interceding delay can be learned provided the outcome-to-outcome delays are sufficiently 

long. This strong claim remains to be quantitatively tested in a manner that separates 

learning from the magnitude of performance. Currently, some evidence suggests that there 

may be some limitations to scale invariance. For instance, trace eyeblink conditioning has 
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not been successfully demonstrated beyond a few seconds of trace interval (unclear if long 

trace interval experiments have been attempted with correspondingly long outcome-outcome 

delays), and recent data suggest that cue-reward associations with a 60s delay are not 

well-learned even when the inter-reward interval is more than 4000 s (Thrailkill et al., 

2020) (though this study did show measurable behavioral learning and was not focused 

on analyzing the onset of acquisition). Overall, the strong prediction of this information 

theoretic model remains to be fully tested. Lastly, this model has not as yet been extended 

to sequences of stimuli that predict reward, and does not provide a clear explanation for the 

prediction error signals observed in midbrain dopamine neurons, which are known to drive 

learning in animals (Cohen et al., 2012; Kim et al., 2020; Mohebi et al., 2019; Schultz, 2016; 

Schultz et al., 1997).

Lastly, a recent theoretical framework proposes a solution to learn timescale-invariant 

predictions of the future using timescale-invariant representations of the past (Goh et al., 

2021). This model uses a Laplace transform to store recent history in a timeline of events 

(Shankar and Howard, 2012) and uses this timeline to make a projection into the future 

from the present moment. This model effectively implements a neural network instantiation 

of the temporal map that was posited as a necessary requirement for learning (Balsam 

and Gallistel, 2009). Just like the contingency of timing model, this learning model also 

avoids the concerns raised above regarding initial learning. Since this model has been 

directly extended into a neural network model, it is biologically plausible based on current 

neuroscientific understanding. It also shows early promise in explaining dopamine dynamics 

(Goh et al., 2021). Despite these many appeals, it remains to be tested whether it can 

quantitatively fit behavioral learning and neural signals for learning such as dopamine 

release in the striatum.

Conclusions

Here, I explicitly list the assumptions made by well-known RL models that account for 

the passage of time. I show that the apparent superficial simplicity of these models belies 

the extraordinary complexity required to execute them. These problems are often not 

recognized, as researchers define a convenient state space for each experiment using free 

parameters. These assumptions are especially problematic when applied to initial learning, 

a stated goal of reinforcement learning. The fundamental issue is that breaking up the 

flow of time into discrete states is a problematic way to learn associations across temporal 

delays. This is because it is unclear prior to initial learning which intervals are worth timing. 

Further, learning temporal relationships only between consecutive events raises concerns as 

to how initial learning would be possible in the real world where many other sensory stimuli 

span such delays. While the solutions remain to be worked out, I hope that this perspective 

highlights the issues with current models. Until we acknowledge the problems, there will not 

be any solutions.
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Fig 1. 
Animals experience events in their life in a timeline along the continuously flowing 

dimension of time. Thus, prediction of rewards requires a consideration of the flow of time. 

Here, external cues, internally generated actions and rewards are shown by separate colors. 

Distinct types of events within these groups are shown by individual boxes along the y-axis.
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Fig 2. 
Common models for dealing with delays between cue and reward assume that such delays 

are spanned by multiple microstates. Two examples are shown here (see text). As can be 

seen, these formulations assume that the delay periods themselves are represented by many 

states to which an RL algorithm can attach value.
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Fig 3. 
Timescale-invariance of behavioral learning. A. Reproduced from Gallistel and Gibbon, 

2000. When the cue-reward delay is increased, the number of trials to acquisition increases 

only when the ITI is fixed. When the ITI is correspondingly scaled, the number of trials 

to acquisition remains largely constant. B. Reproduced from a meta-analysis published 

in Balsam et al. 1981. When the ratio between outcome-outcome delay (called cycle 

duration) and cue-outcome duration (called trial duration) is changed, the number of trials to 

acquisition varies in a predictable manner.
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