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Abstract
Inflammatory bowel diseases (IBDs) are characterized by inflammation in the 
gastrointestinal tract and include Ulcerative Colitis and Crohn’s Disease. These 
diseases are costly to health services, substantially reduce patients’ quality of life, 
and can lead to complications such as cancer and even death. Symptoms include 
abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these 
diseases is symptomatic, seeking disease remission. The intestine is colonized by 
several microorganisms, such as fungi, viruses, and bacteria, which constitute the 
intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and 
produces short-chain fatty acids (SCFAs) that exert several beneficial effects on 
intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 
and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, 
and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. 
However, the mechanisms involved in these beneficial effects of SCFAs remain 
poorly understood. Therefore, this paper aims to provide a review addressing the 
main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main 
effects on different aspects of the intestine with an emphasis on IBDs.
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Core Tip: This review addresses the main epidemiological, and pathophysiological aspects of inflammatory 
bowel diseases (IBDs), characterizes the intestinal microbiota, and describes, in more details, the 
production, metabolism, and main effects of short-chain fatty acids (SCFAs) on various aspects of 
intestinal health, elucidating potential therapeutic effects of SCFAs in IBDs. In addition, this review 
addresses aspects of the modulation of SCFA production and encourages further studies on the subject 
seeking clinical application.
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INTRODUCTION
Inflammatory bowel diseases (IBDs) comprise ulcerative colitis (UC) and Crohn’s disease (CD) and are 
characterized by inflammation in the gastrointestinal tract (GIT)[1]. They are expensive diseases to 
health services, and their prevalence is increasing every year[2]. Abdominal pain, stool bleeding, 
diarrhea, and weight loss are some of the most frequent symptoms of IBDs[3].

The pathogenesis of IBDs remains unclear, but there is evidence of a relationship between genetic 
factors associated with the dysregulation of the immune system and intestinal microbiota (IM)[4]. The 
treatment of these diseases aims to relieve the initial symptoms and seek to keep the patient in 
remission. Anti-inflammatory drugs, immunosuppressants, analgesics, and monoclonal antibodies are 
used for this[5].

Under physiological conditions, the intestine presents a heterogeneous and symbiotic community of 
microorganisms such as fungi, viruses, and bacteria[6]. These microorganisms that colonize the intestine 
constitute the IM and provide beneficial effects to the host as protection against pathogens, streng-
thening of intestinal barrier integrity, and production of short-chain fatty acids (SCFAs)[7].

SCFAs are produced from dietary fibers fermentation by IM. Acetate, Propionate, and Butyrate are 
the most abundant SCFAs and exert several beneficial effects on the body[8]. Among the three most 
abundant types of SCFAs, Butyrate has been widely studied due to its anti-inflammatory and 
antioxidant effects[9]. SCFAs can bind to G-protein-coupled receptors such as GPR41 and GPR43 and 
exert several intracellular effects that benefit intestinal health[10-12]. In this context, SCFAs may 
represent an alternative to conventional therapy for IBDs. Therefore, this review aims to provide the 
main aspects of IBDs and a more detailed sight of SCFAs, elucidating their main effects, possible 
mechanisms involved, and possible applications in IBDs.

INFLAMMATORY BOWEL DISEASES
IBDs are characterized by inflammation in GIT and comprise CD and UC[13]. These diseases are a 
serious health problem because they substantially reduce patients’ quality of life, are expensive to health 
services, and can lead to complications such as cancer and even death[14].

Between 1990 and 2017, the overall number of people with IBDs increased from 3.7 million to more 
than 6.8 million and affected more women (57%) than men (43%)[2]. Countries with a high sociodemo-
graphic index had higher rates of age-standardized prevalence, with Western Europe and North 
America presenting the highest age-standardized mortality rates in 2017[2].

The diagnosis of IBDs requires endoscopic/colonoscopic, imaging, and laboratory exams associated 
with biopsy of the affected areas, and despite having similar symptoms, CD and UC have considerable 
pathophysiological differences[1]. CD can affect, usually discontinuously, any segment of the GIT. 
Microscopically, it is possible to observe transmural inflammation, penetrating ulcers, and the presence 
of granulomas[15,16]. UC, in turn, is characterized by a limited inflammation of the colon, usually 
continuous, which begins in the rectum and can extend to the colon at varying distances[3]. Microscopic 
findings of UC include reduction of goblet cells, superficial and mucosal-limited inflammation, and 
presence of ulcers and abscesses[16-18].

