Developmental changes in ciliary composition

during gametogenesis in Chlamydomonas
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ABSTRACT Chlamydomonas reinhardtii transitions from mitotically dividing vegetative cells
to sexually competent gametes of two distinct mating types following nutrient deprivation.
Gametes of opposite mating type interact via their cilia, initiating an intraciliary signaling
cascade and ultimately fuse forming diploid zygotes. The process of gametogenesis is ge-
netically encode, and a previous study revealed numerous significant changes in mRNA abun-
dance during this life-cycle transition. Here we describe a proteomic analysis of cilia derived
from vegetative and gametic cells of both mating types in an effort to assess the global
changes that occur within the organelle during this process. We identify numerous mem-
brane- and/or matrix-associated proteins in gametic cilia that were not detected in cilia from
vegetative cells. This includes the pro-protein from which the GATl-amide gametic chemotac-
tic modulator derives, as well as receptors, a dynamin-related protein, ammonium transport-
ers, two proteins potentially involved in the intraciliary signaling cascade-driven increase in
cAMP, and multiple proteins with a variety of interaction domains. These changes in ciliary
composition likely directly affect the functional properties of this organelle as the cell transi-
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tions between life-cycle stages.

INTRODUCTION

Cilia are highly conserved microtubule-based cellular extensions
that function as motile, sensory, and secretory organelles. These
structures are of ancient origin, dating to before the divergence
from the last eukaryotic common ancestor (Satir et al., 2008), and
are found in a very broad array of extant organisms (Carvalho-Santos
et al, 2011; Kumar et al., 2019). Cilia are extremely complex, and
upward of 1000 different types of proteins are estimated to be in-
volved in their formation and function (van Dam et al., 2019); this
represents about 5% of the coding capacity of the human genome.
In addition, cilia have a membrane lipid content distinct from that of
the plasma membrane (Garcia et al., 2018). In mammals, defects in
ciliary formation, motility, and/or signaling lead to numerous devel-
opmental defects and complex syndromes (ciliopathies) that may
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involve multiple organs, and have phenotypes ranging from infertil-
ity and polycystic kidneys to skeletal and neurological malforma-
tions, epilepsy, and insulin resistance (Reiter and Leroux, 2017).
The unicellular green alga Chlamydomonas reinhardtii has
proven to be an exceptional system in which to study the organiza-
tion and function of cilia, as it is readily amenable to genetic,
biochemical, and physiological analysis (see various chapters in
Witman, 2009). This organism grows as a haploid, with vegetative
cells dividing mitotically. Following nutrient deprivation, these
cells undergo a developmental process that results in formation of
pregametes of two different genetically determined mating types
(termed minus and plus); pregametes become sexually competent
following exposure to blue light, which is detected by phototropin
(Huang and Beck, 2003). These gametes exhibit opposite chemo-
tactic responses to an amidated peptidergic signal; the peptide
attracts minus gametes but repels plus gametes (Luxmi et al.,
2019). As chemotaxing gametes retain their cell walls, it is quite
possible that the receptor(s) responsible for signaling alterations in
dynein-driven motility reside in the ciliary membrane. Gametes of
opposite mating type initially interact via their cilia, which leads to
complex intraciliary signaling and an increase in cAMP (reviewed in
Snell and Goodenough, 2009). Ultimately, the gametes undergo
cell fusion and form a quadriciliate cell that further develops into a
diploid zygote (Figure 1a). Once nutrients are again available,
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FIGURE 1: Cilia samples used for mass spectrometry. a) Schematic illustrating the transition
from vegetative to gametic Chlamydomonas cells, and formation of a diploid quadriciliate cell
that subsequently develops into a zygote. Mating type is indicated by — and + signs within the
nucleus. b) Axoneme and detergent-soluble membrane plus matrix samples from vegetative
(Veg) and gametic (Gam) cilia of wild-type Chlamydomonas of both mating types (CC124 and
CC125) were electrophoresed in 4-15% gradient gels and stained with Coomassie blue; in
combination, the amounts loaded for membrane plus matrix and axoneme fractions of each
sample were 50 pg cilia. The number of proteins identified in each sample is indicated at the
bottom of each gel. c) Additional aliquots of the samples shown in panel b were run in triplicate
using a short gel format and stained with Coomassie blue. Following imaging, the protein-
containing gel segments were excised, trypsinized, and subjected to mass spectral analysis.

zygotes pass through meiosis and hatch releasing haploid progeny
(Sasso et al., 2018).

