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Alzheimer’s disease large‑scale 
gene expression portrait identifies 
exercise as the top theoretical 
treatment
Mason A. Hill & Stephen C. Gammie*

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that affects multiple brain 
regions and is difficult to treat. In this study we used 22 AD large-scale gene expression datasets to 
identify a consistent underlying portrait of AD gene expression across multiple brain regions. Then 
we used the portrait as a platform for identifying treatments that could reverse AD dysregulated 
expression patterns. Enrichment of dysregulated AD genes included multiple processes, ranging 
from cell adhesion to CNS development. The three most dysregulated genes in the AD portrait were 
the inositol trisphosphate kinase, ITPKB (upregulated), the astrocyte specific intermediate filament 
protein, GFAP (upregulated), and the rho GTPase, RHOQ (upregulated). 41 of the top AD dysregulated 
genes were also identified in a recent human AD GWAS study, including PNOC, C4B, and BCL11A. 
42 transcription factors were identified that were both dysregulated in AD and that in turn affect 
expression of other AD dysregulated genes. Male and female AD portraits were highly congruent. 
Out of over 250 treatments, three datasets for exercise or activity were identified as the top three 
theoretical treatments for AD via reversal of large-scale gene expression patterns. Exercise reversed 
expression patterns of hundreds of AD genes across multiple categories, including cytoskeleton, blood 
vessel development, mitochondrion, and interferon-stimulated related genes. Exercise also ranked 
as the best treatment across a majority of individual region-specific AD datasets and meta-analysis 
AD datasets. Fluoxetine also scored well and a theoretical combination of fluoxetine and exercise 
reversed 549 AD genes. Other positive treatments included curcumin. Comparisons of the AD portrait 
to a recent depression portrait revealed a high congruence of downregulated genes in both. Together, 
the AD portrait provides a new platform for understanding AD and identifying potential treatments for 
AD.

Alzheimer’s disease (AD) is the most common disease that causes dementia and can include the formation of 
neurofibrillary tangles of Tau proteins, accumulation of beta-amyloid plaques in major hubs of the brain, and 
cortical atrophy1. AD is a complex disorder that involves dysregulated expression of thousands of genes across 
multiple brain regions2 and is difficult to treat3. Large scale gene expression studies of post-mortem human AD 
and control brains have provided unique insights as these offer specific information on how gene expression 
patterns across ~ 20,000 protein coding genes are altered and in which directions in association with AD2,4–7. 
While a given brain region has a unique gene expression profile as do individual cells, common patterns of dys-
regulation across brain regions can be expected given similar pathologies are found across the CNS with AD1. 
Evaluation of common cross CNS dysregulation patterns is useful because it can identify a consistent signature 
of the disorder. Further, treatments or drugs can have a common signature of expression changes across regions. 
This study used signature matching within a drug repurposing framework where the goal is to find treatments 
that reverse expression patterns in a disorder8–10. This approach has been used successfully to identify new 
treatments for various disorders11–13, but a caveat is that for a given disorder it is not known whether expression 
reversal would lead to a treatment and the approach here is meant to be exploratory. In recent work, we created 
a portrait of depression that identified consistent patterns of dysregulated gene expression across regions and 
also evaluated how different treatments could reverse that pattern at the large-scale gene expression level14. In 
the present study, we use the same approach and include 22 datasets that were derived from 67 publicly available 
human AD gene expression datasets to create a gene expression portrait of AD that captures consistent patterns 
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of gene expression dysregulation across brain regions. We also create separate AD portraits for men and for 
women to investigate possible differences in gene expression.

We first evaluate the expression portraits using enrichment analysis and explore the similarities and differ-
ences between the male and female AD portraits. We also evaluate the portrait with results from a recent AD 
GWAS study15 and identify dysregulated AD transcription factors that in turn affect transcription of other AD 
genes. We then use drug repurposing approaches to evaluate the AD portrait as well as the male and female AD 
portraits with over 250 potential treatment datasets. These include datasets for various drugs, each of which is 
also derived from large scale gene expression analysis of the CNS. Among the datasets are those for activity from 
humans that had been used previously to identify exercise as a possible AD treatment16 and for wheel-running 
from rodents. We also create a composite of exercise actions on the CNS from 11 human and rodent datasets and 
use this in analyses. Exercise was a focus of interest given multiple recent studies identifying the beneficial effects 
of exercise for mitigating AD-related deficits and how that may occur16–20. Together, we use multiple approaches, 
including hypergeometric analysis, heatmaps, and Uniform Manifold Approximation and Projection (UMAP)21 
to identify the top theoretical treatments for reversing AD dysregulated gene expression patterns. The analysis 
also allows us to identify potential problematic treatments that may exacerbate AD gene expression patterns.

We compared the AD portrait approach described here with a portrait created using identical datasets and the 
MetaVolcano approach and with three other recent studies of AD using a meta-analysis approach22–24. Further, 
we compared the different meta-analysis datasets with each of the treatments. Given that there may be treatment 
effects that are region specific, we also compared 25 AD datasets that represent a range of CNS regions with each 
of the treatments. As a final step, we also compared the AD portrait with the previously published depression 
portrait14 to explore possible congruence between the disorders. Together, the goal of this study was to create 
a portrait of AD that identifies common dysregulated gene expression patterns in AD which may provide new 
insights into the disorder and to use the portrait in an exploratory manner for identifying how potential treat-
ments, such as exercise, may affect AD at the specific gene expression level.

Results
Analysis of genetic findings in the portraits of AD.  The top 1000 dysregulated genes in the AD por-
trait included 471 upregulated and 529 downregulated genes. The top dysregulated genes were the inositol-
trisphosphate kinase, ITPKB (upregulated), the astrocyte-specific gene, GFAP (upregulated), the Rho GTPase 
gene, RHOQ (upregulated), the transcriptional repressor, NACC2 (upregulated), and the dystrophin-related 
gene DNTA (upregulated). In terms of common neurotransmitter systems and their receptors, the neuropep-
tides CRH, SST, PNOC, and VIP were all downregulated. Similarly, the enzymes involved in GABA synthesis, 
GAD1 and GAD2, were downregulated. The GABA receptors GABBR2, GABRA1, GABRB3, GABRG2 were 
downregulated. The glutamate receptors, GRIK1 and GRIK2 were also downregulated as was the SST receptor, 
SSTR1. The full list of the AD portrait with a ranking of all genes from most to least dysregulated with AD along 
with information on direction of expression change (up in AD = positive sign, down in AD = negative sign) is 
provided in Supplementary File 1.

Enrichment analysis (Toppcluster) of the top 1000 AD genes indicated enrichment for cell adhesion molecule 
binding, transporter activity, cytoskeletal protein binding, calmodulin binding, and actin binding. Additional 
enrichment was found for response to peptide hormone, protein localization to synapse, learning or memory, 
central nervous system development, cellular response to oxygen-containing compound, membrane fusion, 
trans-synaptic signaling, cell junction, protein phosphorylation, circulatory system development, regulation of 
programmed cell death, and mitochondrial membrane. BioPlanet2019 (within Enrichr) analysis also highlighted 
enrichment for BDNF signaling and MAPK signaling pathway. The BDNF gene that is part of both pathways is 
downregulated in AD. Supplementary File 1 provides enrichment analysis for ToppCluster and BioPlanet2019 
(within Enrichr).

When comparing 642 GWAS genes associated with AD from a recent study25 to the top 1000 portrait genes, 
41 common genes were identified and hypergeometric overlap of these two lists was significant (p < 0.0001). 
Some of the genes of interest included the neuropeptide, PNOC, the immune related gene, C4B (upregulated 
and also the 14th most dysregulated AD gene), the transcription factor, BCL11A (downregulated and also the 
20th most dysregulated gene), and additional genes previously linked with AD, including ANK3, MS4A6A, 
AGFG2, CYC1, HLA-DRA, MEG3, MT2A, NCALD, NEU1, PSMC3, SERPINB6, and SPARC (see full list in 
Supplementary File 1).

The protein interaction tool, STRING, was used to identify the portrait genes with the highest level of interac-
tion with one another as this could provide insight into synergistic effects of altered expression (Fig. 1). Among 
the top connected genes were: ACTB, GAPDH, EGRF, SNAP25, STAT3, CYCS, SNCA, ACTG1, and BDNF. A 
subset of the portrait genes that were also in the AD GWAS study were also plotted and among these, ATP6V1G2, 
PSMC3, RTN1, NCALD, SPARC, ANK3, and SCRIB showed a high level of interaction with other genes (Fig. 1). 
When evaluating the top 5 dysregulated portrait genes, only GFAP was highly connected (Fig. 1). Enrichment 
for the plotted genes included: mitochondrion, cell junction, immune system, actin cytoskeleton, regulation of 
phosphorylation, and KEGG pathway AD genes, which included SNCA, GAPDH, and CYCS.

Using multiple transcription factor tools within EnrichR, 42 transcription factors were identified that were 
both within the top 1000 dysregulated AD genes and modify transcription of other AD dysregulated genes (top 
1000 up and 1000 down) (Supplementary File 1). STAT3, SOX9, ELK1, and SOX2 were among the transcription 
factors with the highest level of evidence for altering other AD genes based on Enrichr matching using multiple 
datasets. Other transcription factors of interest included PAWR, GLIS3, AFF1, TCF3, FOXO1, BCL6, CEBPD, 
YAP1, RXRA, NFKB1, and NEUROD6 as these have previously been linked to AD, as detailed in the Discussion. 
Transcription factors altered in AD that in turn affect expression of other AD genes could have a large impact 
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in the development of AD. Analysis of the 42 transcription factors indicated enrichment for nervous system 
development, cellular response to cytokine signaling, response to oxygen containing compounds, regulation of 
cell death, and signaling by interleukins.

When comparing the female and male AD portraits, there was a remarkably high congruence. 571 of the top 
1000 upregulated genes in both were the same (hypergeometric p value = 0) and 570 of the top 1000 downregu-
lated genes in both were the same (hypergeometric p value = 0). Further, not one gene was found to be ranked 
in the top 1000 in the opposite direction for the two groups (e.g., up in males, down in females). An RRHO heat 
map shows that the level of congruence between men and women with AD extends beyond the top 1000 genes 
(Fig. 2). In order to explore more subtle differences in AD between men and women, genes found in the top 500 
in one group, but not in the top 1000 in the other were identified and then analyzed with STRING to identify top 
interacting genes. In females with AD, highly interacting genes included GAPDH, CYCS, SOX2, and PHGDH, 
while in males with AD the highly interacting genes included TLR2, ITGB2, NFKB1, and CD53.

