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Abstract

Background: Knowledge graphs (KGs) play a key role to enable explainable artificial 

intelligence (AI) applications in healthcare. Constructing clinical knowledge graphs (CKGs) 

against heterogeneous electronic health records (EHRs) has been desired by the research and 

healthcare AI communities. From the standardization perspective, community-based standards 

such as the Fast Healthcare Interoperability Resources (FHIR) and the Observational Medical 

Outcomes Partnership (OMOP) Common Data Model (CDM) are increasingly used to represent 

and standardize EHR data for clinical data analytics, however, the potential of such a standard on 

building CKG has not been well investigated.
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Objective: To develop and evaluate methods and tools that expose the OMOP CDM-based 

clinical data repositories into virtual clinical KGs that are compliant with FHIR Resource 

Description Framework (RDF) specification.

Methods: We developed a system called FHIR-Ontop-OMOP to generate virtual clinical KGs 

from the OMOP relational databases. We leveraged an OMOP CDM-based Medical Information 

Mart for Intensive Care (MIMIC-III) data repository to evaluate the FHIR-Ontop-OMOP system 

in terms of the faithfulness of data transformation and the conformance of the generated CKGs to 

the FHIR RDF specification.

Results: A beta version of the system has been released. A total of more than 100 data 

element mappings from 11 OMOP CDM clinical data, health system and vocabulary tables 

were implemented in the system, covering 11 FHIR resources. The generated virtual CKG from 

MIMIC-III contains 46,520 instances of FHIR Patient, 716,595 instances of Condition, 1,063,525 

instances of Procedure, 24,934,751 instances of MedicationStatement, 365,181,104 instances of 

Observations, and 4,779,672 instances of CodeableConcept. Patient counts identified by five pairs 

of SQL (over the MIMIC database) and SPARQL (over the virtual CKG) queries were identical, 

ensuring the faithfulness of the data transformation. Generated CKG in RDF triples for 100 

patients were fully conformant with the FHIR RDF specification.

Conclusion: The FHIR-Ontop-OMOP system can expose OMOP database as a FHIR-compliant 

RDF graph. It provides a meaningful use case demonstrating the potentials that can be enabled 

by the interoperability between FHIR and OMOP CDM. Generated clinical KGs in FHIR RDF 

provide a semantic foundation to enable explainable AI applications in healthcare.
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1. Introduction

Artificial intelligence (AI) offers significant potential for improving healthcare. As 

healthcare is a safety–critical industry, there is a growing demand for AI applications that 

are not only well-performing, but trustworthy, transparent, interpretable, and explainable 

[1]. Three technologies Semantic Web, knowledge graphs, and data standards play an 

important role for enabling explainable AI in healthcare. Tim Berners-Lee envisioned the 

Semantic Web as a killer application to unify content being published online, through 

1) tagging content with unique identifiers or Uniform Resource Identifiers (URIs); 2) 

representing the content utilizing well-formed definitions from taxonomies and ontologies; 

3) borrowing from the knowledge representation world to utilize structuring mechanisms 

for data [2]. The Resource Description Framework (RDF) and ontologies are two enablers 

for the Semantic web, in which RDF serves as the lingua franca for exchanging machine-

processable information, and ontologies provide the formal definition that allows both 

machines and human beings to understand the intent of the information. The strengths 

of the Semantic Web to explainable AI include: 1) enabling data sharing and achieving 

a semantic understanding of digital content; 2) tacking the provenance aspect (e.g., using 

Provenance Ontology in the semantic representation) and trace aspect (e.g., supporting 
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reasoning mechanism to generate trace) of explainability; and 3) making textual content 

more accessible in knowledge graphs via semantic representations [3–6].

A knowledge graph (KG) is a collection of facts where entities (nodes) are connected with 

typed relationships. The scope of the knowledge captured by a KG may involve generic 

domains (e.g., Wikidata, DBPedia) or a specific domain (e.g., Bio2RDF and UMLS). The 

inherent inter-connectivity of KGs enables the use of network analysis and machine learning 

techniques to unveil hidden patterns and infer new knowledge [7]. Furthermore, studies have 

shown that KGs are computationally efficient and scale to very large sizes [8].