The pathogenesis of IBDs is still not fully understood[19-21], but several studies indicate that it tends 
to be caused by an association between genetic susceptibility and environmental alterations in the gut 
microbiota, along with an intestinal barrier dysfunction, causing a dysregulation of the immune system
[22,23]. Genome-wide association studies identified 201 IBD-related loci, 41 of which were specific for 
CD and 30 for UC[23,24]. Mutations in the NOD2 gene, as well as mutations in the interleukin (IL) 10 
receptor gene region and polymorphisms in the 16-like 1 gene are examples of genetic alterations 
related to the development of IBDs[25-28]. In addition, many of the IBD-related loci are also associated 
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with autoimmune and immunodeficiency diseases, indicating the important relationship of IBDs to 
immune system disorders[23,29].

The host-microbiota interaction also plays an important role in the pathogenesis of CD and UC and 
involves gene regions that regulate microbial defense and intestinal inflammation[4,30-32]. Changes in 
the gut microbiota are frequent among individuals with IBDs[33,34]. However, it is not known whether 
the alteration of the microbiota is a cause or a consequence of these diseases[35,36]. Furthermore, eating 
habits are also related to IBDs[37]. A diet rich in processed foods, with high amounts of saturated fat 
and filled with protein is often associated with a higher chance of developing IBDs[38,39], while a high 
fiber diet reduces the chances of developing these disorders[40,41].

Treatment for IBDs seeks to control initial symptoms, normalizes evacuations frequency, promotes 
histological recovery of the mucosa, and prevents recurrences[5,42]. Therapeutic strategies include the 
use of anti-inflammatory drugs, analgesics, immunosuppressants, monoclonal antibodies, and, in more 
severe cases, surgeries[43-46]. In addition to conventional treatments for IBDs, several studies have 
investigated the modulation of the IM as one of the possible therapeutic/adjuvant approaches in the 
treatment of IBDs[47-49].

INTESTINAL MICROBIOTA
GIT harbors a complex and heterogeneous population of bacteria, fungi, viruses, and other microor-
ganisms[6]. These microorganisms constitute the IM and establish a symbiotic relationship with the 
organism[50]. About 70% of all human microbiota is found in the intestine[51] and it is estimated that 
there are about 1011 to 1012 bacterial cells per gram of colonic content[52] and more than 1000 bacterial 
species in the human intestine[53].

In the colon, of all microorganisms that constitute the IM, anaerobic bacteria are seen in greater 
quantity, with a predominance of the phyla Firmicutes and Bacteroidetes, followed by Actinobacteria and 
Proteobacteria, although this composition may vary between individuals and among the different 
structures of the GIT[54,55]. The profile of these bacteria is influenced by diet and by the use of 
medications, particularly antibiotics[56-58].

IM can interact with the immune system, causing tolerance to symbiotic microorganisms and an 
effector response to pathogenic microorganisms[50,59]. In addition to being involved in this mechanism 
of communication with the immune system[60,61], the IM contributes to the protection against 
pathogens[62] through the production of bactericidal and/or bacteriostatic molecules, competition for 
nutrients, and stimulation of mucus secretion[63-65].

In addition, a healthy IM, under symbiosis conditions, promotes structural benefits to the host such as 
strengthening the integrity and modulation of the intestinal barrier[7] and metabolic benefits through 
the fermentation of complex carbohydrates, SCFAs production, energy uptake, increasing of intestinal 
hormones such as the Peptide YY (PYY), glucagon-like peptide 1 (GLP1) and vitamin synthesis[66].

Many of these beneficial effects of IM have been related to the production of SCFAs, which, in 
addition to being one of the main energy sources for colonocytes, can interfere in cellular mechanism, 
modifying the expression of some genes and promoting changes, including, to extra-intestinal levels 
such as in the Central Nervous System (CNS)[67-69]. In this context, SCFAs has been the target of 
studies by the scientific community due to its beneficial effects in GIT and to the possible therapeutic 
potential in some diseases, including IBDs[70,71].