Analysis of AD portraits with treatments at the large‑scale gene expression level.  The AD 
portraits were used with drug repurposing approaches to evaluate potential treatments. The approach was to 
identify treatments that reverse large-scale gene expression dysregulation in AD, but do not worsen or push AD 
patterns in the same direction. Most treatment studies were from rodents. For the AD portrait, the top three 
scoring treatments for reversing AD expression with little effect on exacerbating AD expression were for exer-
cise. A human CNS study comparing individuals with high versus low or high versus medium lifetime activity16 
were the first and third top matches, respectively. An exercise composite that combined results from 11 exercise 

Figure 1.   Top connected genes in AD portrait. Genes with the highest levels of protein–protein interaction 
(determined via STRING15) from the top 1000 dysregulated genes in AD portrait are plotted in Cystoscape109. 
Interactions are highlighted by lines. AD upregulated genes are shown in red and AD downregulated genes 
are show in blue. Increased size of font for gene symbol reflects higher number of connections between genes. 
GAPDH and ACTB were the two genes with the most connections. Also plotted are a subset of AD portrait 
genes also identified in a recent GWAS analysis of AD (shown with an asterisk). Steps for identifying top 
interacting genes are provided in the “Methods” section.
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datasets, including those from human and rodents, was the second ranked treatment. In the top 25 were also two 
datasets examining exercise effects on the CNS in mice. Table 1 provides the top 25 treatments for each of the 
AD portraits. The full list of treatments along with their scores for reversing AD gene expression patterns for the 
three portraits (combined, female, and male) is provided in Supplementary File 2. The antidepressant, fluoxetine, 
ranked fourth and a composite of fluoxetine that included results from 13 fluoxetine treatment datasets ranked 
13th. In the top 25, there were four fluoxetine datasets plus the fluoxetine composite. Curcumin, the plant chem-
ical from Turmeric, was ranked fifth. Also in the top ten were desipramine and D-serine. Safflower oil (compared 
with flaxseed oil) in a high fat diet was the 6th highest treatment. The stimulant, cocaine, had three matches in 
the top 25. All three portraits had the same exercise dataset as the top ranked treatment and the exercise compos-
ite ranked third in both the female and male AD portraits. Overall, the ranking of treatments was similar for the 
three portraits, although in males, curcumin was the second highest ranked treatment (File 1, Supplementary 
File 2). In female and male AD portraits, the fluoxetine composite ranked 11th and 12th, respectively.

The top ranked exercise dataset and the exercise composite were used to explore how exercise reversed AD 
gene expression patterns. The potential ability of exercise to reverse AD patterns was striking. For the top treat-
ment, out of 1000 downregulated genes in AD, exercise reversed 225 (hypergeometric p value < 10–74) and out of 
1000 upregulated AD genes, exercise reversed 184 (hypergeometric p value < 10–48). For the exercise composite 
out of 1000 downregulated genes in AD, exercise reversed 171 (hypergeometric p value < 10–23) and out of 1000 
upregulated AD genes, exercise reversed 173 (hypergeometric p value < 10–33). Remarkably, very few genes moved 
in the same direction as in AD. For first and second ranked exercise treatments, only 20 and 45 AD genes moved 
in the same direction, respectively. Top cluster enrichment analyses of the 409 reversed AD genes by the top 
exercise treatment are shown in Supplementary File 2 and include: cell adhesion molecule binding, cytoskeletal 
protein binding, blood vessel morphogenesis, circulatory system development, blood vessel development, and 
neuron projection morphogenesis. One PubMed enrichment was for a protein-interaction network that interacts 
with interferon-stimulated genes. BioPlanet 2019 enrichment also highlighted N-cadherin signaling and neuro-
trophin signaling. For the exercise composite, Toppcluster enrichment analyses of the 344 reversed AD genes are 
shown in Supplementary File 2 and include: transcription factor binding, actin binding, synapse organization, 
cell junction organization, and brain development. PubMed enrichment for a protein-interaction network that 
interacts with interferon-stimulated genes was also found. BioPlanet 2019 enrichment also highlighted BDNF 
signaling pathway. The exercise composite is provided in Supplementary File 2.

STRING analysis of the 409 AD genes reversed by the top exercise dataset indicated a group of 82 genes with 
high interactions with one another and these are plotted in Cytoscape (Fig. 3A). Among the most connected 
genes were: CDC42, STAT3, NOTCH1, YWHAZ, SNCA, MAPK8, and ABL1. Enrichment for the highly con-
nected genes included blood vessel development, PI3K-Akt signaling, and AD KEGG pathway. Genes related 
to blood vessel development that are dysregulated in AD and reversed by exercise are shown in Fig. 3B. For the 

Figure 2.   High congruence of male and female AD portraits. RRHO heat map111 is shown for comparisons of 
the male AD portrait (Y axis) and the female AD portait (X axis). Color is − log transformed hypergeometric p 
value showing the strength of the overlap as positive or negative enrichment. There is a high level of similarity 
in downregulated genes in both male and female AD datasets (red in upper right quadrant; see arrow) and in 
upregulated genes in both datasets (red in lower left hand quadrant; see arrow). All genes are used in RRHO 
analysis and upregulated genes are shown in red and downregulated genes shown in blue in the axis for each 
comparison.
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exercise composite, reversal of genes upregulated in AD are shown in Fig. 4 and reversal of genes downregulated 
in AD are shown in Fig. 5. For reversed upregulated AD genes enrichment was found for nervous system devel-
opment, interferon-stimulated related, transcription, cytoskeleton, and cytokine signaling (Fig. 4). For reversed 
downregulated AD genes enrichment was found for KEGG AD pathway, cytoskeleton, mitochondrion, trans-
port, synapse, and nervous system development (Fig. 5). AD KEGG genes included: SNCA, GRIN2A, PSEN2, 
and MAPK9. ITPKB, the top dysregulated gene in the AD portrait, was reversed by the exercise composite as 
were five other top 20 AD dysregulated genes: ITGB5, PALLD, YWHAZ, TNS1, and BCL11A. BDNF is down-
regulated in AD, but upregulated by exercise. A list of AD genes reversed by exercise and that are moved in the 
same direction for the exercise composite and the top human and rodent exercise dataset and are provided in 
Supplementary File 2. A Rank Rank Hypergeometric Overlap (RRHO) heatmap reflects the reversal of exercise 
on up and down dysregulated genes in AD and this extends beyond the top 1000 upregulated and 1000 down-
regulated genes (Figs. 4, 5).

For the fluoxetine composite (from 13 datasets), out of 1000 downregulated genes in AD, fluoxetine reversed 
149 (hypergeometric p value < 10–22) and out of 1000 upregulated AD genes, fluoxetine reversed 100 (hyper-
geometric p value < 10–05). Of the 249 reversed genes, highly interactive proteins were identified in STRING 
and plotted in Cytoscape (Fig. 6). Top interacting genes reversed by fluoxetine included BDNF, SYN1, VAMP2, 
GAD2, STX1A, STXBP1, and HDAC1. Enrichment included nervous system development, response to stress, 
KEGG AD pathway, MAP kinase signaling, and synapse. When examining AD genes reversed by both fluoxetine 
and exercise composites, 44 genes were common, including BDNF. In a theoretical combining of fluoxetine and 
exercise, 549 AD genes would be reversed.

The scoring and ranking approach allowed for identification of treatments that could worsen AD and the 
top two datasets were from human CNS tissue and related to alcohol abuse (Supplementary File 2), suggesting 
alcohol at certain levels could be a risk factor for AD.

UMAP incorporates the complex landscape of multidimensional features, such as gene expression, and was 
used as an alternative approach to gain insights into which treatments may best reverse AD expression patterns. 
The sign for the AD portrait was reversed so that treatments that better reverse gene expression in AD will be 
plotted spatially closer to the reversed AD portrait. As shown in Fig. 7, when examining almost 6000 genes at 
once, exercise datasets, including the exercise composite, were most closely plotted with AD when using two 

Table 1.   Listing of the top 25 treatments for the AD portrait, the female AD portrait, and the male AD 
portrait. Additional details, including species, sex, and tissue source are provided in Supplementary Table S2. 
c* composite, corticost. Corticosterone, amphet. amphetamine, methamph. methamphetamine, dexameth. 
dexamethasone.

Rank GEO #

AD portrait

GEO #

Female AD

GEO #

Male AD

Treatment Score Treatment Score Treatment Score

1 GSE110298 Exercise 121.46 GSE110298 Exercise 122.13 GSE110298 Exercise 81.63

2 11 Datasets Exercise c* 68.70 GSE110298 Exercise 70.44 GSE33137 Curcumin 55.71

3 GSE110298 Exercise 63.05 11 Datasets Exercise c* 70.06 11 datasets Exercise c* 49.67

4 GSE84185 Fluoxetine 50.84 GSE10748 D-serine 52.07 GSE110298 Exercise 40.86

5 GSE33137 Curcumin 46.17 GSE10748 D-serine 51.46 GSE85936 Cocaine 37.49

6 GSE104338 Safflower oil 42.86 GSE27532 Desipramine 46.66 GSE84185 Fluoxetine 37.21

7 GSE27532 Desipramine 42.81 GSE104338 Safflower oil 40.77 GSE27532 Desipramine 35.84

8 GSE10748 D-serine 40.57 GSE84185 Fluoxetine 38.56 GSE10748 D-serine 25.55

9 GSE10748 D-serine 40.27 GSE33137 Curcumin 35.89 GSE74677 Chlorpyrifos 23.62

10 GSE84185 Fluoxetine 32.96 GSE7955 Permethrin 33.28 GSE10748 D-serine 23.03

11 GSE7955 Permethrin 31.24 13 Datasets Fluoxetine c* 31.17 GSE104338 Safflower oil 22.37

12 GSE84185 Fluoxetine 28.62 GSE84185 Fluoxetine 31.09 13 Datasets Fluoxetine c* 22.02

13 13 Datasets Fluoxetine c* 27.14 GSE29075 Exercise 27.85 GSE84185 Fluoxetine 20.49