Although cilia on both vegetative and gametic cells are motile
and power cell locomotion, they exhibit different responses to the
chemotactic GATI-amide peptide (Luxmi et al., 2019), differential lo-
calization of adhesion molecules (Goodenough and Heuser, 1999),
and altered intraciliary signaling (Pan and Snell, 2000). Thus, ciliary
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how many were unique to a particular frac-
tion is provided in Supplemental Table S1.
The complete dataset indicating the nor-
malized total spectral counts for every pro-
tein identified in each replicate is provided
in Supplemental Table S2.

A global comparison of the abundance
of every identified protein in vegetative and
gametic cilia from both mating types and
the Pearson correlation coefficients (n) be-
tween vegetative/gametic and mating type
minus/plus datasets are shown in Figure 2.
Axonemal samples show a very high degree
of consistency, with few proteins deviating from an approximate 1:1
ratio. This provides a direct measure of the equivalence of cilia
amounts between the samples. In contrast, considerably more vari-
ation is evident in the detergent extracts.

To assess intersample consistency of the numeric data, we ana-
lyzed the abundance of multiple core axonemal components re-
quired for normal ciliary motility that would not be expected to
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FIGURE 2: Relative abundance of proteins in vegetative and gametic cilia. The abundance of
each protein (normalized total spectral count; average of n = 3) identified in vegetative and
gametic cilia from both mating type minus and plus cells is represented in scatterplots; the
Pearson correlation coefficients (r) for each comparative analysis are shown. The insets show
expanded views of the regions indicated by the dashed boxes. The abundance of nearly all
axonemal proteins is highly correlated between samples. Several proteins that show highly
distinct abundance changes are indicated: FAP154 (Cre08.9362100) contains a PAS domain; PHR3
(Cre12.9532850) is a multipass transmembrane protein in the ionotropic glutamate receptor
family; and PKHD1 (Cre07.9340450) is a signal peptide—containing transmembrane protein with
pectin lyase, G8, and immunoglobulin-like folds. Intriguingly, the dynein heavy chain (DHC1b) that
powers retrograde intraflagellar transport shows a significant increase in mating type plus gamete
cilia. The major membrane glycoprotein FMG1 is not shown on the membrane plus matrix plots,
as it is present at >threefold the amount of any other protein, and thus its inclusion greatly
distorts the data by forcing all other points much closer to the ordinate. A single data point in the
mating type minus vegetative vs. gametic membrane comparison is obscured by the inset.

vary either between vegetative and gametic cilia or as a function
of mating type. These include components of the inner and outer
dynein arms, radial spokes, protofilament ribbons, nexin—dynein
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regulatory complex, and central pair micro-
tubule complex (Figure 3). These proteins
show highly consistent abundance levels
between the cilia preparations and their
replicates with small standard deviations.
One exception is LC8, which is part of mul-
tiple axonemal complexes and shows en-
hanced levels in the mating type plus ga-
metic cilia detergent extract; this correlates
well with an increase in the dynein heavy
chain that powers retrograde intraflagellar
transport in the same fraction (Figure 2).
Furthermore, although both o- and B-
tubulins  (Cre04.g216850 and Crel2.
g549550) were present in large and consis-
tent amounts, only two peptides were
identified in a single sample for e-tubulin
(Cre03.g172650) and none for either -
(Cre06.g299300) or &-tubulin  (Cre03.
g187350); these three proteins are known
to be in the basal body, and in the case of
Y-tubulin also the transition zone, but gen-
erally absent from the cilium proper e.g.
(Dutcher and Trabuco, 1998; Silflow et al.,
1999; Dutcher et al., 2002).