When a variation in the composition and diversity of the microorganisms that make up the IM 
happens, it generates an imbalance between symbiotic and pathogenic microorganisms, promoting an 
instability in the IM-host relationship[20,33]. This harmful alteration of the IM is called dysbiosis[72]. 
Intestinal dysbiosis leads to a pro-inflammatory response with the activation of immune system cells 
and, in addition, causes a reduction in the synthesis of vitamins as well as in the carbohydrate 
metabolism, consequently, the beneficial effects of a healthy IM are suppressed, and individuals become 
more susceptible to the development of diseases[73,74]. Dysbiosis is associated with the pathogenesis of 
several diseases, including IBDs[34,75-77].

SHORT-CHAIN FATTY ACIDS
Production and metabolism
SCFAs are produced by IM bacteria through the fermentation of dietary fibers[67]. SCFAs are saturated 
carboxylic acids, with a chain of one to six carbons, and among these, Acetate, Propionate, and Butyrate 
are the most abundant SCFAs in the colon[78,79] in a molar ratio of 60:20:20, respectively, although this 
proportion is different along the large intestine[78,80]. The production of SCFAs is influenced by the 
composition of IM, the anatomical site of the GIT and by the diet, differing in the type and quantity 
produced according to different substrates[79,81].
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The fermentation of dietary fibers and the production of SCFAs is promoted by specific enzymes of 
IM microorganisms[82]. Under certain physiological conditions, the main SCFAs, namely the acetate, 
propionate and butyrate are produced by intestinal bacteria such as, for example, the Bacteroides spp., 
the Bifidobacterium spp. and the Faecalibacterium prausnitzii[83-85]. Acetate is produced from pyruvate via 
acetyl-CoA[83]. Propionate is produced via the succinate, acrylate, and propanediol pathways[84,86]. In 
turn, butyrate is produced from two molecules of acetyl-CoA, which are transformed into butyrate via 
phosphotransbutyrylase and butyrate kinase[85]. The butyryl-CoA:acetate CoA-transferase also leads to 
the production of butyrate, and some bacteria use acetate as a substrate for butyrate production[82].

In a dysbiosis condition, the composition and diversity of SCFA-producing microorganisms are 
altered[33,34]. A particular reduction in butyrate-producing bacteria such as Faecalibacterium prausnitzii 
is seen in patients with IBDs[87], as well as reduced levels of propionate acetate and butyrate in the 
feces of these patients [88,89].

Once produced, most SCFAs are absorbed by the colonocytes. This absorption can occur by passive 
diffusion, through an exchange with bicarbonate, and mainly through monocarboxylate transporters 
(MCTs), by active transport (Figure 1)[67]. There are several types of MCTs, with different affinities for 
different types of SCFAs, which transport the SCFAs to the intracellular environment, including in the 
CNS, liver, kidneys, heart, lungs, skeletal muscle, and defense cells[90-94].

Among the MCTs, MCT1 stands out, due to its ubiquitous feature, and the sodium- dependent MCT1 
(SMCT1), due to the greater amount in the large intestine. MCT1 has an affinity for Acetate, Propionate, 
and Butyrate is the main carrier responsible for the absorption of Butyrate, and transports SCFAs in a 
dependent way of H+ ions[67,92-94]. In turn, SMCT1 also has an affinity for Acetate, Propionate, and 
Butyrate, especially for Butyrate, and performs the transport in a sodium-dependent manner[95-97]. 
After being absorbed by the colonocytes at mitochondrial levels, SCFAs are converted into adenosine 
triphosphate (ATP), serving as an energy source for these cells (Figure 1)[69].

SCFAs that are not metabolized by the colonocytes, cross the basolateral membrane, and reach the 
portal circulation to the liver. In the liver, these SCFAs will serve as an energy source for hepatocytes 
and will participate in the synthesis of cholesterol and glucose[98,99]. A small amount of SCFAs, not 
metabolized by colonocytes and hepatocytes, actually reach the systemic circulation and have access to 
other organs (Figure 1)[67,100].

Shortchain fatty acid receptors
In addition to entering the intracellular environment, SCFAs can also bind to G-protein-coupled 
receptors. The main SCFAs receptors studied are GPR43 and GPR41, also known as free fatty acid 
receptor-2 (FFAR2) and free fatty acid receptor-3 (FFAR3), respectively[67,101]. They are trans-
membrane receptors, which recognize SCFAs, with different affinities for the different types of SCFAs, 
and promote signaling cascades mediated by G Protein (Figure 2)[12].