KGs play a key role to enable explainable AI applications as KGs have great potential 

in the design of novel neural network architectures that natively encode explanations, 

e.g., by adding logic representation layers in artificial neural networks, or encoding the 

semantics of inputs, outputs and their properties. In the context of healthcare, KGs have been 

already used in integrating clinical data with proteomics data for clinical decision making 

support and learning a KG from electronic health records (EHRs) for building medicine 

and self-diagnostic symptom checkers, and other different scenarios, such as treatment 

recommendations, medicine recommendations, drug-to-drug similarity measurements, and 

COVID-19 research [9–12]. Many of these applications are performed through a link 

prediction process by learning embeddings (i.e., low-dimensional representations) of 

medical entities and relations from EHRs

Data standards are another enabling technology for explainable AI in healthcare as new 

AI systems require large datasets to improve their accuracy and predictive capabilities, and 

the heterogeneity of clinical research data hinders data integration and data sharing in a 

consistent and comparable manner. In recent years, community-based standards such as the 

HL7 Fast Healthcare Interoperability Resources (FHIR) [13] and the Observational Health 

Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership 

(OMOP) Common Data Model (CDM) [14] are increasingly used to represent and 

standardize EHR and clinical research data for clinical data analytics. FHIR is rapidly 

emerging as a next generation standards framework for facilitating health care and EHR-

based data exchange. In particular, Mayo Clinic has been collaborating with the FHIR 

and W3C HCLS community to develop the FHIR RDF representation specification and 

associated transformation and validation tools [15–17]. FHIR RDF has become one of 

the three standardized data formats in the FHIR specification and provides a standard 

machine-processable semantic foundation for clinical data to be linked with other data using 

ontologies.

The combination of FHIR, KGs and the Semantic Web enables a new paradigm to 

build explainable AI applications in healthcare. A few of such FHIR-based applications 

are emerging, including 1) a KG generation tool known as NLP2FHIR developed for 

standardizing and integrating unstructured and structured EHR data in FHIR [18]; 2) 

a FHIR-based EHR phenotyping framework using machine learning and deep learning 

techniques developed for effective data integration and accurate phenotyping [19]; and 3) 

FHIR RDF data is used to build AI algorithms to predict primary cancers, showing accurate 
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prediction of cancer types can be achieved with existing EHR data and genetic report data 

[20].

However, existing clinical data are mostly stored in relational data sources. To facilitate 

standards-based semantic data integration, sharing and discovery in broader scientific 

research communities, there is a strong need to provide the FHIR-based data access and 

query services over such databases. In this study, we close this gap by developing the 

FHIR-Ontop-OMOP system, which can expose any OMOP database as a virtual Clinical 

KG compliant with FHIR RDF. We evaluate the faithfulness of the system by comparing 

patient counts identified by five pairs of SQL (over the MIMIC database) and SPARQL 

(over the virtual CKG) queries. We also materialize a CKG in RDF triples for 100 patients, 

and have validated its full conformance with the FHIR RDF specification.

2. Materials and methods

2.1. Materials

2.1.1. FHIR Model Ontology and FHIR Shape Expressions—One of the FHIR 

RDF specification efforts is to produce the FHIR StructureDefinition resource in the OWL 

ontology language, known as the “FHIR Model Ontology” [21]. The StructureDefinition 
resource is the metamodel for FHIR resource definitions, meaning that a FHIR resource such 

as Patient is formally defined using an instance of StructureDefinition that declares elements 

like “Patient.name” and “Patient.birthDate” and associated metadata and constraints (e.g., 

datatype and cardinality) [22]. The FHIR Model Ontology formally enumerates the classes, 

predicates, domains, ranges and specific datatypes that are used in describing the FHIR 

instance data in RDF. Fig. 1 shows the Patient Class definition in FHIR Model Ontology and 

its corresponding instance data in FHIR RDF.

