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Machine Learning Reveals a General Understanding of
Printability in Formulations Based on Rheology Additives

Ali Nadernezhad* and Jürgen Groll*

Hydrogel ink formulations based on rheology additives are becoming
increasingly popular as they enable 3-dimensional (3D) printing of
non-printable but biologically relevant materials. Despite the widespread use,
a generalized understanding of how these hydrogel formulations become
printable is still missing, mainly due to their variety and diversity. Employing
an interpretable machine learning approach allows the authors to explain the
process of rendering printability through bulk rheological indices, with no bias
toward the composition of formulations and the type of rheology additives.
Based on an extensive library of rheological data and printability scores for
180 different formulations, 13 critical rheological measures that describe the
printability of hydrogel formulations, are identified. Using advanced statistical
methods, it is demonstrated that even though unique criteria to predict
printability on a global scale are highly unlikely, the accretive and collaborative
nature of rheological measures provides a qualitative and physically
interpretable guideline for designing new printable materials.

1. Introduction

By introducing additive manufacturing technologies to the field
of tissue engineering (TE), and in particular 3D bioprinting,
a significant expansion in the scope and applicability of TE
approaches was achieved.[1] The advancement of 3D bioprint-
ing significantly depends on development in three critical fron-
tiers, technological innovations,[2] the discovery of new func-
tional biomaterials,[3] and deepening our understanding of re-
generative biology.[4] While addressing all the requirements for a
successful regenerative approach might seem out of reach for the
moment, significant resources have been dedicated to approxi-
mating this process. In this respect, engineering biomaterial inks
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and bioinks includes a relatively large por-
tion of research in the field, exclusively ex-
ploring the enabling possibilities by intro-
ducing new synthetic and natural biomate-
rials and formulations.[3]

Apart from meeting the strict biological
requirements, the materials used in the 3D
bioprinting approach, or in general terms,
the 3D printing of soft biomaterials, need
to fulfill some physical and mechanical cri-
teria. The primary materials used as the ink
for this purpose include hydrogels or poly-
mer solutions. Traditionally, the natural bio-
compatible hydrogel inks failed to meet the
3D printing prerequisites, categorized pri-
marily by lack of printability.[3] The phrase
printability refers to the capability of the ink
material in allowing the 3D printing pro-
cess to form the designed structure with ac-
ceptable shape fidelity, mechanical stability,
and structural integrity.[5] Despite the extent

of these measures, the printability of a hydrogel ink or polymer
solution is greatly influenced by its chemistry and mechanical
properties.[3] Additionally, bioprinting parameters such as flow
rate, printing speed, nozzle size, process temperature, and sub-
sequent post-printing steps could significantly influence the out-
come of 3D printing.[6]

Due to the biological requirements, many attempts were made
to enable or enhance the printability of promising known bioac-
tive hydrogels and polymer solutions that formerly lacked physi-
cal and mechanical needs. These mainly included chemical mod-
ifications or blendings with a secondary material that could in-
duce printability. The latter, generally referred to as formulations,
is becoming increasingly popular for two main reasons. First,
several highly efficient additives are already available that meet
the biological requirements and can significantly enhance the
printability of the base hydrogel or polymer solution. Second,
and more importantly, the low cost and the straightforward know-
how of creating new formulations constitute a significant advan-
tage over developing sophisticated chemistries to induce compa-
rable functionalities. Although this ease of processing does not
replace the offerings of an application-tailored chemical mod-
ification, the literature shows an increasing trend in applying
formulations in different domains related to the 3D printing of
biomaterials.

Successful engineering of a new formulation for 3D printing
needs a profound understanding of the material properties
on micro and macro scales. However, in an interdisciplinary
field of research such as biofabrication, there are tendencies to
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approximate the materials’ related requirements, mostly toward
more established biological measures. In this context, the perfor-
mance of an additive is mainly weighted by the corresponding
biological response rather than quantification and analysis of the
material’s properties. Nevertheless, the available literature shows
increasing awareness and willingness of research groups to de-
sign the formulations based on traditional and state-of-the-art
physical characterization methods.[3] These mainly included the
rheological characterizations of inks and finding the correlations
between the printing conditions and printability of the inks.