Both the GPR41 receptor and the GPR43 receptor are coupled to the G-protein subunit Gi, however 
only the GPR43 receptor is coupled to the Gq subunit[102,103]. Activation of GPR41 and GPR43 
receptors at Gi level promotes inhibition of cyclic adenosine monophosphate (cAMP) production and 
activation of extracellular signal-regulated kinases (ERK) cascade. In turn, GPR43 receptor activation 
through Gq promotes the elevation of calcium levels and activation of the mitogen-activated protein 
kinases (MAPKs) cascade[102-104]. The activation of these receptors is also capable of inhibiting the 
nuclear translocation of nuclear factor kappa B (NF-ΚB), altering the expression of certain proteins 
(Figure 2)[105].

GPR43 is expressed mainly in the colonic epithelium, enteroendocrine L-cells, and immune system 
cells[11,106]. In turn, GPR41 is expressed in the colon, kidneys, blood vessels, peripheral nervous 
system, and enteric nervous system (ENS)[107-109]. The activation of these receptors contributes to the 
maintenance of intestinal homeostasis and plays important roles in pathological conditions such as 
IBDs.

Effects of SCFAs on the ntestinal 
The intestinal barrier consists of simple cylindrical epithelial cells, mucus, immunoglobulins (Ig), and 
intercellular binding proteins such as tight junction proteins (Figure 3)[110,111]. The function of the 
intestinal barrier is to prevent the passage of pathogens, toxins, and other undesirable substances from 
the intestinal lumen into the paracellular space[110]. Tight junctions play an important role in the effect-
iveness of the intestinal barrier[112] by keeping epithelial cells well adhered to each other, and are 
composed of transmembrane proteins such as occludin, claudins, junctional adhesion molecules (JAM), 
and accessory cytoplasmic proteins such as zonulas occludens (ZOs)[113-115].

The occludins form a barrier mainly to macromolecules[116,117], while the claudins, particularly 
claudin-1, can maintain the intestinal barrier functionality even in the absence of other tight junctions
[113,118-120]. The JAM, a protein belonging to the Immunoglobulins (Ig) superfamily[121-123], is 
capable of forming homophilic interactions adjacent to tight junctions as well as interacting with 
integrins or other members of the JAM family[122,123], playing an important role in the constitution of 
the intestinal barrier[115,124,125]. The ZOs proteins, such as ZO-1, ZO-2, and ZO-3 are located in the 
cytoplasm[126,127] acting as an anchor for proteins by joining them to the cytoskeleton and, therefore, 
are key to maintaining the integrity of the intestinal barrier, mainly due to its relationship with the 
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Figure 1 Production and metabolism of shortchain fatty acids. Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota from the 
fermentation of dietary fibers. SCFAs are absorbed by colonocytes mainly through monocarboxylate transporter 1 (MCT1), sodium-dependent monocarboxylate 
transporter 1 (SMCT1) and passive diffusion. At intracellular levels, SCFAs are metabolized and converted into ATP that will serve as energy source for these cells. 
Unmetabolized SCFAs cross the basolateral membrane and reach the portal circulation. In the liver, SCFAs are used in the synthesis of cholesterol and glucose. Only 
a small amount of SCFAs not used by the liver reach the systemic circulation[221]. The authors have obtained the permission for figure using from the BioRender.com 
(Supplementary material).

claudins and the occludins[114,128].
A deregulated intestinal barrier is associated with IBDs. It is not known for sure if the corrupted 

intestinal barrier is the cause or consequence of these diseases, but there are reports that an increase in 
intestinal permeability is an antecedent to recurrence of CD[129,130], which provides evidence that the 
functionality of the intestinal barrier is linked to the development/manifestation of IBDs. Architectural 
and functional disorganizations of the intestinal barrier, mucus reduction, and changes in the expression 
of tight junctions are associated with IBDs[131-133]. In addition, the loss of intestinal barrier integrity 
exposes the mucosa to luminal microbial antigens, which trigger inflammatory responses, sometimes 
hyper-responsive, causing extra-intestinal manifestations[132,134].

In this context, Butyrate, more than others SCFAs, has shown an interesting increase in intestinal 
barrier function[135] and could represent a possible ally in the treatment of IBDs, regarding the integrity 
of the intestinal barrier. In vitro and in vivo studies using Butyrate as intervention reported increased 
Transepithelial Electrical Resistance, rapid structuring of the intestinal barrier, and increase of tight 
junctions proteins (Figure 3)[136,137].