14 GSE29075 Exercise 26.77 GSE99349 Cocaine 23.13 GSE7955 Deltamethrin 20.11

15 GSE99349 Cocaine 25.93 GSE10748 D-serine 21.37 GSE7955 Permethrin 19.53

16 GSE85936 Cocaine 25.13 GSE84185 Fluoxetine 19.85 GSE99349 Cocaine 18.57

17 GSE64607 Exercise 24.95 GSE43748 Amphet. 19.76 GSE84185 Fluoxetine 18.50

18 GSE43748 Amphet. 24.49 GSE84185 Fluoxetine 18.69 GSE29075 Exercise 17.54

19 GSE74677 Chlorpyrifos 23.89 GSE7955 Deltamethrin 18.41 GSE64607 Exercise 17.29

20 GSE84185 Fluoxetine 22.25 GSE74677 Chlorpyrifos 18.21 GSE27532 Desipramine 16.63

21 GSE88736 Cocaine 20.89 GSE27532 Desipramine 17.68 GSE88736 Cocaine 15.82

22 GSE7955 Deltamethrin 20.82 GSE46717 Methamph. 16.70 GSE67755 Haloperidol 15.58

23 GSE10748 D-serine 18.06 GSE88736 Cocaine 16.58 GSE39980 Zonisamide 14.93

24 GSE81672 Imipramine 17.46 GSE64607 Exercise 16.50 GSE117758 Dexameth. 14.93

25 GSE27532 Desipramine 16.52 GSE9798 Corticost. 16.47 GSE81672 Imipramine 14.40
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Figure 3.   AD dysregulated genes reversed by exercise (human dataset). (A) Genes with the highest levels of protein–protein 
interaction (determined via STRING15) from the 409 AD genes reversed by exercise (top treatment; human high versus 
low activity) are plotted in Cytoscape109. Increased size of font for gene symbol reflects higher number of connections 
between genes. CDC42, STAT3, NOTCH1, SNCA, YWHAZ, and MAPK8 were among the genes with the most connections. 
Interactions are highlighted by lines. (B) Blood vessel development genes were enriched within the AD genes reversed by 
exercise and are plotted in STRING15. Connections between proteins are shown by lines and color of line indicates type 
of evidence: light blue (known interactions from curated databases); pink (known interactions that are experimentally 
determined); green (predicted interactions from gene neighborhood); red (predicted interactions from gene fusions); 
blue (predicted interactions from gene co-occurrence); light green (text mining); black (co-expression); and gray (protein 
homology). AD upregulated genes downregulated by exercise are shown in red and AD downregulated genes upregulated by 
exercise are shown in blue for both (A,B).
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different settings. Fluoxetine datasets, including the fluoxetine composite, clustered to together and were separate 
from other treatments, but were not as closely plotted to the portrait as was exercise.

Figure 4.   Genes upregulated in AD and downregulated with exercise composite. The 173 genes upregulated 
with AD and reversed by the exercise composite are plotted in STRING15. Lines between genes indicates 
connections and width of line reflects strength of evidence. Enrichment was found for: nervous system 
development (purple); transcription regulation (red); cytoskeleton (blue); cytokine signaling (green); and 
interferon-stimulated related (yellow). Upper right shows RRHO heat map111 comparing exercise composite (Y 
axis) and AD portrait (X axis). Arrow highlights reversal of upregulated genes in AD by exercise.
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Comparisons with an alternative portrait approach and prior meta‑analysis AD studies.  The 
AD portrait showed a high level of matching when compared with an AD portrait made using the identical 
datasets and the MetaVolcano approach26 and two other recent meta-analysis studies23,24. It also matched a third 
meta-analysis study22, but at a lower levels. Supplementary File 3 contains the MetaVolcano AD portrait, its 
comparison to the individual AD datasets, and the comparisons of the different meta-analyses studies with one 
another.

Figure 5.   Genes downregulated in AD and upregulated with exercise composite. The 171 genes downregulated 
with AD and reversed by the exercise composite are plotted in STRING15. Lines between genes indicates 
connections and width of line reflects strength of evidence. Enrichment was found for: nervous system 
development (purple); KEGG AD pathway (red); cytoskeleton (blue); synapse (light blue); mitochondrion 
(green); cytoskeleton (light yellow); and interferon-stimulated related (yellow). Upper right shows RRHO 
heat map111 comparing exercise composite (Y axis) and AD portrait (X axis). Arrow highlights reversal of 
downregulated genes in AD by exercise.
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Comparison of meta‑analysis approaches and individual region‑specific AD datasets with 
treatments.  When the MetaVolcano AD portrait and the three recent meta-analysis AD datasets were also 
tested with treatments, exercise was the top treatment for each (Supplementary File 4). Additionally, for the two 
GEO independent studies that had the highest number of samples (and were from prefrontal cortex and visual 
cortex), exercise and the exercise composite ranked first and second for both men and women with AD. High 
ranking of exercise was found for most of the individual datasets and region to region comparison can be made 
with treatments when available. For example, for 13 of the 25 individual AD datasets, exercise ranked as the first 
and second best treatment. For another 8 datasets, one or more exercise treatments were in the top 10. There was 
no clear pattern where tissue source from AD affected matching to treatments. For example, the best match to 
exercise (from hippocampus) was from an AD study in medial temporal cortex. Data from the Religious Order 
Study and the Memory and Aging Project (ROSMAP)27,28, Mayo clinic29, and Mount Sinai Brain Bank (MSBB)30 
studies had been harmonized31 and were also compared with treatments (one region each). While each study 
highlighted exercise as a top 2 treatment, acetyl-l-carnitine as well as coral calcium hydride were also among 
the highest scoring treatments. Finally, the AD portrait was modified to include six datasets from the ROSMAP, 
Mayo, and MSBB harmonized differential expression analysis31. The top result of that modified portrait was 
exercise and the full list of genes in the modified portrait is also provided (Supplementary File 4). Full results on 
scoring and ranking of treatments with the respective studies are provided in Supplementary File 4.

Figure 6.   AD dysregulated gene expression reversed by fluoxetine composite. Genes with the highest levels 
of protein–protein interaction (determined via STRING15) from the 271 AD genes reversed by fluoxetine 
composite are plotted in Cytoscape109. Increased size of font for gene symbol reflects higher number of 
connections between genes. BDNF, SYN1, GAD2, and VAMP2 were among the genes with the most 
connections. Interactions are highlighted by lines. AD upregulated genes downregulated by fluoxetine are shown 
in red and AD downregulated genes upregulated by fluoxetine are shown in blue. Upper right shows RRHO 
heat map111 comparing fluoxetine composite (Y axis) and AD portrait (X axis). Arrow highlights reversal of 
downregulated genes in AD by fluoxetine.
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Figure 7.   UMAP plotting of treatments with AD portrait. UMAP was used to incorporate data from complex 
landscape of multidimensional features (5862 genes) and flatten those to two dimensions to identify similarities 
between datasets. The sign for the AD portrait was reversed so that a closer distance (spatial proximity) of a 
treatment (top 51 plotted) to the portrait represents a better match (reversal of pattern). Plot represents higher 
dimension data plotted into two dimensions. The x‐ and y‐axes are arbitrary embedding dimensions generated 
by UMAP. Top graph (A) is from plotting using the neighborhood setting of 20 and lower graph (B) uses the 
setting of 10. The AD portrait was most closely associated with the exercise datasets, but was also close to the 
fluoxetine treatments. Colored dots are: dark red (AD portrait); orange (exercise); tan (other top treatments); 
turquoise (fluoxetine). The fluoxetine and exercise composites are denoted with an asterisk.
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Comparisons of the AD and depression portrait.  The AD portrait was compared with a recent 
portrait of depression14 as comorbidity of depression and AD occurs in some individuals. Out of 1000 down-
regulated genes in AD, 139 of the same genes were also down in the depression portrait (hypergeometric p 
value < 10–21) and out of 1000 upregulated AD genes, 87 of the same genes were up in depression (hypergeomet-
ric p value < 0.0001). Of these common AD and depression genes, a subset of highly connected genes are shown 
in Fig. 8. Some of the noteworthy downregulated genes in both and included: BDNF, CRH, SST, GAD2, PSEN2, 
DUSP4, DUSP6, HOMER1, VGF, ACTB, and GABRA1.

Figure 8.   Congruence between AD portrait and depression portrait. Genes with the highest levels of 
protein–protein interaction (determined via STRING) from the 226 AD genes that match direction in both 
AD and depression are plotted in STRING15. Enrichment was found for: MAP kinase signaling (yellow); CNS 
development (green); synaptic signaling (light blue); and response to stress (purple). A red halo indicates genes 
upregulated in AD and depression and a blue halo indicates genes downregulated in both. Common genes of 
interest include: BDNF, CRH, SST, ACTB, GAD2, and PSEN2. Lines between genes indicates connections and 
width of line reflects strength of evidence. Upper right shows RRHO heat map111 for comparisons between 
depression (Y axis) and AD (X axis) and arrow highlight high congruence of common genes downregulated in 
both. Details on the axes and colors are same as in Fig. 2.
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Discussion
The AD portrait provides an overview of consistent gene expression dysregulation with AD across multiple 
brain regions and fits within the framework that similar pathologies are found across the CNS with AD1. An 
advantage of the AD portrait is that it allows for insights into global patterns, although it is less likely to reveal 
AD alterations that are specific to a region. However, given that many treatments have similar effects across 
brain regions, the portrait provides a platform for evaluating treatments, such as exercise, that could reverse 
the global patterns. As discussed below, the results of the AD portrait with treatments matches well those from 
individual AD datasets from specific regions with treatments, suggesting the portrait provides a robust platform 
for evaluating AD and potential treatments.

The top dysregulated gene was inositol-trisphosphate kinase, ITPKB (upregulated), that phosphorylates and 
converts the second messenger IP3 to IP4 and has been found to localize with actin32 and with amyloid plaques 
in human postmortem AD tissue33. While ITPKB is not commonly listed as being in the pathway for AD, its 
ability to affect IP3 levels that in turn influence intracellular calcium could connect it to the disease. Recent 
studies that support overexpression of ITPKB as causative of AD found in animal models that elevated ITBKB is 
linked to apoptosis and increased amyloid peptide production34 as well as TAU pathologies33,35. However, other 
studies suggest elevated ITPKB could be helpful in counteracting high Ca++ in mitochondria in neurologic 
pathologies36. Other inositol related genes dysregulated with AD were also upregulated, including ITPRID2, 
ITPRID, and ITPRIPL2A. The phospholipase C gene, PLCE1, that could affect IP3 levels was also upregulated. 
An understanding of whether or how elevated ITPKB contributes to AD remains to be determined. Interestingly, 
exercise reverses this overexpression pattern as discussed below.

The second most dysregulated gene was the astrocyte-specific gene, GFAP (upregulated), that is upregulated 
during inflammation and reactive gliosis, including within AD37–39. Other injury related genes were BDNF, AQP4, 
GAP43, GJA1, SOX9, CDK2, and EGFR. Overexpression of GFAP as occurs in Alexander’s disease due to GFAP 
mutations, can lead to AD-like pathologies40. While early elevations of GFAP are expected as neuroprotective, 
prolonged overexpression could contribute to AD pathologies.

