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Abstract

Drug-induced liver injury (DILI) and cardiotoxicity (DICT) are major adverse effects triggered 

by many clinically important drugs. To provide an alternative to in vivo toxicity testing, the U.S. 

Tox21 consortium has screened a collection of ~10K compounds, including drugs in clinical use, 

against >70 cell-based assays in a quantitative high-throughput screening (qHTS) format. In this 

study, we compiled reference compound lists for DILI and DICT and compared the potential of 

Tox21 assay data with chemical structure information in building prediction models for human 

in vivo hepatotoxicity and cardiotoxicity. Models were built with four different machine learning 

algorithms (e.g., Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector 

Machines) and model performance was evaluated by calculating the area under the receiver 

operating characteristic curve (AUC-ROC). Chemical structure-based models showed reasonable 

predictive power for DILI (best AUC-ROC = 0.75±0.03) and DICT (best AUC-ROC = 0.83±0.03), 

while Tox21 assay data alone only showed better than random performance. DILI and DICT 

prediction models built using a combination of assay data and chemical structure information did 

not have a positive impact on model performance. The suboptimal predictive performance of the 

assay data is likely due to insufficient coverage of an adequately predictive number of toxicity 

mechanisms. The Tox21 consortium is currently expanding coverage of biological response space 
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with additional assays that probe toxicologically important targets and under-represented pathways 

that may improve the prediction of in vivo toxicity such as DILI and DICT.
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Introduction

Modern drug development is aimed at producing compounds that maximize therapeutic 

benefits while also minimizing adverse effects. Despite promising results from preclinical 

studies in animal and cell models, more than 30% of small molecules fail in clinical 

trials because they are found to be harmful to human health.1 Furthermore, 80% of drug 

candidates fail in human clinical trials due to unmanageable toxicity or lack of clinical 

efficacy.1 Drug-induced liver injury (DILI) and cardiotoxicity (DICT) are major concerns 

during the safety profile evaluation of current drugs and development of novel therapeutics. 

The liver is responsible for a wide range of functions, including xenobiotic detoxification, 

protein synthesis, storage and synthesis of glucose, production of the bile necessary for 

digestion, and regulation of blood cholesterol and triglycerides. Due to its central role 

in biotransformation and excretion of foreign compounds, the liver represents a primary 

target for adverse drug reactions. Many drugs and environmental chemicals can evoke some 

degree of liver injury,2,3 making DILI the single most common adverse indication, thus 

leading to drug candidate failure and/or withdrawal from the consumer market. However, 

DILI is largely unpredictable due to complex factors that give rise to liver damage, hence 

making prevention difficult.4 Moreover, current in vivo toxicological studies are insufficient 

to assess the hepatotoxic potential of compounds early in the drug development process, 

thereby presenting an urgent need for alternative DILI prediction strategies.5

Likewise, DICT is another major safety concern and common cause of drug withdrawals 

from the consumer market.6 The NIH National Cancer Institute (NCI) broadly defines 

cardiotoxicity as “toxicity that affects the heart”,7 and major cardiovascular adverse effects 

may include tachycardia, hypertension, and electrocardiographic abnormalities such as 

prolonged QT interval. Many antineoplastic agents have been linked to cardiovascular 

toxicity with extended use.8 In addition, cardiotoxicity has been observed in a diverse range 

of drug classes such as antipsychotics, antidepressants, and antibiotics.9 Like DILI, the 

mechanisms that underly DICT are not fully understood, and effective predictive approaches 

are critical for reducing chemical-induced cardiotoxicity.

Quantitative structure-activity relationship (QSAR) modeling and machine learning methods 

have become increasingly popular for predicting compound properties such as toxicity.10 To 

date, QSAR modeling has been widely used in liver toxicity research to study hepatotoxicity 

and predict DILI. While a number of hepatotoxicity prediction models have recently been 

developed, they often suffer from imbalanced and/or limited training/testing datasets that 

produce unsatisfactory predictive performance.11 Consequently, the applicability of these 

models is often limited due to their insufficient coverage of the chemical space. The 
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etiopathogenesis of DILI is complex and involves the interaction of several factors, so 

the limited DILI data available in humans is a major drawback for QSAR modeling.12 

Similarly, QSAR approaches have been conducted to predict DICT compounds. However, 

the performance from these cardiotoxicity models varies widely because they are heavily 

influenced by the type of molecules and techniques used for model building.13 Most 

previously published models use in-house data or proprietary data obtained from industry 

that are not publicly available, while a limited number of other studies that use data 

extracted from public databases often suffer from a certain amount of experimental 

uncertainty.14 Collectively, these factors compromise the practical use of prior models for 

reliable assessment of cardiotoxicity. Small model training datasets and lack of proof of 

validation are additional factors that limit the usefulness of prior models.

To improve toxicity testing and prediction, the Toxicology in the 21st Century (Tox21) 

consortium was established as a federal collaboration between the National Center for 

Advancing Translational Sciences (NCATS), the National Toxicology Program (NTP) of the 

National Institute of Environmental Health Sciences (NIEHS), the Environmental Protection 

Agency (EPA), and the Food and Drug Administration (FDA).15–17 The aim of Tox21 is to 

develop alternative toxicity assessment methods to quickly and efficiently predict potential 

adverse effects of chemicals on human health. Tox21 employs quantitative high-throughput 

screening (qHTS), an automated robotic process in which each compound of a large 

chemical library is tested at multiple concentrations, to test large collections of chemicals 

in multiple cell-based assays. A Tox21 screening library comprised of approximately 

10,000 chemical samples, also known as the “Tox21 10K compound library”,18 has been 

screened for potential biological pathway disruptions that may result in toxicity.19,20 The 

Tox21 10K compound library contains industrial and consumer products, food additives, 

drugs, and chemical mixtures, and also includes the NCATS Pharmaceutical Collection 

(NPC),21,22 a collection of approximately 3,000 small molecule drugs approved for clinical 

use or investigational purposes by the U.S., European, Japanese, Australian, and Canadian 

authorities. The Tox21 10K compound library has been screened in more than 70 cell-based 

assays in qHTS format related to nuclear receptor and stress signaling pathways, and also 

a smaller number of assays that probe for genotoxicity, developmental toxicity, G-protein 

coupled receptors, and cell-death signaling. To date, the screening has generated nearly 102 

million data points that are publicly available to the scientific community.23,24

In this study, we aim to build machine learning models to predict DILI and DICT. To 

develop robust models for DILI and DICT prediction, a comprehensive set of human in vivo 
toxicity data is essential for model training and testing. We compiled reference lists of DILI 

and DICT compounds by incorporating in vivo toxicity data integrated from a diverse set 

of literature sources. Both chemical structure and assay data were used as descriptors to 

build the DILI and DICT prediction models. These two types of descriptors were tested both 

independently and in combination, and the resulting model performances were assessed. 