Although most of the beneficial effects of SCFAs at the intestinal barrier are attributed to the butyrate, 
some studies have shown recently that the propionate is also able to improve the functionality of such 
barrier[138]. In an experimental model of UC, propionate was able to attenuate the decrease in the 
expression of tight junctions such as ZO-1 and occludin in the large intestine[139]. These SCFAs were 
also able to attenuate the intestinal barrier dysfunction induced in Caco-2 Cell monolayers, however, the 
amount of propionate needed in order to observe its effects on the intestinal barrier is greater than that 
of butyrate[140]. In addition, propionate also appears to influence the differentiation and proliferation 
of the intestinal epithelium[141].

The molecular mechanisms behind these effects are unclear, but there are reports that Butyrate is 
capable of promoting positive regulation in the expression of tight junctions proteins by activating 
AMP-activated protein kinase (AMPK), mediated by activation of receptors such as GPR41 and GPR43, 
reduction of the phosphorylation of the myosin light chain 2 (MLC2), increased phosphorylation of the 
protein kinase C β2 (PKCβ2) or by negative regulation of channel formers proteins, such as claudin-2
[137,142,143].

Another possible mechanism involved in the regulation of junction proteins by Butyrate may be 
associated with its ability to inhibit histone deacetylases[144,145]. When histones are deacetylated, that 
is, without acetyl groups, their conformation is more tangled which makes chromatin more condensed 
and promotes gene silencing[146,147]. On the other hand, when these histones are acetylated, there is a 
repulsion between these groups, so histone becomes more distant from each other, causing chromatin to 
become decondensed and, consequently, activate gene transcription (Figure 4)[148,149].

https://f6publishing.blob.core.windows.net/73bd43f4-60d8-463b-979e-03002e39d240/WJCC-10-9985-supplementary-material.pdf


Caetano MAF and Castelucci P. Potential therapeutic effects of SCFAs in IBDs

WJCC https://www.wjgnet.com 9990 October 6, 2022 Volume 10 Issue 28

Figure 2 Short-chain fatty receptors and intracellular signaling. Short-chain fatty acids (SCFAs) binds to G-protein coupled receptors such as GPR41 
and GPR43 receptors also known as free fatty acid receptors (FFAR) 3 and FFAR2, respectively. The activation of GPR41 and GPR43 receptors through Gi subunit 
promotes inhibition of adenylate cyclase which inhibit cyclic adenosine monophosphate (cAMP) that inhibit protein kinase A. GPR43 receptor activation through Gq 

subunit promotes activation of phospholipase C which activate inositol 1,4,5-trisphosphate (IP3) leading to the elevation of intracellular calcium levels. GPR43 
receptor activation through Gq subunit also promotes activation of phospholipase C which activate protein kinase C leading to activation of extracellular signal-
regulated kinase 1/2 (ERK1/2) cascade. The activation of these receptors inhibits translocation of nuclear factor kappa B (NF- ΚB), altering the expression of certain 
proteins, promotes an increase in the release of gut hormones such as Peptide YY (PYY) and Glucagon-like peptide 1 (GLP-1), increase intestinal barrier integrity 
and Transepithelial Electrical Resistance (TEER), reduce pro-inflammatory markers levels, and increase anti-inflammatory markers levels. The authors have obtained 
the permission for figure using from the BioRender.com (Supplementary material).

The removal of acetyl groups is done by the histone deacetylases enzymes[146,150]. Inhibition of 
these enzymes can occur directly, through intracellular SCFAs, which entered through MCTs or SMCTs, 
or indirectly, through the activation of SCFAs receptors[52]. On the other hand, Butyrate also increases 
the activity of histone acetylase enzymes, which promote the acetylation of histone[60].

Another effect of SCFAs, mainly Butyrate and Acetate, on the intestinal barrier is related to increased 
mucus production, which acts as a lubricant and physical barrier against microorganisms, toxins, and 
acidity resulting from the digestion process[111,151]. Studies with mice have reported that Butyrate is 
capable of stimulating the production of mucin and affected the expression of the mucus-producing 
gene, MUC-2[152,153]. In this sense, molecules, such as Butyrate, that can strengthen the intestinal 
barrier or recover its functionality in IBDs seem to be an interesting therapeutic strategy to avoid the 
development/recurrence of these diseases.