Analysis of such systems usually requires a degree of simpli-
fication, as increasing the number of parameters and variables
could quickly deteriorate the interpretability of the readout by
the conventional methods. A promising tool to overcome this
limitation might be the data analysis techniques employing Ma-
chine Learning (ML) principles.[7] ML methods include statisti-
cal and mathematical tools which can reveal and exploit the re-
lationships in data and deliver complex models to describe the
system. Despite the visions and hopes for applying ML tools in
the scope of 3D bioprinting,[8] there are a few reports on using
ML techniques to analyze correlations in 3D bioprinting of hy-
drogel inks,[9] which mainly focused on providing a metric on
the predictability of the printability of similar inks, based on a
few materials- and 3D printing process-related parameters. More-
over, process optimization is the central focus of the available lit-
erature on extrusion and droplet-based bioprinting techniques,
as the process requirements for optimization of printability in
a defined material system can be approximated with reasonably
low degrees of simplifications.[9a–c,10] Although these studies pro-
vide a deeper insight into the dependency of printability on 3D
printing process parameters by considering the performance-
processing relationship, they generally overlook the fundamen-
tal material-related aspects due to the increased complexity of the
problem.

A common approach in applied ML techniques is providing
metrics and models that enable a system’s predictability based on
hidden correlations. By increasing the complexities of the mod-
els and their predictability power, the combinations and corre-
lations of variables become more obscure, and interpretation of
the process of making a particular decision by the model be-
comes inherently complicated. This problem gave rise to inter-
pretable models, mostly recognized as explainable artificial in-
telligence (AI), which provide a technically equivalent but more
understandable approach than black-box models for data analysis
and predictions.[11]

An intriguing question in the context of 3D bioprinting is
whether explainable AI can describe the process of rendering
printability in an unknown formulation and interpret it through
measurable physical indices. To answer this question, we used
bulk rheology indices (hereafter called features) in an extensive
library of different formulations based on hyaluronic acid (HA)
polymer solutions and three different rheology modifiers with
distinct microstructural interactions. After developing a predic-
tive ML model with high precision, we described how the knowl-
edge from the modeled data could interpret a particular model’s
decision toward the classification of a formulation and demon-
strate the dependency of printability on many correlations of the
features.

2. Results

2.1. Production of Data with Minimized Bias

Figure 1 shows an overview of the multiple steps taken in this
study to identify and explain the contributing factors in enabling
printability by adding rheology modifiers into a not-printable
polymer solution. In the first stage, three different rheology mod-
ifiers with significantly different physical properties were se-
lected to alter the rheology and printability of plain HA solutions
with three different molecular weights at various additive ratios.
In addition to the interactions between HA molecules and the
additives, each rheology modifier had unique interaction mech-
anisms to alter the viscoelasticity of the final formulation: col-
loidal and granular interactions of Carbopol microgels, forma-
tion of a secondary network by electrostatic interactions between
Laponite nanodiscs, and entanglement and network formation of
1-dimensiona self-assembled Fmoc-FF fibrils. The information
regarding the polymer: additive ratio, the additives’ type, and the
initial polymer’s molecular weight were not revealed to the ML
algorithm at the later stages to avoid creating any bias through-
out the analysis and potentially decreasing the universality of the
outcome.

A multi-step rheological testing protocol was designed to ac-
quire information on viscoelasticity and flow properties of sam-
ples holistically. The complete list of rheological data obtained
from each test step and the extracted ranges are provided in Table
S1, Supporting Information. Notable, the apparent yield behavior
of formulations was identified by whether a peak in the viscosity–
shear stress plot was observed, and if so, the corresponding value
was recorded. From the physical point of view, this peak and
its value corresponds to the buildup of resistance against the
flow on a macroscopic scale. The testing protocol was aimed to
maximize the obtained information with minimum complexi-
ties. Especially, creep-related tests were avoided since the prelimi-
nary experiments (data not included) for optimization of protocol
showed the sensitivity of creep tests toward not-printable formu-
lations, potentially resulting in a bias in the analysis.

The printing experiments were conducted considering that no
pure HA solution was printable. The printing experiments were
performed considering the volumetric flow of each formulation
during printing. A recent study by Fisch et al.[12] demonstrated
the sensitivity and susceptibility of pneumatic-driven extrusion
systems to over- or under-extrusion if the volumetric flow and the
cartesian translation feedrate are mismatched. For this reason,
each formulation was printed at a unique combination of applied
pressure and feedrate; the latter was derived automatically based
on the extruded mass of the formulation during a given time. Two
features of the printing process, the ability to form a filament and
the proportionality of the volumetric flow to printing pressure,
were recorded as the characteristics of the printing process per
formulation.