Accordingly, we identified assay targets and pathways as well as chemical features that 

contributed the most to model performance. The chemical structural features and targets 

that are significantly associated with liver toxicity and/or cardiotoxicity can be further 

investigated as potential indicators to help us better understand the underlying pathways and 

mechanisms of these toxicities.
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Materials and methods

In vivo toxicity data

To compile a comprehensive list of reference compounds for DILI and DICT, data were 

integrated from six sources including ChemIDplus (DILI and DICT), Pharmapendium® 

(DILI and DICT), U.S. Food and Drug Administration (FDA)’s Center for Drug Evaluation 

and Research (CDER) (DICT) and National Center for Toxicological Research (NCTR) 

(DILI and DICT),25 Enzo Life Sciences cardiotoxicity library (DICT), and the Side Effect 

Resource (SIDER) database26 via the European Molecular Biology Laboratory (EMBL) 

(DICT). ChemIDplus is a database produced by the U.S. National Library of Medicine 

(NLM) that collects compound records (chemical nomenclature, properties, toxicity, and 

structures) from more than 100 sources. Pharmapendium® is a curated database containing 

extensive information on adverse drug effects extracted from the FDA and European 

Medicines Agency (EMA) drug approval documents. The Enzo Life Sciences cardiotoxicity 

library is a collection of 130 diverse compounds with known cardiotoxicity, including 

ion channel blockage, mitochondrial toxicity, arrhythmia, and fibrosis. SIDER contains 

information on marketed medicines and the associated adverse drug reactions that were 

extracted from public documents and package inserts. A total of 474 drugs that did not 

have any cardiotoxicity reports (244 overlapped with the Tox21 10K compound library) 

were collected from the SIDER database, and these compounds were included as negative 

controls in our DICT reference list.

In vivo toxicity data scoring and cutoff for DILI and DICT

For the reference lists collected for DILI and DICT, each compound was assigned a toxicity 

score according to the frequency in which it was identified as “toxic” in the literature. 

First, within each data source, the compounds were each assigned a value between 0 

and 1 as specified in the following. For compounds retrieved from Pharmapendium® and 

ChemIDplus, different types (e.g., via different mechanisms or manifestations of toxicity) of 

DILI and/or DICT were normally reported. Compounds with 10 or more such reports were 

assigned a value of 1 and others were assigned the value N/10, where N is the number of 

toxicity reports. For the DILI and DICT lists provided by NCTR, compounds with the most 

toxicity concern were assigned a value of 1, compounds with less toxicity concern were 

assigned a value of 0.5, and compounds with no toxicity concern were assigned a value of 

0. For compounds from the other data sources, compounds listed as toxic were assigned a 

value of 1 and 0 otherwise. Finally, the values from all data sources were averaged for each 

compound to yield the final DILI or DICT score, such that a larger score indicates a higher 

likelihood of toxicity and 0 means non-toxic.

A total of 1,407 compounds were collected from three different sources for the DILI 

reference list (Supplementary Table 1). The best model performance for DILI was obtained 

when using 0.4 as the cutoff value to separate the data into toxic and non-toxic binary 

classes, i.e., a compound was considered toxic if its DILI score was > 0.4. Other compounds 

on the list were considered non-toxic. A total of 1,160 compounds were collected from 

six sources for the DICT reference list (Supplementary Table 2). Different DICT score 

cutoffs were tested, and the following conditions produced the best model performance for 
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DICT prediction. Compounds with a DICT score of 0 were considered non-toxic, while 

compounds with a score ≥ 0.5 were considered toxic. Any compounds with a DICT score 

between 0 and 0.5 were considered inconclusive and removed from the modeling set.

In vitro assay data

qHTS data used for modeling in this study were generated by screening the Tox21 10K 

compound library, including 70 assays with 203 readouts. All in vitro assay data and 

detailed assay descriptions used in this study are publicly available on the NCATS website 

(https://tripod.nih.gov/tox21/pubdata/) and PubChem.27,28 The following cell lines were 

used for the qHTS assays: human cell lines (80.88%), murine embryo fibroblast (7.35%), 

Chinese hamster ovary cell lines (5.88%), and other (5.88%). The majority of these assays 

cover several pathways related to nuclear receptor signaling (NR, 55.90%), stress response 

(SR, 11.80%), cytotoxicity (8.80%), and other targets/pathways related to toxicity (23.50%). 

Curve rank is a value between −9 and 9 that was used as a measure of compound activity, 

such that a positive number represents activation while a negative number represents 

inhibition.29 For modeling purposes, compounds with absolute curve rank > 0.5 were 

labeled as active (1), and inactive (0) otherwise.

Structure data

To build classification models in this study, two structure-based fingerprint sets 

were used: ToxPrint and ECFP4. Publicly available Toxprint chemotypes (v2.0_r711, 

https://toxprint.org/) generated within the associated ChemoTyper application (https://

chemotyper.org/) consists of 729 uniquely defined chemical features.30 Extended-

Connectivity Fingerprints (ECFP4) is a 1024-bit fingerprint set that was generated using 

the CDK package in KNIME v.4.0.2.25.31 Each bit is representative of a structural feature 

and was designated a value of 1 for the presence of a particular feature and 0 otherwise.

Feature selection

To identify assays significantly related to DILI or DICT, each assay was used to predict 

hepatotoxicity and cardiotoxicity, and these assays can be viewed as single-descriptor 

models. ToxPrint chemotypes were used to identify chemical structural features significantly 

enriched in DILI and DICT compounds. Statistical significance was measured by the 

Fisher’s exact test with p < 0.05 considered as significant.

Feature selection using the Fisher’s exact test was used to further optimize model 

performance and determine features (chemical features or assays) significant for DILI and 

DICT prediction. Ten independent p-values ranging from 0.01 to 0.1 were used to select 

features at different p-value cutoffs to train models. The best performing feature sets were 

selected to build the final model. The top feature sets were further combined to rebuild the 

model to determine if the combined feature set achieved better model performance than that 

of the structure or assay feature set alone.

Prediction modeling

In this study, a total of 1,407 unique compounds were used to build the DILI prediction 

models, including 831 non-toxic compounds and 578 toxic compounds, for chemical 
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structure-based modeling (ToxPrint or ECFP4, Supplementary Table 1). To obtain a 

balanced modeling set, a subset of toxic compounds with a size roughly equal to the set 

of non-toxic compounds was randomly selected from the original dataset. The modeling set 

was further randomly split into two sets, 70% for training and 30% for model validation, 

and this process was repeated 100 times. For assay activity-based models (assay-only), 

compounds with complete activity profiles in the 70 assays (213 readouts), including 

663 non-toxic compounds and 466 toxic compounds, were used for model training and 

validation. The same dataset and modeling procedure were repeated for the chemical 

structure (structure-only) and assay activity combined (structure + assay) models for DILI.

A total of 646 unique compounds were used to build DICT prediction models, including 

244 non-toxic compounds and 402 toxic compounds, for chemical structure-based modeling 

(ToxPrint or ECFP4, Supplementary Table 2). For assay activity-based models, compounds 

with complete activity profiles in the 70 assays (213 readouts), including 209 non-toxic 

compounds and 335 toxic compounds, were used for model training and validation. The 

same dataset and procedure were repeated for the structure + assay combined models for 

DICT.

Four different machine learning classification algorithms were applied: Random Forest (RF), 

Naïve Bayes (NB), eXtreme Gradient Boosting (XGBoost), and Support Vector Machines 

(SVM). Models were built and tested using R version 4.1.2, with the “Random Forest” 

package for the RF classifier, the “e1071” package for the NB and SVM classifiers, 

and the “xgboost” package for the XGBoost classifier. The implementation of the NB 

classifier was adapted with the settings of Laplace smoothing, and the Gaussian Radial Basis 

Function kernel was used for the SVM classifier. In addition, the optimal parameters for 

the SVM and RF classifiers were selected using the “e1071” package. The R codes used 

in this study are publicly available on the GitHub repository at https://github.com/TX-2017/

machine-learning.