The Rho GTPase gene, RHOQ, was the third most dysregulated gene (upregulated) and it plays a role in 
actin cytoskeleton assembly41. Actin related processes were highly enriched among the top dysregulated AD 
genes. The transcription factor, NACC2 (upregulated), was the fourth most dysregulated gene and expression 
changes have been connected to Lewy bodies42. The dystrophin-related gene, DNTA (upregulated), was fifth 
ranked and DNTA localizes with the perivascular astrocytic endfoot and elevated levels are associated with 
increased AD pathologies43. Neuritin 1 (NRN1; downregulated) is involved in neuronal plasticity and associ-
ated with neurofibrillary tangles44 and was the sixth most altered gene in AD. The G protein regulating gene, 
RGS7 (downregulated) ranked as the seventh most disrupted gene and has been linked to multiple neuronal 
disorders45. While the majority of dysregulated genes are likely to have a contributory effect on AD, in future 
studies it will be important to evaluate which gene patterns are the most causative and which (if any) may seem 
like a dysregulation but are neuroprotective.

41 genes from a recent human GWAS AD study25 were among the top 1000 AD dysregulated genes (Fig. 1, 
Supplementary File 1), including the opioid neuropeptide, PNOC, downregulated and connected to AD46, the 
immune related gene, C4B, upregulated and linked with AD47, and the transcription factor, BCL11A, downregu-
lated and associated with cortical neuron differentiation48. Additional GWAS genes previously linked with AD 
included: ANK3, MS4A6A, AGFG2, CYC1, HLA-DRA, MEG3, MT2A, NCALD, NEU1, PSMC3, SERPINB6, 
and SPARC (see full list in Supplementary File 1). How GWAS AD genes interact with or affect transcription of 
dysregulated AD genes remains to be determined.

In terms of common neurotransmitter pathways, the neuropeptides CRH, PNOC, VIP and SST (and its recep-
tor SSTR1) were all downregulated as were the enzymes involves in GABA synthesis, GAD1 and GAD2. Potential 
roles for these signaling molecules in AD have been suggested46,49–51. Further, the GABA receptors GABBR2, 
GABRA1, GABRB3, GABRG2 and the glutamate receptors, GRIK1 and GRIK2 were also downregulated. While 
these neural signaling pathways were downregulated in AD, others were not suggesting potential specific roles 
for these signaling molecules in AD. As an example, elevation of GABA signaling has been proposed as a route 
for treatment of AD52.

Genes with the highest connections to one another (per STRING) within the top 1000 AD dysregulated genes 
included: ACTB, GAPDH, EGRF, SNAP25, STAT3, CYCS, SNCA, ACTG1, and BDNF (Fig. 1). It is possible that 
highly connected genes have an oversized effect on the AD phenotype given synergistic actions, but this is specu-
lative. SNCA, GAPDH, and CYCS are part of the KEGG AD pathway53 and SNCA plays a role in the development 
of amyloid plaques54. Enrichment for the highly connected genes included mitochondrion, cell junction, immune 
system, actin cytoskeleton, and regulation of phosphorylation which is consistent with AD pathologies. BDNF 
is down regulated in the AD portrait and is part of both the BDNF and MAPK signaling pathways.

Forty-two transcription factors were identified with the top 1000 dysregulated AD genes also modified expres-
sion of other AD dysregulated genes (Supplementary File 2). STAT3, SOX9, ELK1, and SOX2 affected the most 
genes, but other transcription factors of interest included PAWR, GLIS3, AFF1, TCF3, FOXO1, BCL6, CEBPD, 
YAP1, RXRA, NFKB1, and NEUROD6 as these have previously been linked to AD within curated databases of 
diseases53,55–57. Transcription factors altered in AD that in turn affect expression of other AD genes could have 
a large effect on AD pathologies. Upregulated STAT3 contributes to astrogliosis and reversal of this pattern can 
mitigate AD phenotypes58. Similarly, SOX9 is elevated with AD and decreases in expression can reverse some 
AD markers59,60.

The female and male AD portraits were highly congruent with one another with 571 and 570 common genes 
the top 1000 up and downregulated genes, respectively. Further, no top 1000 gene was in the opposite direction. 
The RRHO heat map in Fig. 2 highlights the high congruence across levels of dysregulation. When focusing on 
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the most dysregulated genes within each sex that were not found in the other sex, there were differences in highly 
interacting genes whereby in females GAPDH, CYCS, SOX2, and PHGDH had strong interactions, but in males 
TLR2, ITGB2, NFKB1, and CD53 interacted the most strongly. Our findings are similar to a recent study combin-
ing multiple datasets that also found significant overlap between males and females with AD when examining 
differential expression22. However, that study also found some sex differences in enrichment pathways and more 
extensive sex differences with AD when using Weighted Gene Co-expression Network Analysis (WGCNA)61 
to identify gene networks. Our findings may differ for a few reasons, including that we did not systematically 
explore enrichment differences, we did not use WGCNA, and the results are based on different datasets. Given 
that the male AD portrait matched at high level the individual female AD datasets used to create the female AD 
portrait (and vice versa) (Supplementary File 1), we do not think our approach masked sex differences, but we 
cannot exclude this possibility.

Out of over 250 treatment datasets, the top three treatments were for exercise. A human CNS study comparing 
hippocampal gene expression in individuals with high versus low or high versus medium lifetime activity16 were 
the first and third top matches, respectively. The activity study also included a comparison of exercise modulated 
and AD modulated genes16 and identified some of the same genes of interest as in this study. The present approach 
differs in a few ways including that here multiple exercise/activity datasets were used, an exercise composite 
was created and used, and exercise was one of many possible treatments analyzed. The exercise composite that 
combined results from 11 exercise datasets, including those from human and rodents, was the second ranked 
treatment. In the top 20 were also two datasets examining exercise effects on the CNS in mice. Using UMAP as 
an alternative approach to identify the best treatments, exercise again stood out as a promising treatment (Fig. 7). 
These findings are consistent with a multitude of studies suggesting exercise in humans provides neuroprotective 
effects against development and progression of AD or related pathologies17–20,62–64.

The potential ability of exercise to reverse AD patterns was striking. For the first and second ranked treatments 
409 and 344 AD genes were reversed while only 20 and 45 genes were in the same direction, respectively. Enrich-
ment for AD genes reversed by the top exercise treatment included cell adhesion, cytoskeletal binding, neuron 
projection as well as multiple entries related to blood vessels, including blood vessel morphogenesis, circulatory 
system development, blood vessel development (Fig. 3B). These latter categories are of interest as decreased blood 
flow is associated with AD65 and exercise is posited to elevate brain blood flow as part of its effect on cognition66.

For the exercise composite (2nd ranked) enrichment of reversed AD genes included: transcription factor 
binding, actin binding, synapse organization, cell junction organization, brain development, BDNF signaling 
pathway, and a gene set from a recent study identifying interferon-stimulated network that is relevant to the 
innate immune response67. Previous studies have shown a link between interferon and exercise68 as well as 
possible roles for the innate immune system in the development of AD69. Whether or how exercise may invoke 
aspects of the innate immune response in the reversal of AD genes remains to be elucidated.

CDC42 (down in AD) is of interest as it had the greatest number of interactions with other genes reversed 
by exercise for the top two exercise datasets (Figs. 3, 5). CDC42 is a small GTPase of the Rho-subfamily and is 
connected to multiple pathways relevant to AD, including MAPK signaling, actin organization, cell junction, and 
CNS development. The possible role of CDC42 in AD may be complex as one line of research suggests inhibition 
as a pathway for treatment70, while another suggests activation as an approach to offset AD-like pathologies71. 
BDNF (down in AD) is reversed by the exercise composite and BDNF is well studied in terms of how it is 
upregulated by exercise and positively affects CNS function72,73 while its role in AD is still being explored74,75. 
Other genes reversed by exercise that are in the BDNF pathway include CDC42, NFKB1, MAPK8, and MAPK9. 
Twenty-two of the AD genes reversed by the exercise composite are part of the KEGG AD pathway, including 
SNCA, PSEN2, CALM3, GRIN2A, NFKB1, INSR, and TUBB. As indicated above, the top AD portrait dysregu-
lated gene, ITPKB, is reversed by exercise. Together, exercise reverses a wide range of genes involved in a number 
of important AD-related processes. RRHO heat map analysis suggested exercise would also advantageously affect 
genes outside of the top 1000 dysregulated portrait genes (Figs. 4, 5).

The male and female portrait both had the same human exercise dataset as the top ranked treatment and 
the exercise composite ranked third in both. Further, the MetaVocano AD portrait as well as three recent meta-
analysis datasets22–24 also had exercise as the top two treatments. While other AD meta-analysis studies exist76–78, 
full lists of genes were not provided so comparisons to treatments were not made. Importantly, exercise was also 
top ranked for both males and females within the two GEO datasets (GSE33000 and GSE44771)6,7 that were pro-
duced using the highest number of AD and control samples and came from prefrontal cortex and visual cortex, 
respectively. Results for 25 AD datasets that are brain region specific with each of the treatments are provided in 
Supplementary File 4. Exercise was highly ranked across the individual AD datasets with exercise ranked as the 
first and second best treatment for 13 of the 25 datasets. For another 8 datasets, one or more exercise treatments 
were in the top 10. There was not a clear pattern where tissue source affected matching to treatments and the best 
match to exercise (from hippocampus) was from an AD study in medial temporal cortex. The ROSMAP, Mayo, 
and MSBB studies each had exercise as a first or second top treatment, but interestingly there were high rank-
ings for acetyl-L-carnitine which has been investigated for possible AD-related treatments79,80. In summary, the 
high ranking of exercise was robust across meta-analysis studies, across the individual datasets with the highest 
number of samples, and across most of the other AD datasets.

The antidepressant, fluoxetine, ranked fourth and a composite of fluoxetine that included results from 13 
fluoxetine treatment datasets ranked 13th. In the top 25, there were four fluoxetine datasets plus the fluoxetine 
composite. Some of the top connected AD genes reversed by fluoxetine included BDNF, SYN1, VAMP2, GAD2, 
STX1A, STXBP1, and HDAC1 (Fig. 6). In both female and male AD portraits, the fluoxetine composite ranked 
11th and 12th, respectively. This finding is consistent with recent work in animals and humans that fluoxetine can 
be a useful treatment for AD-related conditions81–83. When examining AD genes reversed by both fluoxetine and 
exercise composites, 44 genes were common, including BDNF, and a theoretical combining of the two treatments 
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would reverse 549 AD genes. This finding supports recent work exploring the combination of both exercise and 
fluoxetine for AD and other disorders84.