The designed path for the printability assessment included a 2-
layered rectangular mesh with a directional increase in fiber spac-
ing based on increments of the inner diameter of the nozzle (Di)
(Figure 2). The 3D assessments of printability were deliberately
avoided since criteria such as general 3D shape fidelity and fiber
sagging supposably demand a certain extent of viscoelasticity,
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Figure 1. A demonstration of the multi-steps taken in this study to explain the printability. The flow of this study is depicted from left to right of the
figure. First, the formulations based on different additives and starting HA solutions were prepared. In the second step, rheological characterizations
and printing experiments were performed. The quantification step involved the extraction of various rheological features and quantitative analysis of
the printability of formulations. In the next step, datasets based on combining all acquired features and printability scores were fabricated. By using the
generated datasets, a random forest ML algorithm was trained. In the final step, a post-analysis of the obtained model revealed the correlations between
data and the influence on making a decision by the model.

Figure 2. A schematic and experimental representation of the metric used
in this study to quantify printability. Top-left) a 2-layer grid design with vary-
ing fiber spacing was used to assess the printability of the formulations.
The fiber spacing was increased by increments of inner nozzle diameter
(Di = 410 μm). Bottom-left) an image of an actual sample printed ac-
cording to the grid design. Top-right) The resolved area of design is used
for benchmarking printability. Bottom-right) The segmented image of a
printed formulation is used to calculate the percentage of resolved area.

which could interfere with the objectives of this study in the un-
biased evaluation of induced printability by rheology additives.[13]

Based on our preliminary screening experiments, a weighting ap-
proach to penalizing the easy-to-resolve areas was employed (Fig-
ure S1, Supporting Information). In general, the induced print-
ability in different formulations was not significant, as only about
14% of the formulations could resolve more than 33% of the

designed area. We speculate that several factors contributed to
such behavior. Among them, the concentration restrictions (max-
imum concentration of additives was 2.5 wt/v% in a 1:1 addi-
tive:polymer ratio) imposed by the experimental design and po-
tential biological requirements, and the wide range of physical
properties of initial polymer solutions (resulted by variation of
concentration and molecular weight) would play the critical role.

The printing parameters could significantly influence
printability.[14] This influence is more evident in resolving
geometrical features for which an abrupt change in the printing
process, such as a change in direction, is expected.[12] In addition,
other factors such as extrusion rate and substrate interactions
potentially influence the spreading and fidelity of extruded fila-
ments. As described earlier, the printing speed adjustment based
on the volumetric flow was employed to eliminate the factor of
over-and under-extrusion, while the same substrate was used
to print all the formulations. However, to avoid complexities
caused by pressure-dependent extrusion delay, no changes in
the printing speed at turning points were implemented. This
phenomenon resulted in the underscoring of weakly printable
formulations, as revealed by the review of the raw quantitative
analysis of individual printing experiments (data not included).
However, in an equally conditioned set of experiments, this could
be considered a result of the lack of meeting the viscoelasticity
requirements for extrusion printing.

After acquiring the rheological and printing data, the dataset
was generated for further analysis by considering two feature
types. Concretely, some aspects of the raw data from rheological
experiments were used as the primary features. To include the ad-
ditive nature of the rheology modifiers in the analysis, most of the
extracted primary features of formulations were individually di-
vided by the corresponding values of the respective HA solutions
of different concentrations and molecular weights to include the
proportion of change in further analysis.

The second type included combinatorial features. The com-
binatorial features were generated based on combining some
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Scheme 1. Reference for the nomenclature used to address different features in this study.

Table 1. Performance metrics of the RF model for feature selection on the full-feature dataset and after refining the dataset.

— — Average F-score Min (F1-score) Max (F1-score) StDev (F1-score) Average OoB-score

Full dataset Modela) — — — — 0.95

— Printable 0.91 0.83 1.00 0.058 —

Refined dataset Modelb) — — — — 0.96

— Printable 0.94 0.91 1.00 0.039 —

— Not-Printable 0.99 0.98 1.00 0.007 —

a)
Data from 10 000 iterations on (n) repeated k-fold cross-validation (n = 20, k = 5) on full-feature dataset.

b)
Data from (n) repeated k-fold cross-validation (n = 20, k = 5)

aspects of the data collected during experiments, and as a prin-
ciple, all the primary and combinatorial features were selected
based on physically explainable factors rather than abstract quan-
tities. The details of the complete list of features are provided in
Table S2, Supporting Information.

2.2. Selection of Relevant Features Influencing Printability

The data from rheological and printability experiments of all the
formulations were prepared and consolidated into a single struc-
tured data frame. An intuitive nomenclature system was devised
to identify the different features in the dataset. The complete list
of nomenclature used to address different elements in the dataset
is provided in Table S2, Supporting Information. To increase the
legibility of the manuscript, Scheme 1 provides the guideline for
interpreting the coded nomenclatures.