Model performance was evaluated by calculating the area under the receiver operating 

characteristic curve (AUC-ROC). The ROC curve is a graphical plot that illustrates the 

predictive ability of a binary classification model across different thresholds. The ROC curve 

is created by plotting true positive rates against false positive rates at various thresholds. The 

area under the curve (AUC) provides an aggregate measure of model performance. A larger 

AUC value indicates better classifier performance. A perfect predictive model would have 

an AUC score of 1, while an AUC score of 0.5 indicates a random classifier. For feature 

selection, assays with AUC-ROC scores greater than 0.5 were considered to be predictive of 

toxicity and retained for further analysis.

To assess the applicability domain (AD) of the structure-based models, the closest structural 

neighbor in the training set was found for each of the compounds to be predicted, 

e.g., the Tox21 10K library. Structural similarity was determined by calculating the 

Tanimoto coefficient using ECFP4 fingerprints, which measures the similarity between two 

compounds based on the number of shared structural features. It is calculated by taking 

the number of structural features in common by both compounds and dividing it by the 

total number of structural features in either compound. The Taminoto coefficient ranges 
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from 0, where the compounds have no chemotypes in common, to 1, when the compounds 

are identical. A compound that has a close structural neighbor in the training set with a 

Tanimoto similarity (Tmax) ≥ 0.4 was considered to be within the model’s AD.

Results

Model performance

The modeling results for both DILI and DICT are summarized in Table 1.

The DILI modeling results showed that liver toxicity could be reasonably predicted by 

chemical structure, with ECFP4 demonstrating the best predictive performance. While 

the AUC-ROC scores of the ToxPrint-based models ranged from 0.65±0.03 to 0.68±0.03, 

ECFP4-based models performed better as shown by the scores ranging from 0.71±0.03 

to 0.75±0.03. The AUC-ROC scores of the assay-based models ranged from 0.59±0.02 

to 0.61±0.04, which were much lower than both chemical structure-based models. The 

AUC-ROC scores (0.63±0.03 to 0.72±0.03) of the models built on both chemical structure 

(Toxprint or ECFP4) and assay data showed that the addition of assay data did not improve 

model performance compared to chemical structure-based models alone.

Likewise, the application of chemical structure could also be used to predict cardiotoxicity 

as shown by the modeling results from DICT prediction. The AUC-ROC score of the 

ECFP4-based model ranged from 0.73±0.04 to 0.83±0.03, while the AUC-ROC score of 

the ToxPrint-based model ranged from 0.70±0.04 to 0.75±0.02. Similarly, the AUC-ROC 

scores of the assay-based models were relatively low, scoring within the range of 0.56±0.04 

to 0.58±0.04. The AUC-ROC of the models built using both chemical structure (Toxprint 

or ECFP4) and assay data revealed that the addition of assay data did not improve the 

DICT model performance, suggesting that chemical structure alone was the better predictor 

of hepatotoxicity and cardiotoxicity. In both DICT and DILI models, ECFP4 fingerprints 

produced better model performance than ToxPrint fingerprints.

Feature selection was used to optimize model performance. Ten different p-value cutoffs 

between the range of 0.01 and 0.1 were used for feature selection, and the best cutoff value 

was selected for each method. Comparing the model performance before (Supplementary 

Table 3) and after (Table 1) application of feature selection, we observed that the impact 

of feature selection on model performance varied across the different descriptor types and 

machine learning methods. For DILI prediction, feature selection for NB with ECFP4 

exhibited the greatest AUC-ROC score increase of 0.15, improving from 0.60±0.03 to 

0.75±0.03. Likewise, feature selection for NB with ECFP4 substantially improved DICT 

prediction by an AUC-ROC score by 0.13, increasing from 0.70±0.03 to 0.83±0.03 (Table 

1; Supplementary Table 3). Overall, feature selection helped to boost model performance for 

both DILI and DICT prediction. We observed modest improvements for RF after application 

of feature selection, which is likely due to the built-in feature selection already implemented 

in this method.
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Toxic structural feature identification for DILI and DICT compounds

The ToxPrint chemotypes were used to identify chemical features that are significantly 

(Fisher’s exact test) enriched in toxic compounds. Several distinct features were 

present in hepatotoxic compounds (Figure 1), particularly aromatic rings such as 

bond:N(=O)_nitro_aromatic (4.1×10−2), ring:hetero_[6]_N_piperidine (4.95×10−6), and 

ring:hetero_[4]_N_beta_lactam (1.60×10−3).

Moreover, small chemical fragments such as bond:CX_halide_alkyl-X_trihalo_(1_1_1-) 

(6.22×10−3) and bond:CN_amine_aliphatic_generic (2.00×10−12) were found enriched 

in DILI compounds. For cardiotoxic compounds (Figure 2), we also observed 

the presence of six-membered rings including ring:hetero_[6]_Z_1- (4.35×10−6), 

ring:hetero_[6]_N_piperazine (3.49×10−4), ring:hetero_[6]_N_pyridine (2.60×10−2), and 

bond:CC(=O)C_quinone_1_4-benzo (2.75×10−2).

In addition, the double-ring structure ring:hetero_[6_6]_N_quinoline (1.62×10−2) was 

identified in cardiotoxic compounds. The most significant chemotypes identified for both 

hepatotoxic and cardiotoxic compounds are presented in Supplementary Tables 4 and 5, 

respectively.

Assays predictive of DILI and DICT

We examined the performance of each assay within the Tox21 assay panel in predicting 

DILI and DICT. The top five assays that are the most predictive of DILI measured 

by their AUC-ROC scores, in descending order of significance, are: tox21-p450-2c9-

p1_ratio (0.60), tox21-ror-cho-antagonist-p1_ratio (0.58), tox21-ar-bla-agonist-p1_ratio 

(0.57), tox21-gr-hela-bla-antagonist-p1_ratio (0.57), and tox21-er-bla-antagonist-p1_ch2 

(0.57). Likewise, the top five assays for predicting DICT and their corresponding AUC-ROC 

scores, in descending order of significance, are as follows: tox21-pparg-bla-agonist-p1_ratio 

(0.60), tox21-casp3-cho-p1_viability (0.60), tox21-ahr-p1_viability (0.59), tox21-erb-bla-

antagonist-p1_ratio (0.59), and tox21-casp3-hepg2-p1_viability (0.59). A full list of the top 

20 most predictive assays for DILI and DICT are shown in Tables 2 and 3, respectively.