Curcumin, the plant chemical from Turmeric, acting in cortex was ranked fifth and this is consistent with 
studies examining the therapeutic effects of curcumin in the treatment of AD85–87. However, curcumin acting 
in hippocampus had a slightly negative effect and datapoints from different ages had to be combined to achieve 
sufficient numbers. To our knowledge, a study examining curcumin effects in the CNS with a high number in 
each group has yet to be performed. Desipramine was in the top 10 and while animal studies indicate it can 
improve AD-related deficiencies88, the effects on cognition in humans with AD is less clear89. Safflower oil in a 
high fat diet was the 6th highest treatment, but the control in this study was flaxseed oil90, so whether the match 
is more due to one oil over the other is less clear. While D-serine matched as a possible treatment, the datasets 
for D-serine included an unusually high ratio of upregulated relative to downregulated genes overall91 and cau-
tion is needed when interpreting that result. The stimulant, cocaine, had three matches in the top 25 and while 
prolonged use of drugs of abuse induces clear cognitive deficits, the finding is consistent with studies exploring 
the ability of stimulants to mitigate some aspects of AD, such as apathy92. Overall, the ranking of treatments was 
similar for male and female portrait, although in males, curcumin was the second highest ranked treatment (File 
1, Supplementary File 2). 25 individual AD datasets that are brain region specific were compared with each of 
the treatments and these can be explored in Supplementary File 4. Given that most treatments include only a few 
regions, comprehensive analysis that involves the same region is still limited. Future studies could focus more 
on data from specific brain regions (or cell types) from both AD datasets and treatments.

The two treatments that had the lowest treatment scores and were most similar to AD related to alcohol abuse 
and were from human datasets. Thus, these treatments could be viewed as risk factors for AD. The association 
of alcohol and AD is complex and still being evaluated93,94, but the findings are consistent with work suggesting 
alcohol abuse as a risk factor for AD95.

As a final step, the AD portrait was compared with a recent portrait of depression14 as comorbidity of depres-
sion and AD occurs in some individuals96,97. As shown in Fig. 8, there was a high matching of downregulated 
genes in both and these included BDNF, CRH, SST, GAD2, and PSEN2. The role of BDNF in depression is 
actively studied98,99 and a connection between exercise and increased BDNF as part of the antidepressant aspects 
of exercise have been evaluated100. In the depression portrait study, exercise also ranked as the top treatment14, 
but the extent of gene reversal was not nearly as large as for AD.

The treatments examined should be viewed as theoretical as the treatment expression studies varied widely 
across multiple factors, including sex, species (the majority of which were from rodents), numbers, brain region, 
treatment length, and platform. Most of the datasets were not created with the goal of understanding how the 
treatment might reverse AD dysregulation patterns and an understanding of experimental design is relevant for 
interpretation. Also, some recent proposed treatments for AD, such as aducanumab101, do not have correspond-
ing large scale gene expression datasets, so they could not be included in this analysis.

We recently used a depression portrait to identify animal models with congruence to depression102 and ongo-
ing useful steps could involve use of the AD portrait (or similar portraits) to evaluate and identify what animal 
model has the highest concordance with the AD brain signature. Advances in this area have already begun as a 
recent study identified mouse models that were congruent with coexpression modules found in AD24.

One goal for producing the AD portrait is to gain new insights into AD but also to produce a platform for 
identifying and evaluating new treatments at the large-scale gene expression level potential. As shown in Sup-
plementary File 4, a final step involved modifying the AD portrait to include six datasets that came from three 
studies that were not in the original portrait. The two portraits are extremely similar and ITPKB and GFAP are 
the top two genes in both. With new datasets and integration approaches any AD portrait will always be ‘in pro-
gress’. With evolving portraits and individual datasets, a potentially promising approach is to identify multiple 
complementary treatments for AD, such as with exercise and fluoxetine.

Methods
Creation of gene expression portraits of AD.  For the creation of the AD portrait, publicly available 
large-scale gene expression datasets were used that compared postmortem CNS tissue from humans with AD 
and controls. Datasets came from both Gene Expression Omnibus (GEO)103 and GEO RNA-seq Experiments 
Interactive navigator (GREIN)104. In GEO the datasets were analyzed by the GEO2R tool (for microarray data) 
and in GREIN the default analysis tool (for RNA-seq data) was used. Both approaches provide information 
about the two comparison groups (AD vs. control) including p-value, gene symbol, and log of fold change. These 
files were then converted using R105 and RStudio106 into files containing two columns: Gene.symbol and sign1, 
using approaches as described in detail in Ref.14. Sign1 indicates degree to which the gene was dysregulated by 
first − log10 transforming the p value, such that lower p-values have a higher positive value, and then multiply-
ing that value by the sign (positive or negative) of the direction change from control. Therefore, the greater the 
absolute value of sign1, the greater it was dysregulated. For values that have a negative sign in front of the integer, 
this indicates a downregulation of that gene in AD. This approach was used to standardize files such that they 
can be combined to make a portrait, used in making heat maps (see below), and compared with treatments. Each 
dataset was then updated for proper HUGO symbols.

The portrait was made to identify consistent changes in dysregulated AD genes across multiple brain regions 
and multiple studies. To accomplish this, a scoring system was used that highlighted the top 1000 up and down-
regulated genes from each study, but also included information from the top 8000 up and down regulated genes, 
as described in detail in Ref.14. In brief, a ranking system was used whereby genes within the top 1000 and incre-
ments of 1000 up to 8000 were assigned a decreasing value. The rationale for using the ranking approach rather 
than a specific p value is that individual studies vary widely by p value and this approach allows each study to 
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make equal contributions to the portrait. The full script used in R and all dataset text files are available upon 
request so findings can be reproduced. A maximum of two datasets for each independent study was used so 
that no one study had an oversized effect on the portrait. Because some studies included males and females and 
multiple brain regions, these were separately analyzed by sex but including multiple brain regions. These studies 
included GSE48350, GSE118553, GSE36980, GSE1222063, and GSE5281. For one study, GSE84422, males and 
females were mixed across analysis platforms, so male and females were analyzed together within a platform. 
For all other independent studies, two datasets were used. Full information on datasets used for creating the 
AD portrait and on the individual AD datasets is provided in Supplementary File 1. Together, 22 datasets from 
12 independent studies were used to create the AD portrait. Datasets used to create the male and female AD 
portraits are also provided in Supplementary File 1. After formatting datasets as described above, the portrait 
was created in RStudio as described14.

Using the same datasets to create the AD portrait, an alternative portrait was created using MetaVolcano26. 
The output from MetaVolcano is provided in Supplementary File 3. MetaVolcano includes a focus on specific p 
values and fold change levels and maintains all genes from all datasets in the final output whereas the portrait 
created here only includes genes present in more than two thirds of the initial datasets. Finally, a modified AD 
portrait was made by adding to the original portrait six additional datasets that were harmonized differential 
expression from the Mayo, ROSMAP, and MSBB studies31 (one male and one female for one brain region from 
each study; see Supplemental File 4 for details). Those datasets were not in the original portrait. The differential 
expression findings from those studies came from Synapse.org and original source information is provided in 
Acknowledgements below.

Comparisons of AD portraits, AD datasets, AD meta‑analysis datasets, and a depression por‑
trait.  The AD portrait was compared back to each of the 22 datasets from which it was derived to evaluate 
how accurately it represented the datasets. Further, the AD portrait was compared to each of 67 individual AD 
datasets. The male and female AD portraits were also compared with the datasets used to create the sex specific 
portraits. Each AD portrait was compared to one another. Comparisons were performed using a hypergeometric 
analysis of the top 1000 upregulated and top 1000 downregulated genes between any two datasets. This analysis 
involved four groups of genes: (A) upregulated genes in both groups, (B) up in first group and down in second, 
(C) down in first group and up in second group and (D) downregulated in both groups. The hypergeometric 
derived p-values were − log10 transformed so that lower p-values had a higher value. The scoring system was the 
same as described in Ref.14 and involved adding A and D (same direction), and then subtracting B and C values 
(opposite direction) to produce a final score. Thus, the higher the overall score, the better the match between 
two datasets. The outputs of all comparisons with the individual datasets are provided in Supplementary File 1. R 
studio was used for all analysis. Additionally, the AD portrait was compared with the metaVolcano AD portrait 
as well as three other recent AD meta-analysis studies22–24 (Supplementary File 3). One of the meta-analysis 
studies24 used data from ROSMAP, MSBB, and Mayo and thus had no overlap of starting datasets with the AD 
portrait. The analysis included both fixed and random approaches and we include results for both. The data from 
that meta-analysis was downloaded from Synapse and the source is provided in Acknowledgments below. The 
AD portrait was also compared with a recent portrait of depression in humans14. All data from humans used in 
this study was produced by others, published with assurances of compliance, and made publicly available. For 
all human summary data from Synapse used in this study, relevant information is provided in the Acknowledge-
ments section below. No new data from humans was produced as part of this study and therefore an accordance 
statement is not relevant.

Analysis of the top dysregulated genes.  Enrichment analysis for significance (p < 0.05) was conducted 
using ToppCluster107, Enrichr108, and STRING15 on the top 1000 dysregulated genes. The cutoff of 1000 was used 
because this is expected to reflect a biological signature and most of the AD datasets have over 1000 significantly 
dysregulated genes. The reader is encouraged to explore results using different cutoffs. The top 1000 gene list is 
provided in Supplementary File 1 and can be entered into enrichment tools. Enrichment tests results from Top-
pCluster and Enrichr (BioPlanet 2019) are provided in Supplementary File 1. The protein–protein interaction 
tool, STRING, was also used to identify interacting proteins (score of 0.40 or greater) and the to identify genes 
with high numbers of connections to other genes in the dataset as previously described14. Highly interactive 
genes were either replotted in STRING or exported to Cytoscape109 for visualization.

Analysis of GWAS AD genes with the AD portrait.  643 GWAS genes associated with AD from a recent 
study25 were compared with the top 1000 portrait genes. Common genes were identified and hypergeometric 
overlap test (in R) was performed. A full list of the common AD GWAS and AD portrait genes are provided in 
Supplementary File 1.