Moreover, the FHIR definitions in the Shape Expressions Language (ShEx) can be used 

to test FHIR RDF graphs for conformance [15]. For example, Fig. 2 shows a graphical 

representation of FHIR Patient resource (Fig. 2a) and its corresponding ShEx schema (Fig. 

2b). One can validate that indeed the RDF instance in Fig. 1 is compliant with this ShEx 

expression.

2.1.2. The Ontop toolkit for virtual knowledge graphs—The Virtual Knowledge 

Graph (VKG) technology [23], also known as Ontology Based Data Access (OBDA) 

technology [24], is regarded as a key ingredient for the new generation of information 

systems, especially for Semantic Web applications that involve large amounts of data. The 

VKG approach avoids materializing triples and the query answering service is implemented 

through the query rewriting technique with extensive optimizations. In this approach, for 

a (source) database schema and a (target) ontology, a set of mappings declares how to 

populate the classes and the properties in the ontology. The Ontology, Mappings, and 

database schema together are called a VKG specification.

Ontop is the state-of-the-art open-source VKG system, which is compliant with all relevant 

W3C recommendations (including SPARQL 1.1 queries, R2RML mappings, and OWL2QL 

and RDFS ontologies), and supports for all major relational databases [25–27]. The Ontop 
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toolkits include the Protégé Ontop Plugins to develop VKG specification [28]. Once the 

VKG specification is developed, we can set up a SPARQL endpoint using the command line 

interface of Ontop, so that end users can use standard SPARQL tools to interact with the 

endpoint without knowing whether the endpoint is virtual or not. There is also a dockerized 

Ontop endpoint to facilitate the deployment of the system.

2.1.3. OMOP CDM and datasets—OMOP CDM is an open community data standard, 

designed to standardize the structure and content of observational data and to enable 

efficient analyses that can produce reliable evidence [14]. The latest CDM v5.4 is 

defined as a collection of standardized relational table schemas in six categories: clinical 

data (e.g., Person, Condition_occurrence, Drug_exposure), health system (e.g., Care_site), 

vocabularies (e.g., Concept, Vocabulary), health economics, derived elements, and metadata.

We used an OMOP CDM-based MIMIC-III dataset for the evaluation of the system. 

MIMIC-III (Medical Information Mart for Intensive Care) is a freely accessible critical care 

database [29]. Data includes vital signs, medications, laboratory measurements, observations 

and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, 

imaging reports, hospital length of stay, survival data, and more. We used an open-source 

MIMIC-OMOP ETL tool to convert the MIMIC III dataset in the OMOP CDM [30].

3. Methods

3.1. System architecture

We developed a system called FHIR-Ontop-OMOP to generate virtual clinical KGs against 

the OMOP CDM relational databases. Fig. 3 shows the system architecture of the FHIR-

Ontop-OMOP system. The system consists of the following modules (from the bottom 

to up): 1) an input module that takes input from the FHIR model ontology, the OMOP 

data repository, and OMOP-FHIR mappings represented by a mapping template; 2) a CKG 

generation module that relies on the Ontop system to generate a virtual CKG; and 3) a 

semantic query module that establishes SPARQL endpoints with reasoning capability.

3.2. Input module

At the bottom in Fig. 3, it is the OMOP relational database to be mapped to RDF. FHIR-

Ontop-OMOP system can be implemented seamlessly against any OMOP database, making 

the system portable. The FHIR Model Ontology serves as a catalog of standard URIs for 

all FHIR model artifacts. This ontology defines a high-level global schema of clinical data 

sources and provides a standard vocabulary for user queries.