Spearman’s correlation analysis of the raw data showed signif-
icant dependencies between features (Figure S2, Supporting In-
formation). By implementing the statistically robust algorithm of
Boruta feature selection,[15] the original features were refined to
those that significantly contributed to printability prediction with
a high F-score of a trained random forest (RF) model. Boruta algo-
rithm identifies the importance of the features for constructing
the ML model based on the performance of a randomized ver-
sion of the features through many iterations. Eventually, the sta-
tistically impactful features are selected from the top 0.5% of the
binomial distribution of the iterations. This procedure resulted

that, among the initial 65 features, only 13 were identified as hav-
ing a significant influence on the predictability of the RF model.

The performance of the RF model for feature selection and
on the refined dataset was assessed using F-score through n-
repeated k-fold cross-validation (n = 20, k = 5). The RF model
consisted of 200 estimators using bootstrap aggregation. More-
over, the out-of-bag (OoB) error was evaluated to estimate the per-
formance of the bagged model. Table 1 lists the performance of
the RF model for feature selection by the Bruta algorithm on the
full-feature dataset and the performance metrics of the RF model
on the refined dataset.

To explore and understand the existing correlations between
these essential features, the Spearman rank-order correlation
matrix and the linkage based on hierarchical cluster analysis of
Spearman’s correlations are demonstrated in Figure 3. This anal-
ysis showed two main clusters of features (as indicated by dif-
ferent colors of the dendrogram) with distinct linkage distances
from each other.

These two clusters include features that could be physically in-
terpreted as 1) describing the ease of creating flow and its plastic-
ity (orange leaves in Figure 3) and 2) describing the homogeneity
of the flow and the viscoelasticity of the formulation before and
after the flow (green leaves in Figure 3).

The first cluster involves the ratio between storage modulus
at the flow point and the limit of the linear viscoelastic range,
the consistency index determined by the Carreau–Yasuda model,
and the proportionality index of the flow during printing. The
first feature describes the plasticity of the formulation before
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Figure 3. The dendrogram shows the Spearman rank-order correlation matrix and the linkage according to hierarchical cluster analysis of Spearman’s
correlations. The numbers on the left identified two clusters. A value of 1 or −1 in the correlation matrix denotes high correlations, and the direction of
association depends on the sign of the correlation coefficient.

the flow, while the consistency index indicates the necessary
shear rate for the transition from Newtonian to non-Newtonian
flow regime. The flow proportionality index reflects the require-
ments for maintaining the formulation’s flow during the extru-
sion through a fine nozzle. The information from these three fea-
tures complements each other, describing correlations between
the ease of creating the flow in a formulation and the force re-
quirements to maintain the flow during the extrusion.

The second cluster includes two primary nodes, one describ-
ing the viscoelasticity of the formulations, and the other includes
features related to the resistance against initiating the flow and
the extent of viscous deformation afterward. On the one hand,
the viscoelasticity of the formulation prior to flow was critical in
predicting printability. The dominancy of the viscous portion of
deformation prior to flow, determined by the damping factors at
moderate shear strains (14.8% and 21.7%), was correlated with
the required strain to initiate the flow, the extent of linear vis-
coelasticity, the extent of stability of the interactions by changing
the frequency of deformation, and the energy required to induce
the flow of formulation with consideration of the elasticity of the
starting HA solution (ratio between storage modulus at low strain
and flow point multiplied by the storage modulus of correspond-
ing HA at 0.1% strain).

On the other hand, the closely correlated damping factors at
high shear strains (68.5% and 100%) highlight the contributions
of the viscous nature of the formulation in its printability, which
is linked to the likelihood of filament formation during the extru-
sion and the yield viscosity of the formulations.

Although the correlative analysis showed the contribution of
different rheological characteristics of the formulations in creat-
ing printability, their extent is yet to be determined.

2.3. Global and Local Explanation of Printability

Despite identifying the important features that contributed to
printability prediction, the extent of the contributions is un-
known. This is a typical characteristic of models generated with
most ML methods, as interpreting the predictive model’s output
is tedious, especially by increasing the complexities in non-linear
models. Shapley additive explanations (SHAP) is a powerful tool
for interpreting the prediction by ML models.[11c] SHAP has a
solid theoretical foundation in game theory and can provide con-
trastive explanations and analyze the model’s output locally and
globally.

The extent of the contribution of different features in the pre-
dicted printability of formulations is demonstrated in Figure 4A.
The average SHAP value quantifies the impact of each feature
on the model output by interpreting the average expected contri-
bution of the feature after all the possible combinations of other
features are considered.