Potential treatment datasets.  201 out of the 252 treatment large-scale gene expression datasets came 
from a recent study examining potential treatments for depression14. Additional treatments that could be rel-
evant for neurodegenerative disorders were added. Using genes from the AD portrait as well as Parkinson’s 
genes, two drug repurposing tools, NIH LINCS L1000110 and Enrichr108 were used to identify potential treat-
ments as described in Ref.14. GEO datasets103 and GREIN104 were then queried to identify studies that had been 
performed using CNS or related tissue (e.g., neuronal stem cells) so that the treatment would have relevance to 
CNS dysregulation in AD. Only datasets with a minimum of three per group were used. Only datasets with more 
than 5000 genes in common with the AD portrait were used. Not all potential AD treatments had datasets from 
the CNS, so these could not be explored further. Any additional treatment that had some evidence for a poten-
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tial therapeutic effect on AD and that was publicly available was also examined. A majority of the datasets were 
from mice and rats, but other datasets were from humans, non-human primates, and neuronal tissue, including 
neuronal cell lines. Creation of the exercise and fluoxetine composites were performed using the same approach 
as for the AD portraits. The exercise composite included 11 gene expression datasets analyzing the effects of 
exercise or activity on the brain, including from both human (GSE110298) and rodent (GSE64607, GSE 39697, 
GSE126996, GSE29075) studies. One study on exercise in SAMP8 transgenic mice (GSE38465) was excluded as 
it was an outlier compared to other exercise studies. The fluoxetine composite was made from 13 datasets exam-
ining the effects of fluoxetine on brain gene expression in mice and rats (GSE28644, GSE84815, GSE118670, 
GSE43261, GSE48955, and GSE109445). A full list of all treatments tested is shown in Supplemental File 2. The 
GEO2R tool103 was used to obtain a differential gene expression output from microarray data. RNA-seq analysis 
was performed using GREIN104. Together, 252 datasets were used. Each treatment dataset was transformed as 
were the AD datasets described above whereby the p value is − log10 transformed and multiplied this by the sign 
of direction of change. The treatment datasets are publicly available and the transformed versions used in this 
study are available upon request.

Use of AD portrait, AD datasets, other AD meta‑analysis datasets to identify potential treat‑
ments.  Analysis of the treatments with the AD portraits, other AD meta-analysis studies, and individual AD 
datasets is identical to that described in detail in Ref.14. In brief, a treatment is compared with the AD portrait 
using a rank rank hypergeometric approach comparing the top 1000 upregulated and top 1000 downregulated 
genes from each dataset. The potential therapeutic effects were first summed: outputs of B (treatment reversed 
genes down in AD portrait) and C (treatment reversed genes up in AD). The potential detrimental effects (treat-
ment and disorder in same direction) were then subtracted, namely output of A (treatment upregulates genes 
already up in AD) and D (treatment downregulates genes down in AD). Thus, a treatment that reversed a high 
number of AD portrait genes, but had little effect on pushing genes in the same direction would receive a high 
score. The results of comparison of treatments with the AD portrait, female AD portrait and male AD portrait 
are provided in Supplementary File 2. Additionally, treatment analysis was performed using the three recent 
meta-analysis studies, the AD metaVolcano portrait, two AD gene expression studies (separately for males and 
females) that had the highest number of samples out of all the other datasets (GSE3300 and GSE44771), and 
23 other AD datasets; see Supplementary File 4. All analysis was performed using R and script used is available 
upon request. Heatmap outputs from RRHO111 was used to highlight the reversing of AD portrait expression by 
some of the treatments with portraits and this is useful when examining patterns across all genes.

Uniform manifold approximation and projection (UMAP) analysis.  UMAP21 was used as an 
exploratory approach to gain insights into the performance of some of the top treatments. UMAP incorporates 
data from complex landscape of multidimensional features (e.g. genes) to identify similarities or differences 
between datasets. The sign of the AD portrait was reversed so that if a theoretical treatment perfectly reversed all 
gene expression aspects for the portrait, then it will now match (or be closely aligned with spatially) that portrait. 
The closer treatments are spatially to the portrait, the better the reversal and potentially better treatment. For 
the analysis shown, the neighborhood size was set for two different sizes and the correlation clustering tool was 
used. The top 51 treatments were analyzed. UMAP works well with higher dimensions. Initially the top 8000 AD 
genes were selected and genes that were missing from the largest number of treatment datasets were removed 
until 5862 remained. UMAP was run in Python 4.01112 using Anaconda (Spyder)113.

Data availability
All datasets are publicly available datasets or available through Synapse.org as indicated. Datasets were trans-
formed and reformatted as indicated and those versions that were used in this study are available upon request. 
Script is available upon request to allow for replication of results. Output files are also provided in Supplementary 
Information. Any additional information can be received by request from SCG.

Received: 18 February 2022; Accepted: 11 October 2022

References
	 1.	 Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70. https://​doi.​org/​10.​1111/​ene.​13439 (2018).
	 2.	 Wang, M. et al. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying 

selective regional vulnerability to Alzheimer’s disease. Genome Med. 8, 104. https://​doi.​org/​10.​1186/​s13073-​016-​0355-3 (2016).
	 3.	 Kumar, A., Singh, A. & Ekavali,. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. 

Rep. 67, 195–203. https://​doi.​org/​10.​1016/j.​pharep.​2014.​09.​004 (2015).
	 4.	 Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and 

Alzheimer’s disease. Neurobiol. Aging 34, 1653–1661. https://​doi.​org/​10.​1016/j.​neuro​biola​ging.​2012.​11.​024 (2013).
	 5.	 Liang, W. S. et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: A reference 

data set. Physiol. Genomics 33, 240–256. https://​doi.​org/​10.​1152/​physi​olgen​omics.​00242.​2007 (2008).
	 6.	 Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153, 

707–720. https://​doi.​org/​10.​1016/j.​cell.​2013.​03.​030 (2013).
	 7.	 Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. 

Mol. Syst. Biol. 10, 743. https://​doi.​org/​10.​15252/​msb.​20145​304 (2014).
	 8.	 Duan, Q. et al. L1000CDS(2): LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl. 2, 16015. 

https://​doi.​org/​10.​1038/​npjsba.​2016.​15 (2016).
	 9.	 Iorio, F., Rittman, T., Ge, H., Menden, M. & Saez-Rodriguez, J. Transcriptional data: A new gateway to drug repositioning? Drug 

Discov. Today 18, 350–357 (2013).

https://doi.org/10.1111/ene.13439
https://doi.org/10.1186/s13073-016-0355-3
https://doi.org/10.1016/j.pharep.2014.09.004
https://doi.org/10.1016/j.neurobiolaging.2012.11.024
https://doi.org/10.1152/physiolgenomics.00242.2007
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.15252/msb.20145304
https://doi.org/10.1038/npjsba.2016.15


17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17189  | https://doi.org/10.1038/s41598-022-22179-z

www.nature.com/scientificreports/

	 10.	 Pushpakom, S. et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58. https://​
doi.​org/​10.​1038/​nrd.​2018.​168 (2019).

	 11.	 Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. 
Med. 3, 96 (2011).

	 12.	 Kunkel, S. D. et al. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases 
muscle mass. Cell Metab. 13, 627–638 (2011).

	 13	 Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. 
Transl. Med. 3, 96 (2011).

	 14.	 Gammie, S. C. Creation of a gene expression portrait of depression and its application for identifying potential treatments. Sci. 
Rep. 11, 1–19 (2021).

	 15.	 Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 
D447–D452. https://​doi.​org/​10.​1093/​nar/​gku10​03 (2014).

	 16.	 Berchtold, N. C. et al. Hippocampal gene expression patterns linked to late-life physical activity oppose age and AD-related 
transcriptional decline. Neurobiol. Aging 78, 142–154. https://​doi.​org/​10.​1016/j.​neuro​biola​ging.​2019.​02.​012 (2019).

	 17.	 Valenzuela, P. L. et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 62, 101108 (2020).
	 18.	 Dougherty, R. J. et al. Relationships between cardiorespiratory fitness, hippocampal volume, and episodic memory in a popula-

tion at risk for Alzheimer’s disease. Brain Behav. 7, e00625. https://​doi.​org/​10.​1002/​brb3.​625 (2017).
	 19.	 Brach, T. L., Gaitán, J. M. & Okonkwo, O. C. Effect of aerobic exercise training on mood and cognition in adults at risk for 

Alzheimer’s disease. Alzheimers Dement 17, e058523. https://​doi.​org/​10.​1002/​alz.​058523 (2021).
	 20.	 Gaitán, J. M. et al. Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at 

risk for Alzheimer’s disease. Brain Plast. 5, 83–95. https://​doi.​org/​10.​3233/​bpl-​190093 (2019).
	 21.	 McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform manifold approximation and projection. J. Open Source Softw. 

3, 861 (2018).
	 22.	 Paranjpe, M. D. et al. Sex-specific cross tissue meta-analysis identifies immune dysregulation in women with Alzheimer’s disease. 

Front. Aging Neurosci. 13, 735611. https://​doi.​org/​10.​3389/​fnagi.​2021.​735611 (2021).
	 23.	 Yuen, S. C., Zhu, H. & Leung, S. W. A systematic bioinformatics workflow with meta-analytics identified potential pathogenic 

factors of Alzheimer’s disease. Front. Neurosci. 14, 209. https://​doi.​org/​10.​3389/​fnins.​2020.​00209 (2020).
	 24.	 Wan, Y.-W. et al. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. 

Cell Rep. 32, 107908 (2020).
	 25.	 Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s 

disease. Nat. Genet. 53, 1276–1282. https://​doi.​org/​10.​1038/​s41588-​021-​00921-z (2021).
	 26.	 MetaVolcanoR: Gene Expression Meta-analysis Visualization Tool v. R Package Version 1.4.0. (Bioconductor, 2020).
	 27.	 De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. Data 5, 

180142. https://​doi.​org/​10.​1038/​sdata.​2018.​142 (2018).
	 28	 Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and findings from the religious orders study. Curr. 

Alzheimer Res. 9, 628–645 (2012).
	 29.	 Allen, M. et al. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. 

Sci. Data 3, 1–10 (2016).
	 30.	 Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. 