The most complex component is the OMOP-FHIR mapping, which specifies the 

correspondence between the data models of the relational data sources in OMOP CDM 

and the RDF graph in FHIR RDF. In this study, we are focused on the mappings between 

the OMOP CDM and the FHIR RDF graph. Ontop supports the R2RML standard mapping 

language and the Ontop mapping language which is fully interoperable with R2RML [31].

At the early stage of the system implementation, we used the Protege plugin Ontop 

Mappings to manually create an initial set of mappings to test the feasibility of the FHIR-
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Ontop-OMOP system. The typical process includes the following steps: 1) establishing a 

database connection with an OMOP database by setting up the connection parameters using 

the Connection Parameters panel; 2) selecting the properties to be used in defining mappings 

using the Ontop Properties panel; 3) creating mappings using the Mapping Manager panel 

(Fig. 4), in which SQL queries can be executed against the OMOP database to help 

understand the patient data.

At a later stage of the system implementation, we realized that the mapping creation process 

is more efficient if we can (semi)-automate the mapping generation, especially for the FHIR 

standard that extensively uses intermediate nodes. For example, it is tedious to write nodes 

like: Patient/{person_id}/birthDate in the example in Fig. 4.

We developed a two-step approach for the automation. We created a user-friendly mapping 

template in the RDF Turtle format, which we call it a Turtle Template Mapping Language 

(TML), to encode the data model mappings between the OMOP CDM and FHIR RDF. We 

also implemented a Java-based converter that translates the mappings defined in TML into 

the Ontop mappings that are required for the Ontop system.

We show how the TML mapping works through an example mapping entry in Fig. 

5 between the OMOP Person table and the FHIR Patient Resource. The first two 

components rr:logicalTable and rr:subjectMap behave identical to R2RML: rr:logicalTable 

specifies a data source (a SQL query involving the person table) to be mapped to 

RDF, and rr:subjectMap specifies an IRI template for the subject (a string with the 

placeholder {person_id}, where person_id is a column in the SQL query). The last part 

rr:predicateObjectMap (diverged from R2RML) shows a list of predicates and objects. It 

defines the field level mappings and its structure that follows directly to the FHIR ShEx 

schema.

In order to develop OMOP-FHIR mapping, we reviewed available mappings created by 

a number of research groups including 1) the OHDSI FHIR Workgroup; 2) the Common 

Data Model Harmonization Project; 3) the Georgia Tech‘s OMOP-on-FHIR project; and 

4) the FHIR DAF Research Implementation Guide team [32–35]. We harvested the set of 

mappings that have a consensus across these groups and used them to populate the TML 

mapping. In addition, to represent Concept information from OMOP CDM, we used the 

FHIR CodeableConcept data type for this purpose. The FHIR specification defines a set 

of data types that are used for the resource elements. CodeableConcept is a complex data 

type used to represent a value that is usually supplied by providing a reference to one or 

more terminologies or ontologies but may also be defined by the provision of text. Mapping 

CodeableConcept to the Concept information from OMOP CDM provides a natural way 

to link health data with standard concept annotations. For example, Condition. code is 

restricted by the data type CodeableConcept. We can assign a coded value sct:39065001 

from SNOMED CT or the provision of text “Burnt Ear” using CodeableConcept to describe 

a condition instance.
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3.3. CKG generation module

This module uses the Ontop system to generate a virtual CKG over the input module. Fig. 

6 (a) shows an example illustrating the converted CKG in FHIR RDF from an answer to the 

SQL query in Fig. 5. Note that this CKG does not contain information about address and 

practitioner as the corresponding columns in the databases contain only NULL values. Fig. 6 

(b) shows a more complex example about the CKG of an Encounter instance.

The CKG conformance to the FHIR RDF specification is realized through the Ontop 

mappings as defined in the Turtle mapping template (Fig. 5). This conformance is also 

validated using the FHIR RDF validation tool known as ShEx validator developed in our 

previous studies [15].

The virtual CKGs do not require additional storage space. A virtual CKG just wraps an 

existing relational database as a virtual CKG. This virtual CKG is only accessible at query 

answering time. This is advantageous because a classical materialization-based approach is 

very costly in terms of both materialization time and disk space.