Effects of SCFAs on Intestinal Inflammation
SCFAs, especially Butyrate, also play anti-inflammatory roles[154,155]. Studies have reported that 
Butyrate is capable of promoting a reduction in pro-inflammatory cytokines such as interleukin (IL)-8, 
IL-6, IL-12 and tumor necrosis factor (TNF)-α and an increase in the production of anti-inflammatory 
cytokines such as IL-10[60] and IL-18, which is important for the maintenance of intestinal barrier 
epithelium[156]. It is believed that the anti-inflammatory effects of Butyrate are related due to its ability 
to inhibit the signaling pathway of NF-κβ and Histone Deacetylases[157-159], reducing macrophage 
activation, oxidative stress, recruitment of inflammatory cells, and consequently intestinal inflammation
[145,160,161].

In addition, SCFAs also influences the differentiation, maturation, and activation of immune system 
cells such as macrophages, dendritic cells, and lymphocytes[60,162], and this influence can be mediated 
by activation of GPR43 receptors that are present in immune system cells[67,104,106]. In synergy with 

https://f6publishing.blob.core.windows.net/73bd43f4-60d8-463b-979e-03002e39d240/WJCC-10-9985-supplementary-material.pdf
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Figure 3 Intestinal barrier constitution and short-chain fatty acids effects. The intestinal barrier is composed by simple cylindrical epithelial cells, 
mucus, microbiota, immunoglobulins A (IgA), antimicrobial proteins, and intercellular binding proteins such as tight junction proteins. Tight junctions play an important 
role in the integrity of the intestinal barrier by keeping epithelial cells well adhered to each other, and are composed of transmembrane proteins such as Claudins, 
Occludin, Junctional adhesion molecules (JAM), and accessory cytoplasmic proteins such as Zonulas Occludens (ZOs). Claudin-1 pairs with other Claudin-1 Loops of 
the adjacent cell, decreasing paracellular permeability. Like Claudin-1, Occludin pairs with other Occludin loops of the adjacent cell forming a barrier mainly to 
macromolecules. JAM-A belongs to immunoglobulins superfamily and can form homophilic interactions adjacent to tight junctions and interacting with integrins or 
other members of the JAM family. ZO-1 are located on the cytoplasm and perform the anchorage of proteins joining them to the cytoskeleton through actin filaments. 
Short-chain fatty acids (SCFAs), mainly Butyrate, are capable of increase Claudin-1, Occludin, JAM, ZO proteins and increase mucus secretion by goblet cells.  The 
authors have obtained the permission for figure using from the BioRender.com (Supplementary material).

its anti-inflammatory effects, Butyrate also has antioxidant effects indicated by the increase of 
antioxidant enzymes such as catalase and superoxide dismutase-2 and by the reduction of uric acid, 
glutathione, and IL-β levels[163,164].

In animal models, Butyrate, by inhibiting Histone Deacetylase-1, was able to maintain a balance 
between Th17 lymphocytes (auxiliary T lymphocytes) and Treg lymphocytes (regulatory T lym-
phocytes) and to exert anti-inflammatory effects by inhibiting IL-6, signal transducer, and activator of 
transcription 3 (STAT-3) and IL-17[165]. In addition, in a double-blind, placebo-controlled study with 
patients with IBDs, Butyrate considerably reduced fecal calprotectin levels in patients with UC[166].

In experimental Colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), treatment with Sodium 
Butyrate was able to improve intestinal inflammation, reduce histological injury scores, promote 
significant recovery of animal weight, and increase IL-10 levels[167]. In dextran sulfate sodium (DSS)-
induced colitis, pretreatment with Sodium Butyrate was able to prevent weight loss of animals, recover 
colon shortening caused by colitis, reduce intestinal mucosa lesions, attenuate the production of pro-
inflammatory cytokines such as IL-6 and TNF-α and increase IL-10 levels[160].

Still in a DSS-induced colitis model, the propionate was able to inhibit the expression of pro-inflam-
matory markers such as IL-6, IL-1β and TNF-α in the colon[139]. Moreover, the propionate is also 
capable of modulating the activation of immune system cells and reducing the levels of reactive oxygen 
species in the tissues[168,169].