Multiple proteins are exclusively
present in gametic cilia
We next asked what proteins were exclu-
sively found in gametic and not vegetative
cell cilia, as this might highlight key signal-
ing and/or regulatory pathways. The initial
cutoff criterion used was stringent, requir-
ing that zero peptides for a protein be
found in any of the 12 vegetative cilia sam-
ples examined (i.e., membrane/matrix and
axonemal samples from both mating types
analyzed in triplicate). A total of 33 proteins
met this criterion (Table 1), including a dy-
namin-related protein, which contains the
dynamin central and effector domains plus
a plekstrin homology region but lacks the
GTPase motif, two annotated ammonium
transporters, and several putative recep-
tors. Importantly, only gametic samples
contained the GATl-amide chemotactic
modulator (Cre03.g204500), which is pres-
ent in gametic cilia (Luxmi et al., 2019) and
essentially not expressed in vegetative
cells (Ning et al., 2013). Proteins present in
both vegetative and gametic cilia but
whose abundance changed >5-fold be-
tween these samples are indicated in Sup-
plemental Tables S3 and S4; these include
a dynamin-related GTPase, a RAN GTPase
activating protein, multiple subunits of the
T-complex chaperonin, ion channels, and
putative receptors.

Also identified only in gametic cilia were

two proteins with domains suggesting a potential role in the signal-
ing pathway, where ciliary adhesion leads to an intraciliary kinase
cascade and ultimately an increase in cellular cAMP that presages
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Spectral count consistency between cilia samples. The total normalized spectral
counts for six components of core axonemal substructures identified in membrane plus matrix
(M) and axonemal (Ax) fractions of cilia from CC124 (MT-) and CC125 (MT+) vegetative and
gametic cells are shown. The data are highly consistent between ciliary samples, except for an
increase in LC8 in the plus gamete cilia detergent extract samples. Note that no peptides for
DRC2 were identified in any membrane plus matrix sample. Plots show mean + SD (n = 3).

cell fusion and zygote formation (Figure 4 and Table 1). One (Cre03.
g199050) contains four N-terminal ctNMP binding domains and a
C-terminal Ser/Thr kinase module and thus might be a downstream
effector following cAMP increase. The second is CYA18 (Cre0é.
g300500), which consists of a noncanonical K* channel followed by
an adenylyl cyclase domain. A similar protein was previously identi-
fied in ciliates and Plasmodium and demonstrated to exhibit both
ion channel properties and cyclase activity (Schultz et al., 1992; We-
ber et al., 2004); BLAST searches also reveal CYA18 orthologs in
haptophytes, cryptophytes, and stramenopiles, but not opistho-
konts or excavates. CYA18 is the most abundant channel and cy-
clase in gametic cilia and may represent a cyclase activated during
mating-induced signaling. The presence of an N-terminal channel
domain in CYA18 indicates a potentially direct connection between
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2019). Several other mating type-specific
proteins are more enigmatic. Cre02.
9079500 encodes a protein with a canonical
signal sequence placing it in the secretory
pathway and a C-terminal transmembrane
segment. It is essentially Chlamydomonas-
specific and only weak homology (~35%
identity) was found even in volvocine rela-
tives. Cre06.g278222 consists of seven WD
repeats and exhibits 76% identity to the vertebrate receptor for ac-
tivated protein kinase C 1-like (RACK1) adaptor that is involved in
protein kinase C signaling. In addition, a clathrin heavy chain (Cre02.
g101400) was identified that is part of a coexpression cluster associ-
ated with mating activation induced in minus gametes (Molla-
Herman et al., 2010); clathrin has been reported to be present at the
ciliary pocket (Clement et al., 2013) and to affect ciliary assembly. In
contrast, an E2 ubiquitin-conjugating enzyme UBC21 encoded at
Cre12.g510300 was present in plus gamete cilia but apparently
absent from vegetative cell cilia.