The SHAP feature importance plot shows that the most im-
portant features in the global scale for printability prediction in-
cluded the yield viscosity, and the ratio of storage modulus at the
flow point to that of the limit of the viscoelastic range (plasticity
of the formulation before flow). Although the impact of the other
features on the model’s output is to a lesser degree, their con-
tributions to the model’s accuracy cannot be disregarded since
the SHAP analysis was performed on all the relevant features se-
lected by the Boruta algorithm.

The average SHAP value provides information about the con-
tribution of the features on a global scale. However, on a local
scale, evaluation of individual observations and the correspond-
ing SHAP value demonstrates how each feature contributed to
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Figure 4. SHAP values of different features show their contributions to the model output on two scales. A) on a global scale, the mean SHAP value
represents the feature’s average impact on the predictions made by the model. B) on a local scale, the rank-ordered features explain the margin output
of the model, which is the change in printability of formulations. The plot also shows the range of influence over the dataset. The color shows how the
change in the value of a feature affects the change in the printability prediction.

predicting a printable formulation experimentally (Figure 4B).
Careful analysis of Figure 4B indicates that different features con-
tributed in different directions to enabling printability.

For instance, a high yield viscosity of the formulation resulted
in a higher printability score, while lower plasticity prior to the
flow contributed to more printable formulations. The lack of fila-
ment formation ability negatively influenced the printability of
the formulations. Additionally, formulations with a lower flow
proportionality index were statistically more susceptible to be
identified as printable, meaning that either a lesser extrudate
mass at constant pressure or larger force to extrude the same
mass of the ink determines a printable formulation. This feature
directly corresponds to the microstructural interactions of the for-
mulation; the stronger the interaction, the better resistance to
deformation and better printability. Moreover, moderate to high
values of the consistency index in the Carreau–Yasuda model cor-
respond to printable formulations, translating to transition to a
shear thinning behavior at moderate to low shear rates.

A higher ratio of storage modulus at the flow point to the one
at 0.1% strain (proportional to the starting HA’s storage modu-
lus) resulted in a higher probability of printability, meaning that
the higher elasticity of starting HA solution could contribute to
more printability of the formulation. Similarly, a higher ratio be-
tween the damping factor at low and high deformation frequen-
cies contributed more to the printability of the formulation. From
the physical point of view, this meant that lesser variation of
the damping factor in a range of frequencies results in a higher
chance of printability. In other words, more stability of the in-
teractions at the moderate to the low portion of the frequency
spectrum results in better printability.

More pronounced viscous behavior after the flow (at shear
strains of 68.5% and 100%) contributed more to the printability
of formulations. Moreover, the higher flow strain also resulted
in better printability of the formulations, and similarly, formula-
tions with moderate to high levels of the limit of linear viscoelas-
tic range showed more printability. Finally, the dominant elastic
behavior at lower shear strains (14.8% and 21.7%) contributed
positively to printability, indicating that the dominancy of elastic

behavior at low strain values positively influences the formula-
tions’ printability.

The outcome of SHAP feature importance in a complex
model is inevitably context-dependent, meaning that a con-
trastive SHAP statement might not hold for all experimental con-
ditions. The dependency of the model’s outcome on every single
feature, and eventually on their combinations, can show the re-
lationship between the features and the target. In order to clarify
the validity of the SHAP analysis, we performed the partial de-
pendence (PD) analysis to show the average marginal effects of
features on the outcome of the printability assessment (Figures
S3 and S4, Supporting Information). Although the assumption
of independence for highly correlated features (such as damping
factors at low or high strain values) is not necessarily valid, how-
ever, the outcome of PD analysis showed that with some degrees
of simplifications, the extent of dependency of the output on the
features is likely to increase by increasing the feature importance
determined by SHAP.

Evaluation of decision rules for every decision tree of the ran-
dom forest algorithm revealed that by increasing the importance
of a feature, a narrower range for the feature’s threshold value
could be identified (Figure 5). As a result, only a few features
could be used to determine relatively more precise boundaries
for distinguishing a printable formulation from a non-printable
one. In contrast, the major part of the features contributed to de-
termining printability across a wide range of values. This was a
significant finding, as it hints toward the collaborative role of rhe-
ological characteristics of a formulation in rendering printability,
rather than introducing a dominant single measure to classify
formulations.

The collaborative contributions of a formulation’s rheological
characteristics toward printability are better demonstrated within
the observations made by the algorithm (Figure 6A,B). Figure 6A
shows the contributions of all the rheological features in a ran-
domly picked observation by the model, which was later identi-
fied as a printable formulation. As expected, the most impactful
features contributed significantly toward printability. However,
the minor contributions of the other rheological characteristics
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Figure 5. Decision rules in the random forest algorithm are shown by box-and-whisker plots (Tukey, outliers in open circles) across the full range of each
feature. The importance of the features increased from the bottom to the top of the graph. The number of total splitting nodes based on each feature is
indicated by n.

are critical, as also demonstrated in a scenario where the more
important model features have a less dominant or negative in-
fluence on the output based on their values (Figure 6B). In such
cases, certain contributions of the features might be canceled out
with the others, eventually leading to a decision based on mixed
contributions of the rheological characteristics to the model.