Although many anti-inflammatory and antioxidant effects of SCFAs, most notably Butyrate, have 
been described in the literature, the mechanisms involved in these effects remain unclear. However, 
these properties have attracted the attention of the scientific community, as these metabolites could be 
configured as therapeutic tools in the prevention of recurrences and/or as adjuvants in the treatment of 
active IBDs.

https://f6publishing.blob.core.windows.net/73bd43f4-60d8-463b-979e-03002e39d240/WJCC-10-9985-supplementary-material.pdf
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Figure 4 Histone modifications and short-chain fatty acids influence. Histones are proteins that interacts with DNA and play an important role in 
organizing the double strand. When histones contain acetyl (Ac) groups they become acetylated and there is a repulsion between these groups, so histone becomes 
more distant from each other, causing chromatin to become decondensed and, consequently, more accessible which activate transcription. Otherwise, when histones 
are deacetylated, without Ac groups, DNA becomes more tangled which makes chromatin more condensed and promotes gene silencing. Histone Deacetylases 
(HDAC) are enzymes that remove Ac groups from Histones making them deacetylated. Otherwise, Histone Acetylases (HAT) are enzymes that insert Ac groups in 
Histones making them acetylated. Short-chain fatty acids (SCFAs), mainly Butyrate, inhibit HDAC and increase HAT activity. The authors have obtained the 
permission for figure using from the BioRender.com (Supplementary material).

Effects of SCFAs on the Enteric Nervous System
The GIT has an extensive intrinsic nervous system called the ENS, which consists of an interconnected 
network of neurons, axons, and enteric glial cells[170]. The ENS can even isolated from the CNS, control 
several functions[171] such as intestinal motility, regulation of blood flow, regulation of fluids through 
the mucosa, secretion of digestive substances and intestinal hormones, and communication with the 
immune system[170,172].

The ENS has two plexus: the myenteric plexus (Auerbach’s plexus) and the submucosal plexus 
(Meissner plexus)[170,173]. The myenteric plexus is located, throughout the digestive system, between 
the outer longitudinal muscle layer and the circular muscle layer and is mainly responsible for intestinal 
motility[170,173]. The submucosal plexus is located between the circular muscle layer and the 
muscularis mucosae layer of the small and large intestines and its function is related to the control of 
intestinal secretions and blood flow of the mucosa[170].

In IBDs, even in mild cases, promotes changes in neurons and nerve endings of the ENS, as well as in 
the patterns of motility and secretion of the intestine[172]. These changes may persist even after the 
resolution of inflammation in the intestine, as it generates prolonged hyperexcitability of enteric 
neurons, persisting symptoms such as cramps, abdominal pain, and diarrhea[174].

Studies with experimental models have shown that intestinal inflammation causes changes in the 
number and size of enteric ganglia, glia, and neurons in addition to degeneration, necrosis, and 
neuronal apoptosis[174-177] In addition to morphological changes, colitis also promotes changes in the 
expression of neurotransmitters and their receptors, consequently altering the chemical code of neurons
[178,179].

It is known that enteric neurons have GPR41 receptors and are responsive to SCFAs[180]. Studies 
have reported that Butyrate also has effects on ENS[181] and is capable of causing increased excitatory 
motor neurons, increased intestinal motility and contractile response induced by electrical stimulus
[182]. However, the way the interaction of SCFAs with ENS occurs in the face of intestinal inflammation 
and how it interferes in the different neuronal classes, enteric glial cells, in the expression of SCFAs 
receptors, and the neurochemical dynamics is not yet clarified[183].

The results so far available in the literature encourage further investigations on the effects of SCFAs 
on enteric neurons, once ENS exerts a remarkable influence on homeostasis and intestinal functionality 
and the beneficial effects of SCFAs could recover/prevent changes in ENS due to IBDs and other 

https://f6publishing.blob.core.windows.net/73bd43f4-60d8-463b-979e-03002e39d240/WJCC-10-9985-supplementary-material.pdf
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intestinal diseases.

MODULATION OF SCFAs PRODUCTION AND FUTURE PROSPECTS
The production of SCFAs depends mainly on two major variables: the characteristic of IM and the 
supply of substrates used by microorganisms. For SCFAs production, there must be a healthy IM rich in 
fermenting microorganisms[184]. The logic behind the modulation of SCFAs production involves two 
pathways: increase of living beneficial microorganisms (probiotics) and increase of substrates used by 
microorganisms (prebiotics), giving the host health benefits[185,186].