3.4. Semantic query module

This module relies on the query answering interface of Ontop. The Ontop system translates 

SPARQL queries over the CKG to SQL queries over the OMOP database, using the FHIR 

ontology and FHIR-OMOP mapping. Fig. 7 shows a SPARQL query example (Query 1 in 

the Evaluation section) against the MIMIC III OMOP database, and its corresponding SQL 

translation.

3.5. Evaluation design

We evaluated the system in terms of the faithfulness of data transformation, and the 

conformance of the generated CKGs to the FHIR RDF specification. We implemented the 

system against the MIMIC-III OMOP CDM data and used the generated CKG in FHIR RDF 

for the evaluation.

3.6. Faithfulness of data transformation

We first tested the faithfulness of data transformation from the OMOP CDM to the CKGs 

in FHIR RDF. We manually wrote five demonstration SQL queries designed to make use of 

a variety of tables, columns, and data types across the OMOP model, shown in Table 1. We 

then followed the FHIR specification to write equivalent SPARQL queries using the same 

logic as the SQL queries, for the purpose of comparing the output. Faithful transformation 

entails that the patients identified by the SQL and SPARQL queries be identical.

3.7. Conformance of the CKGs to the FHIR RDF ShEx specification

We tested the conformance of the generated CKGs to the FHIR RDF ShEx specification. 

We used the shex-validate command line utility from the shexjs library, which is a validation 

tool developed in the previous studies [36]. We generated a subset of the CKG for 100 

patients out of the system implemented for the MIMIC-III dataset and materialized them in 

RDF triples using Ontop. To do so, we reused the same mapping for query answering but 

adding the appropriate filters over person IDs on the SQL queries to choose the patients. 
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This data set includes the instances of 100 Patients, 1,457 Conditions, 1,855 Procedures, 

74,598 MedicationStatements, 808,198 Observations, and 2,069 relevant CodeableConcepts. 

This sub-dataset has been materialized by Ontop. The generated turtle format of these files 

took up 4.1 GB of disk space and were then loaded into the shexjs library for validation. 

We tested the conformance of the sub-CKG to the FHIR RDF specifications of a number 

of clinical FHIR resources including Patient, Condition, Procedure, MedicationStatement, 

Observation, and CodeableConcept.

4. Results

4.1. System implementation status

A beta version of the FHIR-Ontop-OMOP system has been released at the project 

GitHub site at https://github.com/fhircat/FHIROntopOMOP, which includes a docker-based 

installation. We implemented the system against the MIMIC-III OMOP CDM data and 

exposed it as a queryable CKG compliant with the HL7 FHIR standard using the Ontop. 

The virtual CKG in FHIR RDF contains triples describing 46,520 instances of FHIR Patient, 

716,595 instances of Condition, 1,063,525 instances of Procedure, 24,934,751 instances of 

MedicationStatement, 365,181,104 instances of Observations, and 4,779,672 instances of 

CodeableConcept, among others.

4.2. Mappings implemented

Table 2 shows high-level mappings between OMOP tables and FHIR resources implemented 

in the system. The detailed element mappings are available in the supplemental tables Table 

S1 and Table S2. These mappings consist of a total of more than 100 data elements from 5 

clinical data tables (Person, Condition_occurrence, Drug_exposure, Procedure_occurrence, 

and Measurement), 3 health system tables (Visit_occurrence, Location and Provider) and 

3 vocabulary tables (Concept, Concept_relationship and Concept_ancestor). The mappings 

covered data elements from 11 FHIR resources (Patient, Encounter, Location, Condition, 

MedicationStatement, Observation, Procedure, Practitioner, CodeableConcept, Coding, 

ConceptMap). We note that each OMOP data element is normally mapped to one FHIR 

data element (e.g., person_id to Resource.id), but sometimes also generates intermediate 

blank nodes (e.g. visit_start_datetime to Encounter.period / Period.start). We also observe 

that the OMOP tables often contain some redundancy, e.g., (1) in addition to birth_datetime, 

the Person table also stores year, month and day of birth in separate columns, and (2) time 

related information is given in two columns (e.g., visit_start_date and visit_start_datetime) 

with different precisions. We do not need to map these redundant columns and we mark the 

implementation status as “not applicable”.