In addition to the individual contributions, a significant
amount of mutual impacts from different factors could occur in
a multi-variable system. Figure 6C–F shows four of the most no-
table dependencies observed between the features of the models.
Every dot in plots of Figure 6C–F corresponds to one prediction,
and a SHAP value above zero meant a positive contribution of the
feature in that prediction toward being classified as a printable
formulation. In contrast, a value below zero negatively influenced
the prediction outcome. It should be noted that a positive SHAP
value for each feature in these dependency plots does not mean
that predicting a formulation as printable is guaranteed. Instead,
it shows that a particular feature’s positive contribution could de-
pend on another feature’s value. In this way, the higher strain
required to create the flow resulted in a higher SHAP value for

the yield viscosity, or a higher SHAP value for the degree of plas-
ticity was observed when the formulations with lower plasticity
before the flow had a higher yield viscosity (Figure 6C,D). While
the formulations with no filament formation during the extru-
sion had negative SHAP values regardless of the degree of plas-
ticity of the formulation, the lower degree of plasticity resulted
in positive SHAP values for the likelihood of filament formation
during the extrusion in case one was formed (Figure 6E). More-
over, a dependency between the flow’s consistency index and the
degree of plasticity was observed. A moderate degree of plasticity
at low consistency indices resulted in a more prominent contri-
bution of the flow index to printability, as reflected by the higher
SHAP value for the flow’s consistency index. (Figure 6F).

3. Discussion

Current literature on assessing, evaluating, and predicting the
printability of soft inks and bioinks mainly relies on case studies
or the correlation between 3D extrusion-based printing process
parameters.[5,14,16] Several studies focused on optimizing the 3D
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Figure 6. The explanations for individual predictions and SHAP dependence plots of some notable combinations of features. The Waterfall plots showing
the collaborative influence (positive: red, negative: blue) of rheological characteristics in a randomly chosen prediction resulted in A) significantly positive
offset of the model’s output (dashed vertical lines) from the baseline value of the model (E(f(x)), and B) an accumulative contribution resulting in a
negligible offset of the model’s output from the baseline value. Grey numbers indicate the actual value of the features per observation. The dependency
plots show the SHAP value for C) yield viscosity, D) plasticity of formulation before the flow, E) the likelihood of filament formation during the extrusion,
and F) the proportionality index of the flow.

bioprinting process in terms of printability and cell viability in ex-
trusion and droplet-based techniques.[6] Printability of a formu-
lation is a result of the complex interactions between different
physical properties of additives and the base inks, together with
the requirements of the process. The formulations investigated
in this study involved a range of characteristic behaviors and in-
cluded three rheology additives with essentially different physics

for inducing printability. From a general point of view, the mech-
anisms driving the reinforcement and variation of viscoelasticity
in these formulations could vary. Additionally, some factors such
as chemistry and affinity of the additives and base polymer so-
lutions could significantly change the mechanisms and outcome
of interactions. These fundamental aspects were not separately
considered in this study. Nevertheless, the rheological features
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investigated in this study reflected the formulations’ material-
dependent properties.

Similar to some of the findings of this study, it has been shown
previously that in a colloidal system, critical flow-related and vis-
coelastic indices such as yield stress, stiffness and plasticity of
the system, flow strain, and the flow transition index exhibited
some patterns and distinct behaviors, which could hint toward
a printable formulation.[17] However, such criteria’s universality
and applicability to different material systems have not been fur-
ther studied.

The ML model identifies printable formulations in a pool of
many observations based on knowledge of correlations and in-
teractions during training. Apart from metrics to describe the
model’s accuracy, the conditions that resulted in recognizing the
printable formulations with high accuracy are the key subjects in
explaining how a new formulation with a given set of attributes
would be classified. Analogically, the rationale behind making a
particular model prediction is comparable to tuningsome princi-
pal and dependant physical properties of the base polymer solu-
tion by adding additives that would enhance or worsen printabil-
ity from an experimental point of view.