Predicting the DILI and DICT potential of the Tox21 10K compound library

We applied the ECFP-based RF, NB, XGBoost, and SVM models, which achieved good 

performance during model training and testing, to predict the DILI and DICT potential 

of the compounds in the Tox21 10K compound library (Supplementary Table 6). Each 

compound was assigned a toxicity probability based on model predictions, and the majority 

of compounds in the 10K library were found to be non-toxic for both DILI and DICT. The 

ROC curve was used to determine the optimal probability cutoff for toxicity. With respect 

to hepatotoxicity, the RF model predicted 2,807 compounds (35%) as toxic. We observed a 

similar trend using the NB model, which identified 3,745 compounds (47%) as potentially 

toxic. The XGBoost model predicted 2,384 compounds (30%) as toxic, while the SVM 

model predicted 2,065 hepatotoxic compounds (26%). With respect to cardiotoxicity, the RF 

model predicted 4,420 compounds (55%) as toxic. Similarly, the NB model predicted 3,075 

toxic compounds (38%). The XGBoost model predicted 2,532 compounds (32%) as toxic, 

while the SVM model identified 2,163 potentially cardiotoxic compounds (27%). All four 
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methods predicted a consensus 1,374 hepatotoxic compounds (17%) and 1,469 cardiotoxic 

compounds (18%), resulting in smaller numbers of predicted toxic compounds.

The top 10 toxic compounds for DILI and their average predicted probabilities, in order of 

descending probability, are: floxacillin sodium salt (0.91), floxacillin sodium hydrate (0.91), 

dicloxacillin sodium salt monohydrate (0.91), cloxacillin sodium (0.91), oxacillin sodium 

salt (0.91), nafcillin sodium monohydrate (0.90), piperacillin sodium salt (0.89), cefixime 

(0.89), azlocillin sodium (0.89), and methicillin sodium hydrate (0.89). All compounds are 

reported as toxic according to our DILI reference list (Supplementary Table 1), and this 

finding validates our models’ robustness to detect known liver toxicants.

The top 10 toxic compounds for DICT that fell within the model AD (Tmax ≥ 0.4) ranked 

in descending order by the average of their predicted probabilities are: cisapride (0.87), 

orphenadrine dihydrogen citrate (0.85), roxithromycin (0.85), tamoxifen citrate (0.84), 

everolimus (0.83), dirithromycin (0.82), azithromycin (0.81), erythromycin ethylsuccinate 

(0.81), sirolimus (0.81), and doxepin hydrochloride (0.81). Six out of these ten compounds 

(cisapride, orphenadrine dihydrogen citrate, roxithromycin, tamoxifen citrate, sirolimus, and 

doxepin hydrochloride) were known toxicants in our DICT reference list (Supplementary 

Table 2). The remaining four compounds (everolimus, dirithromycin, azithromycin, 

and erythromycin ethylsuccinate) have literature evidence potentially linking them to 

cardiotoxicity as detailed below, so these compounds may warrant further investigation.

Everolimus (CAS# 159351-69-6) is an antineoplastic agent used to treat various types 

of cancer including kidney, pancreas, breast, and brain cancer. Everolimus is an mTOR 

inhibitor that has been reported to have a direct cardiotoxic effect by blocking signaling 

for blood vessel formation which may contribute to coronary artery disease (CAD) risk 

factors such as hyperglycemia, hyperlipidemia, and hypertension.32 Dirithromycin (CAS# 

62013-04-1), azithromycin (CAS# 83905-01-5), and erythromycin ethylsuccinate (CAS# 

1264-62-6) are all antibiotics used to treat several different types of bacterial infections. 

Specifically, they belong to the macrolides class of antibiotics, which are commonly used to 

treat both acute and chronic infections. Macrolides are also known to cause QT prolongation 

and cardiac arrhythmias. Dirithromycin was discontinued in the United States; however, 

it is still available in many European countries.33 In 2013, the FDA warned azithromycin 

to be linked to arrhythmia-related adverse cardiac events especially in patients who are at 

high risk for cardiovascular events.34 Despite these cautions, azithromycin continues to be a 

popular broad-spectrum antibiotic. In a previous study, azithromycin was found to have low 

hERG liability based on in vitro assay results.35 Erythromycin ethylsuccinate is an antibiotic 

that carries the highest risk of cardiotoxicity among the more commonly used macrolides.36 

Specifically, it is known to cause significant prolongation of the QT interval and potentially 

a fatal ventricular tachyarrhythmia called Torsade de Pointes (TdP).

Overall, the RF, NB, XGBoost, and SVM models predicted that the majority of compounds 

in the 10K library were not likely to be toxic. The DILI and DICT prediction results using 

RF, NB, XGBoost, SVM, and consensus models are summarized in Table 4.
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Furthermore, we presented the distributions of the predicted toxicity probabilities of 

compounds in the Tox21 10K library generated from the four machine learning methods 

(RF, NB, XGBoost, and SVM) in Supplementary Figure 2. These results reiterate our 

findings that the majority of compounds in the Tox21 10K library were non-toxic regarding 

both DILI and DICT.

The reliability of the predictions obtained from structure-based models is often limited 

by the model AD. We assessed the similarity of each compound in the prediction set 

to the compounds in the model training set (see Methods for details). When considering 

only compounds that fall within the model AD (Tmax ≥ 0.4), we observed an overall 

reduction in the predicted number of toxic compounds. For DILI models, the NB method 

predicted the most toxic compounds (1,838; 23%), while SVM identified the least number 

of compounds (1,268; 16%) as toxic. For DICT models, the RF method picked up the most 

toxic compounds (2,357; 29%). Similarly, SVM predicted the least number of cardiotoxic 

compounds (1,357; 17%). The consensus of all four methods further reduced the total 

number of predicted toxic compounds for both DILI and DICT, resulting in the prediction of 

845 (11%) hepatotoxic compounds and 953 (12%) cardiotoxic compounds.

As observed in Table 4, the use of the AD narrowed the predicted number of toxic 

compounds by removing compounds that are not structurally similar to the model training 

set. Defining the AD greatly reduced the number of both hepatotoxic and cardiotoxic 

compound predictions in the Tox21 10K compound library, with predicted compounds 

decreasing by at least 10% using RF, NB, XGBoost, and SVM methods separately. The 

compounds in our training set mostly consists of drugs while the Tox21 10K compound 

library contains many environmental chemicals that do not have drug-like structures, thus 

they may fall outside of the model AD. Our QSAR models were limited by the chemical 

space of the training set that was used to build the models. Nonetheless, similar modeling 

approaches to predict hepatotoxicity and/or cardiotoxicity have been utilized in previous 

studies to fill in data gaps related to human organ toxicity.37,38 The applicability of these 

models could be improved by expanding the training dataset to cover a wider range of 

chemical structural space beyond drug-like molecules.

We next examined compounds by consumer product use categories39,40 in the Tox21 

10K compound library that were predicted to be hepatotoxic or cardiotoxic. The 

distribution of DILI and DICT compounds in each use category was calculated and 

the significance of the enrichment was determined using the Fisher’s exact test. 