In this context, the production of SCFAS, such as Butyrate, for example, can be increased through the 
use of probiotics with butyrogenic microorganisms, that is, capable of producing Butyrate or by the use 
of prebiotics, such as fibers and complex starches, which acts as energetic substrates for microor-
ganisms, increasing the proliferation of IM microorganisms and the production of SCFAs[82,187,188].

In other words, a person’s diet exerts a strong influence on the composition of their IM and, 
consequently, on the modulation of the SCFAs production[187,189]. A plant-based diet, such as the 
Mediterranean diet, tends to increase the source of dietary fiber and, consequently, the production of 
SCFAs[190-192]. On the other hand, a diet low in vegetables and rich in meats, sugars or saturated fats, 
such as the Western diet, not only alters the IM profile, but reduces the availability of fiber and, 
consequently, the production of SCFAs[193,194]. In this sense, the association between the use of 
probiotics, prebiotics and a Mediterranean-like diet optimizes the production of SCFAs in the intestine
[184,190,195,196].

Many animal models of IBDs seek to identify a possible effectiveness of the use of probiotics as a 
treatment for this disease[197]. In the TNBS-induced UC models, the microorganisms Bifidobacterium 
infantis and Bifidobacterium bifidum demonstrated beneficial effects in animals by attenuating the clinical 
manifestations of UC, promoting a greater preservation of the mucus layer and a reduction of pro-
inflammatory cytokines such as the IL-10 and the IL-1β in the intestine[198,199]. In the DSS-induced UC 
model, the microorganisms Bifidobacterium longum subsp. infantis BB-02 and the Bifidobacterium animalis 
subsp. lactis BB12 also demonstrated to have a positive influence on the clinical, histological and inflam-
matory manifestations of this disorder[200,201]. Ultimately, a reduction of potentially pathogenic 
microorganisms was observed after the administration of Bifidobacterium lactis[202]. The improvement of 
the results observed with the administration of these probiotics may be related to an increase in the 
production of the SCFAs[203].

As for the clinical studies, the effectiveness of using probiotics in patients with IBDs is controversial
[204]. The Bifidobacterium bifidum, Lactobacillus acidophilus, Escherichia coli Nissle1917 and Bifidobacterium 
breve appear to exert favorable effects on UC remission [205-207]. In addition, the use of the referred 
probiotics caused an increase of butyrate and propionate levels in the subject’s fecal matter[207]. The 
combination of some microorganisms has also been used in clinical studies. This is the case of VSL#3, 
consisting essentially of 8 strains of microorganisms: Lactobacillus paracasei, Lactobacillus plantarum, 
Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Bifidobacterium longum, Bifidobacterium 
breve, Bifidobacterium infantis and Streptococcus thermophilus[208]. Patients with UC who used VSL#3 
showed a clinical improvement, with a reduction in fecal bleeding as well as a decrease in the frequency 
of stool evacuation[209,210]. These findings do not appear to be applicable to CD[211]. It is important to 
mention that VSL#3 microorganisms are producers of SCFAs and this may be related to the 
improvements observed with the use of this probiotic for UC[203]. Pathophysiological differences 
between CD and UC, the great abundance of probiotics studied and the difficulty in obtaining a 
standardized sample population are some of the limitations of studies involving the use of probiotics 
and prebiotics in IBDs[48].

Another approach studied for the modulation of SCFAs production and for the treatment of IBDs is 
the Fecal Microbiota Transplantation (FMT)[212]. FMT is able to change the composition of the 
recipient’s IM, in order to reduce the proliferation of potentially pathogenic microorganisms and 
increase the production of SCFAs, especially butyrate[213-215]. Furthermore, fecal levels of Eubacterium 
and Lactobacillus spp. increased after the FMT, which are producers of Butyrate[213,216,217]. Although 
FMT is classically studied for the treatment of Clostridium difficile infection, several studies have 
observed that FMT has proven to be an effective, safe, and promising alternative to the treatment of 
IBDs, including UC and CD[212,218-220].

CONCLUSION
This review approached the main points about SCFAs, its main characteristics and contributions for gut 
health and potential benefits related to IBDs. In this context, this review encourages further studies on 
SCFAs, reinforces the importance of IM and healthy eating habits for the maintenance of intestinal 
health.
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