The few available studies on the application of ML in the field
of 3D (bio)printing focused on either investigating a group of
inks with similar characteristics or a set of process parameters
with minimum alterations in ink properties.[9] The rationale be-
hind limiting the factors is very reasonable, considering the inter-
pretability of the outcome and the required resources. However,
we showed that it is possible to generate a physically interpretable
model by diversifying the training pool to include several types of
formulations. The quantification of the decision rules revealed
that only a few features showed a distinct threshold that might
be used as metrics in the rough data screening. Beyond that, it is
highly unlikely to accurately describe printability by disregarding
the rest of the rheological features, as they showed a collaborative
influence on the overall printability induced in the formulation.

For the first time in the literature, we showed a generalized
correlation between different rheological factors describing the
printability of a hydrogel ink formulation. Accordingly, the ob-
tained model predicts that from a statistical point of view, a for-
mulation becomes printable when it shows a high yield viscosity
and a low degree of plasticity before the flow, while the transi-
tion from Newtonian to non-Newtonian behavior of the flow oc-
curs at relatively low shear rates. The formulation tends to flow at
higher pressures during printing, and extruding through a small
nozzle forms a filament rather than a droplet. The formulation
based on polymer solutions with higher elasticity tends to be
more printable, and a higher degree of stability of microstructural
interaction over a range of frequencies is favored. While gener-
ally, a more extended range of linear viscoelasticity is desired, the
damping factor of the formulations at low and high strain values
should follow a pattern, as a formulation with more elasticity at
the lower range and high viscous nature at the higher range is
more desired.

4. Experimental Section
Materials: Hyaluronic acid sodium salt with three different molecu-

lar weights was purchased from Carbosynth (Mw 0.6–1.0, 1.0–2.0, and
2.0–2.5 MDa; Biosynth Carbosynth, Compton, UK). Carbopol 980 NF was

Table 2. Different formulations based on additives used in this study.

Formulation HA: Additive Total concentration
[mg mL−1]

HA Mw [MDa]

HAC 10:10 to 10:01 15 0.6–1.0

— — — 1.0–2.0

— — — 2.0–2.5

— — 30 0.6–1.0

— — — 1.0–2.0

— — — 2.0–2.5

HAL 10:10 to 10:01 15 0.6–1.0

— — — 1.0–2.0

— — — 2.0–2.5

— — 30 0.6–1.0

— — — 1.0–2.0

— — — 2.0–2.5

— — 45 1.0–2.0

— — — 2.0–2.5

— — 50 0.6–1.0

HAF 10:10 to 10:01 5 0.6–1.0

— — — 1.0–2.0

— — — 2.0–2.5

purchased from Lubrizol (Lubrizol Pharmaceuticals, OH, USA). Laponite
XLG was purchased from BYK Additives (BYK-Chemie GmbH, Germany).
N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) was purchased
from Bachem (Bachem, Switzerland). Dimethylsulfoxide (DMSO) was
purchased from Sigma-Aldrich (Sigma-Aldrich, USA). Sodium hydroxide
was purchased from Merck (Merck KGaA, Germany).

Formulations: HA-Carbopol (HAC), HA-Lapointe XLG (HAL), and HA-
Fmoc-FF (HAF) formulations were prepared with different concentrations
and starting HA molecular weights by thoroughly mixing the required
amounts of HA and the respective additive’s stock solutions as listed in
Table 2. All the formulations were incubated at 4 °C for 24 h after mixing. 1
h of equilibrium time at room temperature was administered before each
measurement.

For HAC formulations, the stock solution of Carbopole at 30 mg mL−1

was prepared in MilliQ water, and the pH of the solution was neutralized
with the dropwise addition of 10n sodium hydroxide solution. The 100 mg
mL−1 stock solution of Fmoc-FF in anhydrous DMSO was used to prepare
HAF formulations. The Fmoc-FF stock solutions were prepared freshly. To
prepare HAL formulations, 55 mg mL−1 stock solutions of Laponite-XLG
in MilliQ water were prepared. Stock solutions of HA with different concen-
trations and molecular weights in MilliQ water were prepared by vigorous
shaking at 250 rpm at 40 °C overnight, using New Brunswick Innova 40
incubator shaker (Eppendorf, Germany).