Data 5, 1–16 (2018).
	 31.	 Bonham, L. W., Sirkis, D. W. & Yokoyama, J. S. The transcriptional landscape of microglial genes in aging and neurodegenerative 

disease. Front. Immunol. 10, 1170 (2019).
	 32.	 Erneux, C., Ghosh, S. & Koenig, S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to 

F-actin to understand function. Adv. Biol. Regul. 60, 135–143. https://​doi.​org/​10.​1016/j.​jbior.​2015.​09.​004 (2016).
	 33.	 Salta, E., Sierksma, A., VandenEynden, E. & De Strooper, B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU 

pathology in Alzheimer’s brain. EMBO Mol. Med. 8, 1005–1018 (2016).
	 34.	 Stygelbout, V. et al. Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer 

pathology. Brain 137, 537–552. https://​doi.​org/​10.​1093/​brain/​awt344 (2014).
	 35.	 Zhang, Y., Xu, C., Nan, Y. & Nan, S. Microglia-derived extracellular vesicles carrying miR-711 alleviate neurodegeneration in a 

murine Alzheimer’s disease model by binding to Itpkb. Front. Cell Dev. Biol. 8, 1043 (2020).
	 36.	 Apicco, D. J. et al. The Parkinson’s disease-associated gene ITPKB protects against α-synuclein aggregation by regulating ER-to-

mitochondria calcium release. Proc. Natl. Acad. Sci. U.S.A. 118, 2006476118. https://​doi.​org/​10.​1073/​pnas.​20064​76118 (2021).
	 37.	 Hol, E. M. & Pekny, M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the 

central nervous system. Curr. Opin. Cell Biol. 32, 121–130 (2015).
	 38.	 Eng, L. F. & Ghirnikar, R. S. GFAP and astrogliosis. Brain Pathol. 4, 229–237 (1994).
	 39.	 Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia 50, 427–434 (2005).
	 40.	 Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci. 32, 5017–5023 (2012).
	 41.	 Rottner, K. & Stradal, T. E. Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578 (2011).
	 42.	 Santpere, G. et al. Transcriptional network analysis in frontal cortex in Lewy body diseases with focus on dementia with Lewy 

bodies. Brain Pathol. 28, 315–333 (2018).
	 43.	 Simon, M. J. et al. Transcriptional network analysis of human astrocytic endfoot genes reveals region-specific associations with 

dementia status and tau pathology. Sci. Rep. 8, 1–16 (2018).
	 44.	 Piras, I. S. et al. Association of AEBP1 and NRN1 RNA expression with Alzheimer’s disease and neurofibrillary tangle density 

in middle temporal gyrus. Brain Res. 1719, 217–224 (2019).
	 45.	 Israeli, R., Asli, A., Avital-Shacham, M. & Kosloff, M. RGS6 and RGS7 discriminate between the highly similar Gαi and Gαo 

proteins using a two-tiered specificity strategy. J. Mol. Biol. 431, 3302–3311. https://​doi.​org/​10.​1016/j.​jmb.​2019.​05.​037 (2019).
	 46.	 Cai, Z. & Ratka, A. Opioid system and Alzheimer’s disease. NeuroMol. Med. 14, 91–111 (2012).
	 47.	 Zorzetto, M. et al. Complement C4A and C4B gene copy number study in Alzheimer’s disease patients. Curr. Alzheimer Res. 14, 

303–308 (2017).
	 48.	 Du, H. et al. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection 

neurons. Cereb. Cortex. https://​doi.​org/​10.​1093/​cercor/​bhab4​37 (2021).
	 49.	 Souza, E. B. D., Whitehouse, P. J., Price, D. L. & Vale, W. W. Abnormalities in corticotropin-releasing hormone (CRH) in Alz-

heimer’s disease and other human disorders. Ann. N. Y. Acad. Sci. 512, 237–247 (1987).
	 50.	 Govindpani, K., Turner, C., Waldvogel, H. J., Faull, R. L. & Kwakowsky, A. Impaired expression of GABA signaling components 

in the Alzheimer’s disease middle temporal gyrus. Int. J. Mol. Sci. 21, 8704 (2020).
	 51	 White, C. M., Ji, S., Cai, H., Maudsley, S. & Martin, B. Therapeutic potential of vasoactive intestinal peptide and its receptors in 

neurological disorders. CNS Neurol. Disord. Drug Targets 9, 661–666 (2010).
	 52.	 Shetty, A. K. & Bates, A. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer’s and Par-

kinson’s diseases. Brain Res. 1638, 74–87 (2016).
	 53.	 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://​doi.​org/​10.​

1093/​nar/​28.1.​27 (2000).

https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/j.neurobiolaging.2019.02.012
https://doi.org/10.1002/brb3.625
https://doi.org/10.1002/alz.058523
https://doi.org/10.3233/bpl-190093
https://doi.org/10.3389/fnagi.2021.735611
https://doi.org/10.3389/fnins.2020.00209
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/sdata.2018.142
https://doi.org/10.1016/j.jbior.2015.09.004
https://doi.org/10.1093/brain/awt344
https://doi.org/10.1073/pnas.2006476118
https://doi.org/10.1016/j.jmb.2019.05.037
https://doi.org/10.1093/cercor/bhab437
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17189  | https://doi.org/10.1038/s41598-022-22179-z

www.nature.com/scientificreports/

	 54.	 Calabrò, M., Rinaldi, C., Santoro, G. & Crisafulli, C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci. 8, 
86 (2021).

	 55.	 Lipscomb, C. E. Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88, 265 (2000).
	 56	 Piñero, J. et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. 

Nucleic Acids Res. 45, 833 (2016).
	 57.	 Zoubarev, A. et al. Gemma: A resource for the reuse, sharing and meta-analysis of expression profiling data. Bioinformatics 28, 

2272–2273 (2012).
	 58.	 Reichenbach, N. et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO 

Mol. Med. 11, e9665 (2019).
	 59.	 Yuan, J. et al. Curcumin can improve spinal cord injury by inhibiting TGF-β-SOX9 signaling pathway. Cell. Mol. Neurobiol. 39, 

569–575 (2019).
	 60.	 Yan, H., Zhu, X., Xie, J., Zhao, Y. & Liu, X. β-amyloid increases neurocan expression through regulating Sox9 in astrocytes: A 

potential relationship between Sox9 and chondroitin sulfate proteoglycans in Alzheimer’s disease. Brain Res. 1646, 377–383 
(2016).

	 61.	 Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 1–13 (2008).
	 62.	 Jia, R.-X., Liang, J.-H., Xu, Y. & Wang, Y.-Q. Effects of physical activity and exercise on the cognitive function of patients with 

Alzheimer disease: A meta-analysis. BMC Geriatr. 19, 1–14 (2019).
	 63.	 Ströhle, A. et al. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: A systematic review and 

meta-analysis of effects on cognition in randomized controlled trials. Am. J. Geriatr. Psychiatry 23, 1234–1249. https://​doi.​org/​
10.​1016/j.​jagp.​2015.​07.​007 (2015).

	 64.	 Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R. & Petersen, R. C. Physical exercise as a preventive or disease-modifying treat-
ment of dementia and brain aging. Mayo Clin. Proc. 86, 876–884. https://​doi.​org/​10.​4065/​mcp.​2011.​0252 (2011).

	 65.	 Austin, B. P. et al. Effects of hypoperfusion in Alzheimer’s disease. J. Alzheimers Dis. 26, 123–133 (2011).
	 66.	 Meng, Q., Lin, M.-S. & Tzeng, I. Relationship between exercise and Alzheimer’s disease: A narrative literature review. Front. 

Neurosci. 14, 131 (2020).
	 67.	 Hubel, P. et al. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat. 

Immunol. 20, 493–502. https://​doi.​org/​10.​1038/​s41590-​019-​0323-3 (2019).
	 68.	 Mulero, P. et al. Improvement of fatigue in multiple sclerosis by physical exercise is associated to modulation of systemic inter-

feron response. J. Neuroimmunol. 280, 8–11. https://​doi.​org/​10.​1016/j.​jneur​oim.​2015.​01.​011 (2015).
	 69.	 Le Page, A. et al. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp. Gerontol. 107, 

59–66. https://​doi.​org/​10.​1016/j.​exger.​2017.​12.​019 (2018).
	 70.	 Aguilar, B. J., Zhu, Y. & Lu, Q. Rho GTPases as therapeutic targets in Alzheimer’s disease. Alzheimer’s Res. Ther. 9, 1–10 (2017).
	 71.	 Rong, Z. et al. Activation of FAK/Rac1/Cdc42-GTPase signaling ameliorates impaired microglial migration response to Aβ42 

in triggering receptor expressed on myeloid cells 2 loss-of-function murine models. FASEB J. 34, 10984–10997 (2020).
	 72.	 Oliff, H. S., Berchtold, N. C., Isackson, P. & Cotman, C. W. Exercise-induced regulation of brain-derived neurotrophic factor 

(BDNF) transcripts in the rat hippocampus. Mol. Brain Res. 61, 147–153 (1998).
	 73.	 Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the 

ketone body β-hydroxybutyrate. Elife 5, e15092 (2016).
	 74.	 Zhang, F., Kang, Z., Li, W., Xiao, Z. & Zhou, X. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/

TrkB) signalling in Alzheimer’s disease. J. Clin. Neurosci. 19, 946–949. https://​doi.​org/​10.​1016/j.​jocn.​2011.​12.​022 (2012).
	 75.	 Amidfar, M., de Oliveira, J., Kucharska, E., Budni, J. & Kim, Y.-K. The role of CREB and BDNF in neurobiology and treatment 

of Alzheimer’s disease. Life Sci. 257, 118020. https://​doi.​org/​10.​1016/j.​lfs.​2020.​118020 (2020).
	 76.	 Moradifard, S., Hoseinbeyki, M., Ganji, S. M. & Minuchehr, Z. Analysis of microRNA and gene expression profiles in Alzheimer’s 

disease: A meta-analysis approach. Sci. Rep. 8, 1–17 (2018).
	 77.	 Patel, H., Dobson, R. J. & Newhouse, S. J. A meta-analysis of Alzheimer’s disease brain transcriptomic data. J. Alzheimers Dis. 

68, 1635–1656 (2019).
	 78.	 Su, L., Chen, S., Zheng, C., Wei, H. & Song, X. Meta-analysis of gene expression and identification of biological regulatory 

mechanisms in Alzheimer’s disease. Front. Neurosci. 13, 633 (2019).
	 79.	 Kepka, A. et al. Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients 12, 1987 (2020).
	 80.	 Spagnoli, A. et al. Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 41, 1726–1726. https://​doi.​org/​10.​

1212/​wnl.​41.​11.​1726 (1991).
	 81.	 Xie, Y., Liu, P.-P., Lian, Y.-J., Liu, H.-B. & Kang, J.-S. The effect of selective serotonin reuptake inhibitors on cognitive function in 

patients with Alzheimer’s disease and vascular dementia: Focusing on fluoxetine with long follow-up periods. Signal Transduct. 
Target. Ther. 4, 1–3 (2019).

	 82.	 Ma, J. et al. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/
PSEN1dE9 double transgenic Alzheimer’s disease mice. Oncotarget 8, 27676 (2017).

	 83.	 Chang, K.-A. et al. Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer’s disease. Neurochem. Int. 
61, 885–891 (2012).

	 84.	 Micheli, L., Ceccarelli, M., D’Andrea, G. & Tirone, F. Depression and adult neurogenesis: Positive effects of the antidepressant 
fluoxetine and of physical exercise. Brain Res. Bull. 143, 181–193 (2018).

	 85.	 Tang, M. & Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis. 58, 1003–1016 
(2017).

	 86.	 Farkhondeh, T., Samarghandian, S., Pourbagher-Shahri, A. M. & Sedaghat, M. The impact of curcumin and its modified for-
mulations on Alzheimer’s disease. J. Cell. Physiol. 234, 16953–16965 (2019).