The top ten categories enriched with predicted hepatotoxic compounds (in order 

of descending significance) are: “drug” (95.5%; 1.00×10−20), “discontinued” (36.4%; 

1.00×10−20), “antibiotic” (9.2%; 6.55×10−20), “food” (3.5%; 6.75×10−20), “orphan” (1.5%; 

1.63×10−17), “pediatric” (5.1%; 1.20×10−9), “diuretic” (3.7%; 1.57×10−9), “anticancer” 

(6.3%; 4.14×10−9), “anti-inflammatory” (5.5%; 6.13×10−9), and “antihypertensive” (4.1%; 

2.86×10−7). The categories “antibiotic”, “diuretic”, “anticancer”, “anti-inflammatory”, and 

“antihypertensive” refer to pharmaceutical-related compounds. “Drug” refers to any drug 

product or compound related to the manufacturing of drugs, whereas “food” applies 

to products designated for human consumption, excluding food additives, as well as 

manufacture and facilities contaminants related to food.
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Furthermore, the top ten categories enriched with potential cardiotoxic compounds along 

with the corresponding statistical significance p-value (in order of descending significance) 

are: “drug” (89.9%; 1.00×10−20), “discontinued” (23.7%; 4.05×10−13), “food” (31.8%; 

1.51×10−12), “pediatric” (5.6%; 2.00×10−9), “anti-HIV” (4.3%; 1.35×10−8), “antipsychotic” 

(3.3%; 2.45×10−7), “orphan” (9.6%; 6.82×10−6), “biomarker” (3.5%; 7.39×10−5), 

“dopamine antagonist” (1.8%; 7.21×10−4), and “angiotensin” (1.3%; 0.0011). The 

following categories refer to pharmaceutical-related compounds: “drug”, “discontinued”, 

“pediatric”, “anti-HIV”, “antipsychotic”, “orphan”, “biomarker”, “dopamine antagonist”, 

and “angiotensin”. Compounds in the “food” category can potentially induce cardiotoxicity 

through food consumption and/or contaminants. For instance, sorbitan monooleate (CAS # 

1338-43-8) is a food additive with emulsifying properties. More recently, the European Food 

Safety Authority (EFSA) Panel on Food Additives and Nutrient Sources Added to Food 

(ANS) re-evaluated the safety of various sorbitan esters (including sorbitan monooleate) as 

food additives and concluded that while there is no safety concern at the reported uses and 

use levels, their recommendation is that the authorities consider lowering the current limits 

for sorbitan esters to ensure that these compounds will not be a significant source of toxic 

elements (arsenic, cadmium, lead, and mercury) in food. Another compound albendazole 

(CAS # 54965-21-8) belongs to an anthelmintic class of drugs that is widely used for the 

treatment of gastrointestinal, parasitic infections in animals. It has been approved for farmed 

ruminants and recently considered as a regulatory treatment against parasites for fish in 

aquaculture.41 Sucralose (CAS # 56038-13-2) is an artificial sweetener and sugar substitute. 

In recent decades, there has been increased attention in the safety concerns of low/no-calorie 

sweeteners such as sucralose. A recent rat study revealed that a 10-week consumption 

of sucralose mixture resulted in a significant vascular endothelial dysfunction.42 Xylazine 

(CAS # 7361-61-7) is an adrenergic agonist used in veterinary medication for sedation, 

analgesia, and muscle relaxation in animals. Food safety concerns may arise from xylazine 

and metabolite residue in animal-derived food products.43 Five out of ten use categories 

(“drug”, “discontinued”, “food”, “pediatric”, and “orphan”) overlapped between DILI and 

DICT compounds, suggesting that these product use categories contain compounds that 

may contribute to both hepatotoxicity and cardiotoxicity. The majority of the compounds 

identified by our models are categorized as pharmaceutical-related compounds. Since the 

training data consisted mostly of drugs, application of our structure-based models is likely to 

identify other drug-like compounds that are potentially toxic for human consumption.

Discussion

To improve the prediction of DILI and DICT, we compiled a comprehensive dataset that 

incorporates human in vivo hepatotoxicity and cardiotoxicity data from a diverse set of 

data sources. The resulting DILI and DICT reference compound lists were used to develop 

and train the models in this study for the prediction of hepatotoxicity and cardiotoxicity. 

In addition, assays and chemical structure features that contributed the most to DILI and 

DICT were identified. The top 20 DILI predictive assays are listed in Table 2. Some of these 

assays measure targets or pathways that have known connections to hepatotoxicity such as 

nuclear factor kappa B (NF-κB)44, pregnane X receptor (PXR)45, Nrf2/ARE46, P45047, and 
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mitochondria toxicity48. These assays can serve as a validation for our methods’ utility in 

identifying hepatotoxicity-related targets and pathways.

NF-κB represents a family of transcription factors that is involved in several aspects of 

the immune and stress/inflammatory responses. Basal NF- κB activity is essential for cell 

survival at different stages of development, particularly for protection of the liver against 

apoptosis. Inactivation of the NF- κB pathway can lead to adverse effects, including liver 

failure and apoptosis induction. Moreover, PXR is a member of the orphan nuclear receptor 

family that is highly expressed in the liver where it serves as a master xenobiotic sensor 

and plays a critical role in drug metabolism.49 PXR tightly regulates the gene expression 

involved in the detoxification and elimination of drugs in the liver (hepatic drug-clearance 

system); however, its undesired activation plays an integral role in DILI and has been 

reported to induce liver injury by increasing the expression of drug metabolizing enzymes.50

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to 

the antioxidant response element (ARE), and activation of the Nrf2/ARE pathway induces 

cellular defense against oxidative stress and inflammation. Loss of Nrf2 broadly increases 

the sensitivity of hepatotoxic chemicals, suggesting that Nrf2 is a pleiotropic transcriptional 

factor that may serve as a modifier in the development and progression of chronic diseases, 

including liver injury. The tox21-are-bla-p1 assay detects compounds that can induce the 

Nrf2/ARE pathway resulting in toxicity. In addition, cytochrome P450 is a superfamily of 

enzymes that contributes to the metabolism of a wide range of xenobiotic and endogenous 

compounds. CYP-mediated metabolism of drugs to toxic reactive metabolites leads to the 

pathogenesis of DILI.51 The Tox21 P450 assays identify CYP inhibitors and substrates 

which could interfere with the CYP activities producing toxic metabolites. Lastly, some 

drugs can cause liver injury through mitochondrial toxicity. Drug-induced mitochondria 

dysfunction can interfere with drug metabolism and renal excretion, ultimately leading to 

hepatotoxicity.52,53 The tox21-mitotox-p1 assay detects compounds that can disrupt the 

mitochondria membrane potential resulting in mitochondria dysfunction. Other assay targets 

identified in our analysis to be predictive of DILI can improve our understanding of the 

underlying pathways and mechanisms that may lead to hepatotoxicity.

Furthermore, the top 20 predictive assays for DICT based on our analysis are listed in 

Table 3. Some assay targets were well linked to cardiotoxicity, while others may begin 

to bridge the gap between understanding cardiotoxicity mechanisms and the first stages 

of drug development. For example, Tox21 assays that measure the peroxisome proliferator-

activated receptor gamma (PPARγ), estrogen receptor beta (ER-β), and vitamin D receptor 

(VDR) signaling pathways as well as mitochondrial membrane potential, which is an 

indicator of mitochondrial toxicity, were found to be predictive of cardiotoxicity. PPARs 

are lipid-activated transcription factors that are critically involved in the regulation of 

lipid and glucose homeostasis. PPARs are highly expressed in cardiac cells, so activation 

of PPARγ can exhibit cardiovascular risks through both PPARγ-dependent (on-target) 

and -independent (off-target) mechanisms. The Tox21 PPARγ assays run in agonist and 

antagonist modes detect PPARγ agonists and antagonists, respectively. Both modes were 

found to be predictive of DICT based on our analysis (Table 3). PPARγ agonists such as 

thiazolidinediones (TZDs), are commonly used as antidiabetic drugs, with two widely used 

Ye et al. Page 12

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TZDs – pioglitazone and rosiglitazone – being reported to increase the risk of heart failure 

and other cardiovascular events in diabetic patients.54,55 Nonetheless, the role of PPARγ and 

the heart remains elusive, so there exists a continual need to better understand the role of 

PPAR in the physiology and pathology of cardiovascular-related diseases.