Rheology: An Anton Paar MCR702 rheometer with a 25 mm parallel
plate geometry at a 500 μm gap was used to analyze the formulations.
A general protocol for rheological measurements was designed and fol-
lowed for each experiment. The protocol included the following steps: 1)
Homogenizing the sample by constant rotation at 1.0 s−1 for 60 s. 2) Fre-
quency sweep between 0.1–100 rad s−1 at 0.1% strain. 3) Amplitude sweep
at 10 rad s−1 in logarithmic scale between 0.01–500% strain. 4) 3-Interval
Thixotropy Test (3ITT) at 1.0, 100, and 1.0 s−1 shear rates. The recovery vis-
cosity was calculated as the percentage of the rest viscosity at 5, 10, and 30
s. 5) 3-Interval Oscillatory Test (3IOT) at 10 rad s−1 with 0.5%, 50%, and
0.5% strain. The recovery storage modulus was calculated as the percent-
age of the rest storage modulus at 5, 10, and 30 s. 6) Shear stress sweep in
rotation in linear scale from 1.0 to 100 Pa with 0.5 Pa increments. 7) Tran-
sient shear steps with shear rates in logarithmic scale from 0.1 to 100 s−1,
using a dynamic data acquisition method. The viscosity at each discrete
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shear rate value was monitored every 100 ms, and the corresponding vis-
cosity value was reported if a 0.5% tolerance threshold over ten observed
values was met. Viscosity versus shear rate curve was generated using the
acquired data, followed by fitting with the Carreau–Yasuda model.

A rest period between each measurement step was implemented to
recover the sample after deformation. Samples were gently loaded from
standard 5 mL syringes on the lower plate without any needles attached
for each experiment.

In order to benchmark the change in rheological properties induced
by the additives, the equivalent HA solution of each formulation with the
relevant concentration and molecular weight was tested with the same
general protocol.

Printability Assessment: The printability of each formulation was quan-
tified based on the ability to resolve 2-layered mesh patterns with vary-
ing inter-fiber distances (Figure 2). Printing was performed using the Re-
genHU Discovery bioprinter (RegenHU, Switzerland). The hydrogels were
loaded in 3 mL Luer lock syringe barrels (Nordson EFD, USA), equipped
with a blunt G22 general-purpose dispensing tip (inner diameter 410 μm,
Nordson EFD, USA). For each formulation, the minimum air pressure of
the pneumatic dispensing unit, which resulted in constant flow, was used.
The path plans and the printing speed for each formulation were created
using an in-house developed VisualBasic program created in VisualStudio
(Microsoft, USA). The layer height for printing was set to 2/3 of the nozzle
diameter to ensure sufficient contact during printing. The printing speed
for each sample was automatically calculated based on the extruded mass
during 20 s of extrusion with the set pressure. The images of three printed
grids were acquired 3 min after printing and were further quantified us-
ing Fiji.[18] The printability index was calculated as the ratio between the
resolved and expected area of the grid, weighed by the difficulty index of
resolving a specific mesh area (Figure S1, Supporting Information). Larger
grid areas of the designed path plan were penalized by a lower weight. A
ratio above 0.33 was considered printable.

Machine Learning Algorithm: Data Generation: Rheological data and
printing conditions related to each formulation were processed according
to the template provided in Table S1, Supporting Information. To avoid
skewness of the dataset due to possible measurement errors at high and
low ends of the frequency and strain sweeps, a clipped range of data
was used by limiting the angular frequency and oscillatory strain values
between 1.0–10 rad s−1 and 0.1–100%, respectively. Using a MATLAB
script, the generated tabulated data were consolidated into a randomly
distributed dataset with 65 features per formulation (MathWorks, USA).

Machine Learning Algorithm: ML Model and Selection and Evaluation
of Relevant Features: A classification ML model based on an RF algo-
rithm was implemented in Python using the scikit-learn package.[19] The
RF classifier is an ensemble non-parametric model based on many de-
cision trees. In order to build an ML model including the features with
the relevant and statistically meaningful contributions, a Python imple-
mentation of the Boruta all-relevant feature selection method[15] was used
(BorutaPy). No data was rejected during training to compensate for the
dataset imbalance (positive sample population ≈14%). Instead, iterative
randomization steps were employed to compensate for the imbalance in
the dataset. Initially, a subset of the dataset with a balance of 75:25 for not-
Printable:Printable classes was randomly chosen from the original dataset.
An RF classifier was trained with the subset, and if the F-score (Equa-
tion (1)) of the trained model on the test portion of the subset was above
0.80, a Boruta feature screening was subsequently applied. This process
was iterated 10 000 times, and the most-occurring relevant features were
selected from the accumulated responses of the Boruta feature screening
algorithm. The F-score was calculated by the following equation:

F−score = TP

TP + 1
2

(FP + FN)
(1)

where TP, FP, and FN are the classifier’s true-positive, false-positive, and
false-negative predictions, respectively.

Shapley values were used as the principal way of describing features’
contributions in the implemented ML model. For this purpose, SHAP was

employed to explain features’ correlations, interactions, and contributions
to predictions.[20] SHAP values were obtained and accumulated through n-
repeated k-fold cross-validation of the trained ML model on random splits
of the dataset (n = 20, k = 5).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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