	 87.	 Chen, M. et al. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res. 13, 742 (2018).
	 88.	 Wang, D.-D. et al. Desipramine improves depression-like behavior and working memory by up-regulating p-CREB in Alzheimer’s 

disease associated mice. J. Integr. Neurosci. 15, 247–260 (2016).
	 89.	 Mokhber, N. et al. Comparison of sertraline, venlafaxine and desipramine effects on depression, cognition and the daily living 

activities in Alzheimer patients. Pharmacopsychiatry 47, 131–140 (2014).
	 90.	 Fernandes, M. F., Tache, M. C., Klingel, S. L., Leri, F. & Mutch, D. M. Safflower (n-6) and flaxseed (n-3) high-fat diets differentially 

regulate hypothalamic fatty acid profiles, gene expression, and insulin signalling. Prostagland. Leukot. Essent. Fatty Acids 128, 
67–73. https://​doi.​org/​10.​1016/j.​plefa.​2017.​12.​002 (2018).

	 91.	 Davidson, M. E., Kerepesi, L. A., Soto, A. & Chan, V. T. D-serine exposure resulted in gene expression changes implicated in 
neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Arch. Toxicol. 83, 747–762. https://​doi.​org/​10.​
1007/​s00204-​009-​0405-3 (2009).

	 92.	 Mitchell, R. A., Herrmann, N. & Lanctôt, K. L. The role of dopamine in symptoms and treatment of apathy in Alzheimer’s disease. 
CNS Neurosci. Ther. 17, 411–427 (2011).

	 93.	 Piazza-Gardner, A. K., Gaffud, T. J. & Barry, A. E. The impact of alcohol on Alzheimer’s disease: A systematic review. Aging Ment. 
Health 17, 133–146 (2013).

	 94.	 Anstey, K. J., Mack, H. A. & Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis 
of prospective studies. Am. J. Geriatr. Psychiatry 17, 542–555 (2009).

https://doi.org/10.1016/j.jagp.2015.07.007
https://doi.org/10.1016/j.jagp.2015.07.007
https://doi.org/10.4065/mcp.2011.0252
https://doi.org/10.1038/s41590-019-0323-3
https://doi.org/10.1016/j.jneuroim.2015.01.011
https://doi.org/10.1016/j.exger.2017.12.019
https://doi.org/10.1016/j.jocn.2011.12.022
https://doi.org/10.1016/j.lfs.2020.118020
https://doi.org/10.1212/wnl.41.11.1726
https://doi.org/10.1212/wnl.41.11.1726
https://doi.org/10.1016/j.plefa.2017.12.002
https://doi.org/10.1007/s00204-009-0405-3
https://doi.org/10.1007/s00204-009-0405-3


19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17189  | https://doi.org/10.1038/s41598-022-22179-z

www.nature.com/scientificreports/

	 95.	 Venkataraman, A., Kalk, N., Sewell, G., Ritchie, C. W. & Lingford-Hughes, A. Alcohol and Alzheimer’s disease—Does alcohol 
dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol 
Alcohol. 52, 151–158. https://​doi.​org/​10.​1093/​alcalc/​agw092 (2016).

	 96.	 Chi, S., Yu, J.-T., Tan, M.-S. & Tan, L. Depression in Alzheimer’s disease: Epidemiology, mechanisms, and management. J. 
Alzheimers Dis. 42, 739–755 (2014).

	 97.	 Novais, F. & Starkstein, S. Phenomenology of depression in Alzheimer’s disease. J. Alzheimers Dis. 47, 845–855 (2015).
	 98	 Yang, T. et al. The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci. 14, 82. https://​doi.​org/​10.​3389/​fncel.​

2020.​00082 (2020).
	 99.	 Brunoni, A. R., Lopes, M. & Fregni, F. A systematic review and meta-analysis of clinical studies on major depression and BDNF 

levels: Implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 11, 1169–1180. https://​doi.​org/​
10.​1017/​s1461​14570​80093​09 (2008).

	100.	 Erickson, K. I., Miller, D. L. & Roecklein, K. A. The aging hippocampus: Interactions between exercise, depression, and BDNF. 
Neuroscientist 18, 82–97 (2012).

	101.	 Lalli, G., Schott, J. M., Hardy, J. & De Strooper, B. Aducanumab: A new phase in therapeutic development for Alzheimer’s disease? 
EMBO Mol. Med. 13, e14781 (2021).

	102.	 Gammie, S. C. Evaluation of animal model congruence to human depression based on large-scale gene expression patterns of 
the CNS. Sci. Rep. 12, 108. https://​doi.​org/​10.​1038/​s41598-​021-​04020-1 (2022).

	103.	 Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 41, D991–D995. https://​doi.​
org/​10.​1093/​nar/​gks11​93 (2012).

	104.	 Mahi, N. A., Najafabadi, M. F., Pilarczyk, M., Kouril, M. & Medvedovic, M. GREIN: An interactive web platform for re-analyzing 
GEO RNA-seq data. Sci. Rep. 9, 7580. https://​doi.​org/​10.​1038/​s41598-​019-​43935-8 (2019).

	105.	 Team, R. C. R: A Language and Environment for Statistical Computing (2013).
	106.	 Allaire, J. RStudio: Integrated Development Environment for R Vol. 770, 165–171 (RStudio, 2012).
	107.	 Kaimal, V., Bardes, E. E., Tabar, S. C., Jegga, A. G. & Aronow, B. J. ToppCluster: A multiple gene list feature analyzer for com-

parative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 38, W96–W102. https://​
doi.​org/​10.​1093/​nar/​gkq418 (2010).

	108.	 Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, 
W90–W97. https://​doi.​org/​10.​1093/​nar/​gkw377 (2016).

	109.	 Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504 (2003).

	110.	 Subramanian, A. et al. A next generation connectivity map: L1000 Platform and the first 1,000,000 profiles. Cell 171, 1437–1452. 
https://​doi.​org/​10.​1016/j.​cell.​2017.​10.​049 (2017).

	111.	 Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–rank hypergeometric overlap: Identification of statistically 
significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169. https://​doi.​org/​10.​1093/​nar/​gkq636 (2010).

	112.	 Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).
	113.	 Rolon-Mérette, D., Ross, M., Rolon-Mérette, T. & Church, K. Introduction to anaconda and python: Installation and setup. 

Python Res. Psychol. 16, S5–S11 (2016).

Acknowledgements
The authors would like to thank Dr. Lauren V. Riters for feedback. For all use of summary analysis of human 
data from Synapse.org the following applies. The data available in the AD Knowledge Portal would not be pos-
sible without the participation of research volunteers and the contribution of data by collaborating researchers. 
The results published here are in whole or in part based on data obtained from the AMP-AD Knowledge Portal 
(https://​adkno​wledg​eport​al.​org). Data generation was supported by the following NIH Grants: P30AG10161, 
P30AG72975, R01AG15819, R01AG17917, R01AG036836, U01AG46152, U01AG61356, U01AG046139, P50 
AG016574, R01 AG032990, U01AG046139, R01AG018023, U01AG006576, U01AG006786, R01AG025711, 
R01AG017216, R01AG003949, R01NS080820, U24NS072026, P30AG19610, U01AG046170, RF1AG057440, 
and U24AG061340, and the Cure PSP, Mayo and Michael J Fox foundations, Arizona Department of Health 
Services and the Arizona Biomedical Research Commission. They thank the participants of the Religious Order 
Study and Memory and Aging projects for the generous donation, the Sun Health Research Institute Brain and 
Body Donation Program, the Mayo Clinic Brain Bank, and the Mount Sinai/JJ Peters VA Medical Center NIH 
Brain and Tissue Repository. Data and analysis contributing investigators include Nilüfer Ertekin-Taner, Steven 
Younkin (Mayo Clinic, Jacksonville, FL), Todd Golde (University of Florida), Nathan Price (Institute for Systems 
Biology), David Bennett, Christopher Gaiteri (Rush University), Philip De Jager (Columbia University), Bin 
Zhang, Eric Schadt, Michelle Ehrlich, Vahram Haroutunian, Sam Gandy (Icahn School of Medicine at Mount 
Sinai), Koichi Iijima (National Center for Geriatrics and Gerontology, Japan), Scott Noggle (New York Stem 
Cell Foundation), Lara Mangravite (Sage Bionetworks). https://​doi.​org/​10.​7303/​syn11​914606; https://​doi.​org/​
10.​7303/​syn14​237651.1; https://​doi.​org/​10.​1038/​sdata.​2016.​89; https://​doi.​org/​10.​1038/​sdata.​2018.​185; https://​
doi.​org/​10.​1038/​sdata.​2018.​142.

Author contributions
Both M.A.H. and S.C.G. performed analysis and contributed to the writing of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​22179-z.

Correspondence and requests for materials should be addressed to S.C.G.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1093/alcalc/agw092
https://doi.org/10.3389/fncel.2020.00082
https://doi.org/10.3389/fncel.2020.00082
https://doi.org/10.1017/s1461145708009309
https://doi.org/10.1017/s1461145708009309
https://doi.org/10.1038/s41598-021-04020-1
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/s41598-019-43935-8
https://doi.org/10.1093/nar/gkq418
https://doi.org/10.1093/nar/gkq418
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/nar/gkq636
https://adknowledgeportal.org
https://doi.org/10.7303/syn11914606
https://doi.org/10.7303/syn14237651.1
https://doi.org/10.7303/syn14237651.1
https://doi.org/10.1038/sdata.2016.89
https://doi.org/10.1038/sdata.2018.185
https://doi.org/10.1038/sdata.2018.142
https://doi.org/10.1038/sdata.2018.142
https://doi.org/10.1038/s41598-022-22179-z
https://doi.org/10.1038/s41598-022-22179-z
www.nature.com/reprints


20

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17189  | https://doi.org/10.1038/s41598-022-22179-z

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment
	Results
	Analysis of genetic findings in the portraits of AD. 
	Analysis of AD portraits with treatments at the large-scale gene expression level. 
	Comparisons with an alternative portrait approach and prior meta-analysis AD studies. 
	Comparison of meta-analysis approaches and individual region-specific AD datasets with treatments. 
	Comparisons of the AD and depression portrait. 

	Discussion
	Methods
	Creation of gene expression portraits of AD. 
	Comparisons of AD portraits, AD datasets, AD meta-analysis datasets, and a depression portrait. 
	Analysis of the top dysregulated genes. 
	Analysis of GWAS AD genes with the AD portrait. 
	Potential treatment datasets. 
	Use of AD portrait, AD datasets, other AD meta-analysis datasets to identify potential treatments. 
	Uniform manifold approximation and projection (UMAP) analysis. 

	References
	Acknowledgements