ER-β is a receptor that is expressed on cardiomyocytes, where it exerts a protective effect 

on cardiac function by initiating signaling pathways essential for the growth, repair, and 

survival of cardiomyocytes.56 Modulation of estrogen receptors by potential therapeutic 

agents is currently being considered for the prevention and treatment of various pathological 

conditions, including cancer and cardiovascular diseases.57 For breast cancer patients, 

however, cardiotoxicity is one of the most concerning side effects of treatments which 

inhibit ER-β. There is a strong association between the drug tamoxifen, an antineoplastic 

agent that is also an ER antagonist, and an increased risk for cardiotoxicity manifested in 

several forms (e.g., thrombotic/thromboembolic events and pulmonary embolism).58 The 

tox21-erb-bla-antagonist-p1 assay that identifies ER-β antagonists is among the top 20 

predictive assays of DICT.

VDR, the molecular mediator for Vitamin D signaling is present in almost all tissues, 

including vascular smooth muscle cells, cardiomyocytes, and endothelial cells. High doses 

of vitamin D in humans have been strongly associated with extensive arterial calcium 

phosphate deposits, with both activation and inhibition of VDR promoting different types 

of calcification. The tox21-vdr-bla-antagonist-p1 assay detects compounds that inhibit VDR 

activity and is among the top 20 DICT predictive assays. Vascular calcification is a disorder 

commonly linked with cardiovascular mortality in which calcium mineralization occurs 

along vascular walls, often leading to vessel stiffening and reduced compliance.59 Vascular 

calcification is complex, and the exact impact of VDR signaling on this process is not well 

understood.

The mitochondrial membrane potential is an indicator for normal cell function that results 

from the electron transport and oxidative phosphorylation process, an essential component 

for ATP production.60 Given that the mitochondria is abundantly found in cardiac muscle 

cells, it plays a critical role in maintaining myocardial tissue homeostasis as well as 

regulating cardiac muscle contraction and heartbeat.61,62 As a result, cardiomyocytes are 

more susceptible to mitochondrial dysfunction and oxidative stress due to the mitochondria-

rich environment and low levels of antioxidants compared to other cells.61 Many drugs, 

such as antineoplastic, antiangiogenic, antiviral, and antidiabetic drugs, have been linked 

to adverse cardiovascular effects through interference with mitochondria-related signaling 

pathways.62 Three common mechanisms of mitochondrial toxicity are the ROS/Redox 

system, calcium homeostasis system, and endoplasmic reticulum stress signaling.63

While inhibition of the hERG channel is known to elicit QT interval prolongation and 

potentially lead to TdP, the Tox21 hERG inhibition assay64 was not among the top 20 most 

predictive assays for cardiotoxicity, with an AUC-ROC score (0.52) slightly above random. 

To investigate the cause of this miscorrelation, we checked the activity of the compounds on 

the DICT reference list in the hERG assay. Of the 441 reference compounds tested in the 

hERG assay, 241 compounds (54.6%) did not inhibit the hERG channel but were classified 
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as cardiotoxic (toxicity score > 0.5), 106 compounds (24.0%) inhibited the hERG channel 

but were not classified as cardiotoxic, and only 94 compounds (21.3%) both inhibited 

hERG activity and were cardiotoxic (Supplementary Figure 2). These findings demonstrate 

that the hERG channel inhibition is not the only mechanism for DICT and does not 

necessarily lead to clinical cardiotoxicity, with a notable example being the antiarrhythmic 

drug verapamil. This calcium-channel blocker inhibits the hERG channel but does not cause 

QT prolongation or TdP, which could likely be attributed to the inhibition of multiple 

channels that mitigates the hERG-blocking effect.65 In the Tox21 hERG assay, verapamil 

showed hERG inhibition with IC50 values between 4–11 μM. Additionally, verapamil was 

assigned a toxicity score of 0.17 on our DICT reference list, indicating that this compound 

was seldomly identified as cardiotoxic in the literature. Drug-induced blockage of the hERG 

channel can lead to a variety of cardiovascular ailments, so it crucial to recognize the hERG 

liabilities of compounds.35

Other compounds, such as the antihypertensive drug alfuzosin, may not inhibit hERG 

channels but still lead to QT prolongation through interactions with other ion channels.66 

Alfuzosin is used to treat benign prostatic hyperplasia by increasing the sodium current, 

rather than blocking the hERG potassium current, to delay cardiac repolarization. The Tox21 

qHTS data revealed that alfuzosin was inactive in the hERG assay; however, the toxicity 

score of 0.4 on the DICT reference list indicates that ~40% of the literature sources reported 

this drug as cardiotoxic.

Lastly, we found that 65% of the top 20 cardiotoxicity predictive assays are cell viability 

assays. The cell viability assay serves as the counter screen for cell-based pathway assays by 

assessing the integrity of cells in which a loss in signal indicates cell death or cytotoxicity 

interference. It is not surprising that cytotoxicity could lead to in vivo toxicity such 

as cardiotoxicity, but the exact toxicity mechanism could not be inferred from generic 

cytotoxicity assays. Since most of the Tox21 assays that correlated with cardiotoxicity 

were cell viability assays rather than target- or pathway-specific assays, it suggests that 

the current Tox21 assay panel has insufficient coverage of the targets/pathways that 

detect cardiotoxicity. To address this limitation, the Tox21 program is currently screening 

additional assays to improve the coverage of the toxicity-related biological response space.

In vitro assays are valuable tools for studying a compound’s mechanism of action and can 

be used to screen tens of thousands of compounds in a short timeframe when compared to in 
vivo studies. One of the limitations of in vitro assays is that they are missing some functional 

physiological machinery, such as drug metabolism enzymes (e.g., CYPs), which may fail 

to identify the chemicals that need metabolic activation. To overcome this limitation, the 

Tox21 partners have developed an in vitro assay that incorporates metabolic components67 

to mimic real physiological conditions. This type of assays will be good candidates to be 

adapted for regulatory use in the future.

Our models also identified chemical features that are significantly enriched in hepatotoxic 

and cardiotoxic compounds. Examples of compounds that contain significant hepatotoxic 

chemotypes include oxacillin, flutamide, entacapone, maprotiline, and desloratadine (Figure 

1; Supplementary Table 4). Oxacillin (ring:hetero_[4]_N_beta_lactam) is a penicillin 
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antibiotic used to treat a wide variety of bacterial infections.68 It has been linked to 

two forms of hepatotoxicity: (1) an acute elevation of hepatic enzymes (e.g. alanine 

aminotransferase) and (2) a more prolonged idiosyncratic liver injury similar to the 

hepatotoxicity describe with other second-generation penicillins (e.g. dicloxacillin).68 

Flutamide (bond:CX_halide_alkyl-X_trihalo_(1_1_1-)) belongs to a class of drugs known 

as anti-androgens, and it is used in the management and treatment of prostate cancer. 

Drug-induced elevation of serum aminotransferase levels have led to several instances 

of acute liver injury, thereby making flutamide a potent hepatotoxin in certain patients. 

Entacapone (bond:N(=O)_nitro_aromatic) is a peripheral catechol-O-methyltransferase 

(COMT) inhibitor often used as a beneficial adjunct to treat Parkinson’s disease. 