4.3. Evaluation results

4.3.1. Faithfulness of data transformation—Table 3 shows the results of running 

our demonstration queries against MIMIC III data using SQL directly against OMOP and 

SPARQL via the FHIR-Ontop-OMOP system. The counts for all queries are identical, 

ensuring faithful transformation of the tested domains.
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4.3.2. Conformance of the CKGs to the FHIR RDF specification—The 

evaluation result showed that the generated RDF triples for 100 patients were fully 

compliant with the FHIR RDF ShEx specification. This result was not surprising because 

the turtle-template mapping follows directly to the structure of the ShEx specification, which 

guarantees the conformance.

5. Discussion

Achieving interoperability between FHIR and OMOP has been desired by the 

standardization and research communities. Notably, HL7 and OHDSI recently announced 

a collaboration to address the sharing and tracking of data in the healthcare and research 

industries by creating a single standard data model [37]. The development of the Semantic 

Web-based FHIR-Ontop-OMOP system in this study provides a meaningful use case for 

such a collaboration, demonstrating great potential in healthcare AI applications enabled by 

the interoperability of FHIR and OMOP CDM.

Mapping creation is a non-trivial time-consuming task. In this study, we intended to create 

a new mapping language that can represent the data model mappings in a manner that 

is both human friendly and machine processable. We reused existing features from the 

standard W3C R2RML language and the Ontop mapping language [31]. We argued that 

these two languages do not completely meet our needs. Being designed as a machine 

exchange format, R2RML is very verbose, and difficult to read and write by humans. The 

Ontop mapping language is already much more compact and readable (as shown in Fig. 

4), but it is not able to directly express the nested structure commonly used in FHIR. 

This becomes even more complex when dealing with multiple levels of nesting. Seeing 

the limitations of existing languages, we created a new template language: turtle-template 

mapping language (TML). Syntactically, a TML mapping is written as a Turtle document, 

and consists of multiple TML entries. Intuitively, if we view each mapping as a tree, the root 

level constructs (rr:logicalTable, rr:subjectMap, and predicateObjectMap) and the leaf level 

constructs (rr:column, rr:termType, rr:datatype, rr:template) work exactly the same with 

R2RML. However, we have changed the middle of this tree to the turtle template (which is 

closer to the style of Ontop mapping). In this implementation, its structure is identical to the 

template used in the FHIR specification.

Both faithfulness and conformance evaluations were an iterative procedure. For the 

faithfulness evaluation, we first noticed that formulating SQL and SPARQL queries use 

slightly different methodologies. The SQL version tends to use the hard-coded “magic” 

value directly, e.g., p.gender_concept_id = 8507 for selecting male patients in Q1, while 

the SPARQL version uses the FHIR gender identity in (?gender = ’male’). This makes the 

SPARQL version more readable. Some SPARQL queries were initially difficult to formulate 

or did not show identical counts to the SQL queries. By looking into the underlying reasons, 

we were able to identify and fix a number of implementation issues of FHIR-Ontop-OMOP 

and the Ontop engine. Notably, Q1 requires datetime functions to compute the duration 

between two datetime values. However, this is not part of the standard SPARQL functions, 

and was not supported by Ontop. To address this, we have implemented such functions 

in Ontop following the corresponding functions of GraphDB [38]. Also for Q1, when 
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identifying inpatient admissions, according to FHIR, the code for inpatient status should 

be “IMP”, but the actual value in the MIMIC-OMOP database is “IP”. Therefore we 

have to use the filter?type=“IP” as a workaround. For Q5 (Patients with an HbA1c >= 

10 %), there is a subtle difference between using date and datetime values. The SQL 

version could use the measurement_date column directly. Instead, in FHIR-Ontop-OMOP, 

the mapping uses the column measurement_datetime for all the observations. This query 

needs to deal with the case that one person within one day has two different measurements 

of the same value. Therefore, we need to extract the date information from the column 

measurement_datetime. For the conformance evaluation, we identified some minor issues in 

the current R4 version specification of the FHIR RDF ShEx standard. Specifically, a number 

of datatype shapes (e.g., <https://hl7.org/fhirpath/System.String>) are underspecified and 

there are also inconsistent behaviors in these datatypes regarding whether a “fhir:value” 

intermediate edge is needed. We manually fixed them by adding a few “catch all” ShEx 

shapes: <https://hl7.org/fhirpath/System.String>. These issues have been reported to the 

maintainers of the FHIR RDF ShEX specification and are going to be fixed in the next major 

release R5.

This study is limited by several factors. First, we harvested and implemented a 

preliminary consensus set of mappings between FHIR and OMOP CDM created by 

different groups, which covers main clinical FHIR resources (e.g., Condition, Procedure, 

MedicationStatement, Observation). We understand that the collaboration between HL7 and 

OHDSI in the future may produce a set of mappings that are more robust and can be 

used to enhance the current system. Second, we used the FHIR resource CodeableConcept 

to represent standard concepts captured in the OMOP CDM Concept table (see Table 

S2), in which vocabulary_id is mapped to fhir:Coding.system and concept_code is 

mapped to fhir:Coding.code. This strategy worked well on most scenarios where standard 

vocabularies such as SNOMED CT, ICD10CM, RxNorm, or CPT were used. However, 

we should note that in the current system we have not implemented a translation from 

the OMOP vocabulary_id into preferred Coding System used in FHIR (https://www.hl7.org/

fhir/terminologies-systems.html). For example, in the OMOP vocabulary_id for SNOMED 

CT is “SNOMED”, which is directly used in FHIR Coding.system. However, a preferred 

Coding System URI is https://snomed.info/sct. This can be fixed by defining a mapping 

table to associate the preferred Coding System URIs of externally published Coding 

Systems in FHIR with the vocabulary_id from OMOP. In addition, for the domains like 

Encounter, the definitions of encounter type between HL7 FHIR and OMOP CDM are 

different. For example, the code “IMP” is defined in a HL7 v3 valueset for inpatient 

encounter, whereas two concept_ids (ie, 9201, and 262) are used in the MIMIC-III OMOP 

CDM to define inpatient visit. This means that the mappings in the valueset level need 

to be handled in the system. In the future study, we plan to systematically analyze 

mappings needed in the valueset level and implement such mappings in the system. To 

understand the degree of interoperability between OMOP CDM and FHIR, we identified 

code systems (https://www.hl7.org/fhir/terminologies-systems.html) and valuesets (https://

www.hl7.org/fhir/terminologies-valuesets.html) from the following links in the current FHIR 

specification. A total of 45 externally published code systems, 293 internal code systems, 

and 721 valuesets were identified. Out of 45 externally published code systems, 13 (29 %) 
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can be mapped to the OMOP vocabulary ids, consisting of SNOMED, RxNorm, LOINC, 

UCUM, CPT4, NDFRT, NDC, CVX, ICD[x], ATC, NUCC, HGNC and ClinVar. This means 

about 70 % of preferred code systems in FHIR did not have their corresponding vocabularies 

in OMOP CDM. For those unmapped OMOP vocabulary ids, we can use the existing 

OMOP convention for now to represent them in Coding.system. None of 293 internal code 

systems and 721 valuesets has been mapped to the OMOP vocabularies. Further community-

based harmonization may still be needed for these internal code systems and valuesets. 