Although rare, acute liver dysfunction and low rates of serum enzyme elevations 

have been linked to entacapone therapy.68,69 The antidepressant drug maprotiline 

(bond:CN_amine_aliphatic_generic) has been reported in both clinical case reports and 

in vitro animal studies to cause hepatic damage after prolonged use over the course of 

several years. Specifically, abnormally high elevations of liver enzymes and jaundice were 

reported in patients.70,71 Finally, desloratadine (ring:hetero_[6]_N_piperidine) is the major 

metabolic derivative of loratadine, a second-generation antihistamine used widely to treat 

allergy symptoms. In rare cases, desloratadine has been connected to instances of clinically 

apparent acute liver injury.72

Moreover, compounds that contain structure features enriched in cardiotoxic compounds 

include daunorubicin, ranolazine, bosutinib, abiraterone acetate, and mitomycin C (Figure 

2; Supplementary Table 5). Daunorubicin (ring:hetero_[6]_Z_1-) is an antibiotic that 

belongs to the anthracyclines class of drugs that is widely used in the treatment of a 

variety of malignancies. Anthracycline use has been associated with cardiotoxicities such 

as arrhythmia, systolic dysfunction, long QT interval, and in some cases hypertension, 

myocardial ischemia, and thromboembolism.73 Ranolazine (ring:hetero_[6]_N_piperazine) 

is an antianginal agent that is primarily indicated for the treatment of patients with coronary 

artery disease and chronic stable angina. It inhibits the sodium ion current in cardiac 

cells, thus interfering in transmembrane cardiac action potential.74 TdP has not been 

identified as a side effect of this drug, however, the risk for developing this condition 

may increase in patients that are also administered other QT-prolonging medications.75 

Bosutinib (ring:hetero_[6_6]_N_quinoline), a BCR-ABL1 tyrosine kinase inhibitor (TKI), 

has been available for several years as a treatment for chronic-, accelerated-, and blast-phase 

chronic myeloid leukemia (CML) for patients with resistance or intolerance to prior therapy. 

While the incidence of bosutinib-induced cardiotoxicity is relatively rare, cardiovascular 

adverse events such as hypertension, palpitations, and even cardiac failure were found to be 

associated with bositinib.76 Abiraterone acetate (ring:hetero_[6]_N_pyridine) is often used 

in combination for the treatment of metastatic castration-resistant prostate cancer. Patients 

with prostate cancer that were treated with abiraterone acetate reported the highest incidence 

of cardiotoxic effects.77 Specifically, hypertension and cardiac disorders were prominently 

observed in Phase III of a placebo-controlled trial that evaluated the risk ratio of abiraterone 

acetate-related adverse events.78,79 Mitomycin C (bond:CC(=O)C_quinone_1_4-benzo), an 

anti-cancer drug exhibiting antibiotic properties, is used in chemotherapy treatment. Several 

studies dating back from the 1970s suggests that cardiotoxicity induced by mitomycin C is 
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dose dependent, and these adverse effects are enhanced in patients that are also treated with 

doxorubicin.80,81 The chemical features collectively identified from this study can serve as 

structural alerts of hepatotoxicity or cardiotoxicity and should be avoided when designing 

chemicals for new drug development to minimize their toxicity potential.

Overall, the assays previously discussed can serve as a starting point to better understand 

the underlying biological mechanisms that lead to DILI and DICT. The adverse outcome 

pathway (AOP) is an analytical construct that organizes biological interactions over the 

span of multiple levels and toxicity mechanisms to promote more meaningful analysis 

of toxicological effects that can advance human health risk assessment of chemicals.82 

AOPs are useful for linking molecular initiating events (MIEs), the initial chemical-induced 

disruption in a biological system, with key events (KEs), the intermediate progression of 

toxicity, that ultimately leads to a specific adverse outcome (AO). The Tox21 in vitro assay 

targets that contributed the most to DILI and/or DICT could be MIEs or KEs within an AOP, 

thus complementing the AOP concept. For example, the assay “tox21-pxr-p1_ratio” was 

found to be one of the most relevant assays to DILI (AUC-ROC = 0.57) in our study (Table 

2), and pregnane X receptor (PXR) plays a critical role in the detoxification of xenobiotics 

and bile acid homeostasis in liver.83 PXR was recorded as the MIE in an AOP concept 

that is related to hepatic steatosis (https://aopwiki.org/aops/60). The assay “tox21-p450-2c9-

p1_ratio” was found to be one of the top relevant assays to DILI (AUC-ROC = 0.55) in 

our study (Table 2), and CYP2C9 is a liver enzyme responsible for the metabolism of a 

wide range of clinical drugs (e.g., warfarin).84 However, there is no record of CYP2C9 being 

involved in an AOP framework. The assay “tox21-pparg-bla-agonist-p1_ratio” was found 

to be the most relevant to DICT (AUC-ROC = 0.60) in our study (Table 3), and PPARγ 
has been reported to be closely associated with cardiotoxic regulation.85 However, PPARγ 
was only documented as the MIE in a few AOP concepts that are unrelated to DICT, such 

as lung fibrosis (https://aopwiki.org/aops/206), sarcomas in rats, mice, and hamsters (https://

aopwiki.org/aops/163), and pulmonary fibrosis (https://aopwiki.org/aops/347).

In this study, we found that the addition of assay data to chemical structure does not always 

improve the model performance; these results are not surprising and similar results have 

been reported in previous studies.37 Hepatotoxicity and cardiotoxicity are complex and 

multifactorial, whereas in vitro assay typically only represents a single toxicity mechanism 

that covers only a small number of compounds in the modeling set, such that assay results 

are often biased with much more inactives than actives. Hence, the contribution of an 

individual assay tends to be small in a global model (e.g., a model for a complex toxicity 

endpoint) and the relevance of this assay becomes negligible during the modeling process. 

On the other hand, assay data could play a more significant role when developing a local 

model (e.g., a specific toxicity pathway model). Although our model performance did not 

benefit from the addition of assay data, recent studies have demonstrated successful use 

of assay data for modeling and validating QSAR predictions.86–88 In cases where structure-

based models cannot be achieved (e.g., a defined chemical structure is not available), assay 

data can be used to build models for toxicity prediction and elucidation of the biological 

mechanisms of drug-induced toxicity. QSAR models, such as the models constructed in this 

study, are often limited by the extent of chemical space coverage. Our models were trained 

using a compound collection enriched with drug-like molecules, therefore making them less 
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suitable for making predictions on other types of chemicals (e.g., environmental chemicals). 

Presently, Tox21 is focusing on the expansion of pathway coverage by adding assays that 

probe under-represented pathways in the current portfolio to improve the predictivity of 

Tox21 data for adverse drug effects as observed in DILI and DICT.