Third, we only used one single MIMIC-III OMOP CDM instance for the evaluation. As 

the next step, we plan to identify multiple clinical data repositories in OMOP CDM for 

more rigorous evaluation, including demonstrating distributed analytics and AI applications 

enabled by the system.

6. Conclusion

The FHIR-Ontop-OMOP system provides a meaningful use case demonstrating the 

potential that can be enabled by the interoperability between FHIR and OMOP CDM. 

Generated clinical knowledge graphs in FHIR RDF provide a semantic foundation to enable 

explainable AI applications in healthcare.

In the future, we plan to leverage FHIR-Ontop-OMOP to build FHIR data services and 

applications. For example, simple RESTful APIs over RDF graphs can be established to 

support a large community of web developers by using the Linked Data APIs [39]. The 

Linked Data APIs enable representing resources in simple RDF, JSON, XML, and CSV 

formats with various selection criteria. We also plan to demonstrate advanced features of 

the system (e.g., inference capability, federated semantic queries, distributed analytics, and 

AI applications) empowered by FHIR, clinical knowledge graphs, and the Semantic Web 

technologies. Finally, we want to study the Semantic Web and explainable AI applications 

as we described in the Introduction section. For example, federated clinical knowledge graph 

embeddings can be potentially realized using CKGs generated from the FHIR-Ontop-OMOP 

system across multiple OMOP CDM instances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A screenshot illustrating the Patient Class definition in FHIR Model Ontology and its 

corresponding instance data in FHIR RDF.
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Fig. 2. 
FHIR ShEx Schema of Patient.
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Fig. 3. 
System architecture of the FHIR-Ontop-OMOP system.
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Fig. 4. 
A Protege screenshot illustrating the creation of mappings between three fields of the 

OMOP person table and the FHIR Patient birthDate.
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Fig. 5. 
An example TML mapping entry defined between the OMOP Person table and the FHIR 

Patient Resource using the Turtle mapping template.
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Fig. 6. 
Examples of clinical knowledge graphs generated.
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Fig. 7. 
A SPARQL query example against the virtual CKG converted from the MIMIC III OMOP 

database, and part of the log information containing the SQL translation.
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Table 1

Demonstration Queries.

OMOP Table(s) FHIR Resource(s) Query*

person, visit_occurrence, concept Patient, Encounter Q1: Identify male patients with inpatient admissions lasting greater than 5 days.

condition_occurrence, concept Condition Q2: Identify patients diagnosed with Alzheimer’s Disease.

procedure_occurrence, concept Procedure Q3: Identify patients who delivered a baby.

drug_exposure, concept Medication Statement Q4: Identify patients prescribed trazadone.

measurement, concept Observation Q5: Identify patients with an HbA1c result >= 10 %.

*
SQL and SPARQL code versions of these queries can be reviewed at https://github.com/fhircat/FHIROntopOMOP/blob/main/evaluation/jbi-2022-

queries.md.
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Table 2

High-level mappings between OMOP tables and FHIR resources. Note that detailed element mappings are 

available in the supplemental tables Table S1 and Table S2.

OMOP Table FHIR Resource

PERSON Patient

VISIT_OCCURENCE Encounter

CARE_SITE Location

CONDITION_OCCURENCE Condition

DRUG_EXPOSURE MedicationStatement

LOCATION Location

MEASUREMENT Observation

PROCEDURE_OCCURENCE Procedure

PROVIDER Practitioner/PractitionerRole

CONCEPT CodeableConcept/Coding

CONCEPT_RELATIONSHIP ConceptMap

CONCEPT_ANCESTER ConceptMap
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Table 3

Demonstration query results.

Query SQL patient count SPARQL patient count

Q1: Identify male patients with inpatient admissions lasting greater than 5 days. 4730 4730

Q2: Identify patients diagnosed with Alzheimer’s Disease. 569 569

Q3: Identify patients who delivered a baby. 34 34

Q4: Identify patients prescribed trazadone. 6737 6737

Q5: Identify patients with an HbA1c result ≥ 10 %. 944 944
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