Conclusion

In this study, we compiled reference compound lists for DILI and DICT to build human 

in vivo hepatotoxicity and cardiotoxicity prediction models. The chemical structure-based 

models showed good performance in identifying hepatotoxic or cardiotoxic compounds, 

while Tox21 assay data-based models only showed better than random performance. The 

optimal models were applied to predict potential hepatotoxic and cardiotoxic compounds 

within the Tox21 10K compound library. These models can be applied to make predictions 

on other large compound libraries regarding DILI and DICT. In addition, we identified 

significant hepatotoxic and cardiotoxic chemical structure features and assays that were 

most predictive of DILI and DICT. The findings uncovered in this study can be used to 

better understand the underlying pathways and mechanisms for drug-induced toxicity as it 

relates to the liver and heart as well as highlight structural features that may alert us of 

these toxicities. Tox21 is currently expanding the coverage of biological response space 

with additional assays that probe toxicologically important targets and under-represented 

pathways to improve the prediction of in vivo toxicity, including DILI and DICT.
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Highlights

• Reference compound lists for DICT and DILI were compiled to build human 

in vivo hepatotoxicity and cardiotoxicity prediction models

• Chemical structure-based models showed reasonable predictive power for 

DILI and DICT prediction

• Significant chemical features and assays for predicting hepatotoxicity and 

cardiotoxicity were identified

• Predicting the DILI and DICT potential of the Tox21 10K compound library 

revealed that most compounds were non-toxic
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Figure 1. 
Chemotypes significantly enriched in compounds active for DILI. Chemotypes are sorted by 

significance based on p-values. Representative drugs that contain these structural fragments 

are displayed with significant chemotypes highlighted in red.
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Figure 2. 
Chemotypes significantly enriched in compounds active for DICT. Chemotypes are sorted 

by significance based on p-values. Representative drugs that contain these structural 

fragments are displayed with significant chemotypes highlighted in red.
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Table 1.

Performance of four classification models (RF, NB, XGBoost, and SVM) for each toxicity endpoint (DILI and 

DICT) with feature selection.

In vivo Endpoints Descriptor RF NB XGBoost SVM

DILI ToxPrint 0.68±0.03 0.66±0.03 0.67±0.03 0.65±0.03

Assay 0.59±0.02 0.61±0.04 0.59±0.03 0.59±0.03

ToxPrint + Assay 0.67±0.02 0.63±0.03 0.66±0.03 0.65±0.02

ECFP4 0.75±0.03 0.74±0.02 0.71±0.03 0.72±0.03

ECFP4 + Assay 0.72±0.03 0.72±0.02 0.68±0.03 0.70±0.03

DICT ToxPrint 0.72±0.03 0.75±0.02 0.70±0.04 0.71±0.04

Assay 0.58±0.04 0.58±0.04 0.57±0.04 0.56±0.04

ToxPrint + Assay 0.69±0.04 0.66±0.04 0.67±0.04 0.68±0.04

ECFP4 0.79±0.04 0.83±0.03 0.73±0.04 0.78±0.03

ECFP4 + Assay 0.73±0.03 0.71±0.06 0.71±0.03 0.74±0.04
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Table 2.

Top 20 Tox21 assays that are predictive of DILI.

# DILI Assay Target AUC

1 tox21-er-bla-antagonist-p1_ch1 ER-BLA antagonist viability 0.57

2 tox21-pxr-p1_ratio PXR agonist 0.57

3 tox21-err-p1_agonist ERR 0.56

4 tox21-mitotox-p1_rhodamine Mitochondria toxicity 0.56

5 tox21-err-p1_ratio ERR 0.56

6 tox21-are-bla-p1_ratio ARE 0.55

7 tox21-casp3-cho-p1_viability Caspase-3/7 cytotoxicity counter screen 0.55

8 tox21-mitotox-p1_ratio Mitochondria toxicity 0.55

9 tox21-pr-bla-antagonist-p1_ch2 PR-BLA antagonist 0.55

10 tox21-are-bla-p1_ch2 ARE 0.55

11 tox21-p450-2c9-p1_ratio CYP2C9 0.55

12 tox21-rxr-bla-agonist-p1_ch1 RXR-BLA control viability 0.55

13 tox21-pgc-err-p1_ratio PGC-ERR 0.54

14 tox21-cre-antagonist-p1_ch2 CRE antagonist 0.54

15 tox21-ar-bla-antagonist-p1_ratio AR-BLA antagonist 0.54

16 tox21-car-antagonist-p1_ratio CAR antagonist 0.54

17 tox21-pparg-bla-agonist-p1_ratio PPARγ agonist 0.54

18 tox21-ahr-p1_ratio AhR 0.54

19 tox21-cre-agonist-p1_ch1 CRE control viability 0.54

20 tox21-cre-antagonist-p1_ratio CRE antagonist 0.54
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Table 3.

Top 20 Tox21 assays that are predictive of DICT.

# DICT Assay Target AUC

1 tox21-pparg-bla-agonist-p1_ratio PPARγ agonist 0.60

2 tox21-casp3-cho-p1_viability Caspase-3/7 cytotoxicity counter screen 0.60

3 tox21-ahr-p1_viability AhR cytotoxicity counter screen 0.59

4 tox21-erb-bla-antagonist-p1_ratio ER-β antagonist 0.59

5 tox21-casp3-hepg2-p1_viability Caspase-3/7 cytotoxicity counter screen 0.59

6 tox21-err-p1_viability ERR cytotoxicity counter screen 0.58

7 tox21-elg1-luc-agonist-p1_viability ATAD5 cytotoxicity counter screen 0.58

8 tox21-pparg-bla-antagonist-p1_ratio PPARγ antagonist 0.58

9 tox21-gh3-tre-antagonist-p1_viability TR-β antagonist cytotoxicity counter screen 0.58

10 tox21-dt40-p1_100 Cell viability 0.58

11 tox21-pxr-p1_viability PXR agonist cytotoxicity counter screen 0.58

12 tox21-shh-3t3-gli3-agonist-p1_viability Hedgehog agonist cytotoxicity counter screen 0.58

13 tox21-shh-3t3-gli3-antagonist-p1_viability Hedgehog antagonist cytotoxicity counter screen 0.57

14 tox21-aromatase-p1_viability Aromatase cytotoxicity counter screen 0.57

15 tox21-mitotox-p1_rhodamine Mitochondria toxicity 0.57

16 tox21-pr-bla-antagonist-p1_ratio PR-BLA antagonist 0.57

17 tox21-vdr-bla-antagonist-p1_ratio VDR-BLA antagonist 0.57

18 tox21-ppard-bla-agonist-p1_viability PPAR-δ-BLA agonist cytotoxicity counter screen 0.57

19 tox21-pgc-err-p1_viability PGC-ERR cytotoxicity counter screen 0.57

20 tox21-pparg-bla-antagonist-p1_ch1 PPAR-δ-BLA antagonist control viability 0.57
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Table 4.

Distribution of model-predicted DILI and DICT compounds in the Tox21 10K library with and without the 

application of the applicability domain (AD) using Random Forest (RF), Naïve Bayes (NB), eXtreme Gradient 

Boosting (XGBoost), Support Vector Machines (SVM), and a consensus of all four methods.

RF NB XGBoost SVM Consensus

DILI
without AD 2,807 (35%) 3,745 (47%) 2,384 (30%) 2,065 (26%) 1,374 (17%)

with AD * 1,536 (19%) 1,838 (23%) 1,389 (17%) 1,268 (16%) 845 (11%)

DICT
without AD 4,420 (55%) 3,075 (38%) 2,532 (32%) 2,163 (27%) 1,469 (18%)

with AD * 2,357 (29%) 1,698 (21%) 1,502 (19%) 1,357 (17%) 953 (12%)

*
Tanimoto coefficient ≥ 0.4
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