Previous proteomic studies of Chlamydomonas vegetative cell
cilia have defined the core components of these organelles; see for
example (Pazour et al., 2005) and http://chlamyfp.org. With a few ex-
ceptions, the proteins identified here only in gametic cilia have not
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FIGURE 4: Proteins with varying ciliary localization following gametogenesis. The total
normalized spectral counts are plotted for proteins identified in the various samples. Examples
of several proteins present exclusively in gametic cilia (CYA18, CYG38, DRP2/ROC110, and
Cre03.g199050), and of proteins mostly present in gametic cilia (HOP1) or found in both
vegetative and gametic cilia (the IPY3 pyrophosphatase) are shown. Plots show mean + SD

(n=13).

been found previously in Chlamydomonas cilia (Table 1). There are
also examples of proteins present in vegetative cell cilia that are miss-
ing following gametogenesis. One intriguing example is UMM7
(Cre08.9380000), which contains two enzymatic cores—an N-termi-
nal 5-histidylcysteine sulfoxide synthase and a C-terminal S-adenosyl-
methionine-dependent methyltransferase. Predictably, this enzyme
likely synthesizes an ovothiol, such as 1-N-methyl-4-mercaptohisti-
dine or a closely related compound. Ovothiols are strongly reducing
antioxidants found in trypanosomes, diatoms, euglenoids, and the
eggs of marine invertebrates, where they scavenge hydrogen perox-
ide and potentially form mixed disulfides with exposed cysteine resi-
dues of proteins (Castellano and Seebeck, 2018). As dynein-driven
ciliary motility and the sign of phototactic behavior are both con-
trolled by changes in redox poise (Wakabayashi and King, 2006;
Wakabayashi et al., 2011), defining how ovothiols affect the redox
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structural domains and is redox active
(Wakabayashi and King, 2006). Two trans-
membrane proteins, FAP154 and FAP49,
which are almost identical (except at the ex-
treme termini) and encoded by adjacent
genes, are abundant in vegetative cell cilia
and decrease by ~5-fold following gameto-
genesis. Both have seven N-terminal trans-
membrane domains, a central PAS domain,
and a C-terminal region containing at least four additional trans-
membrane segments; PAS domains act as environmental sensors,
often of light, oxygen, or other small molecules.

Multiple FAPs that are reduced and/or absent in gametic cilia
contain protein—protein interaction motifs including ankyrin repeats
(FAP26 and FAP79), armadillo/B-catenin-like repeats (FAP28),
tetratricopeptide repeats (FAP185), and a prefoldin-like domain
(FAP88). In addition, FAP280 is reduced ~10-fold in gametes. This
membrane/matrix-associated protein contains a multiprotein bridg-
ing factor domain found in a wide range of eukaryotes and is poten-
tially involved in transcriptional coactivation. Finally, two additional
proteins (FAP177 and FAP181) with no obvious domains are both
reduced following gametogenesis.

Several proteins were found almost exclusively in gametic axo-
nemes. For example, Cre10.9423600 encodes a protein containing

MT+
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an N-terminal NTPase domain, 3 EF-hands that are predicted to
bind Ca%, and 11 C-terminal WD repeats. This increased ~5-fold in
minus gamete cilia samples and over 10-fold in plus gamete sam-
ples. Similarly, the Cre06.9294150 protein, which has no obvious
domains and multiple long regions of low complexity, was not found
in any vegetative cilia sample.

Changes in ciliary receptors following gametogenesis
Chlamydomonas contains almost 150 genes annotated as encoding
various receptors including members of the scavenger, ionotropic
glutamate, seven-transmembrane domain (listed as G protein—cou-
pled receptor-related), patched-related, Toll-like, and lectin-binding
receptor families, as well as the blue light receptor phototropin
(Huang et al., 2004; Merchant et al., 2007; Luxmi et al., 2019).

We identified a patched-related receptor (Cre12.9496350) al-
most exclusively in gametic cilia; however, several previous analyses
also found evidence for this protein in vegetative cilia (Jordan et al.,
2018; Picariello et al., 2019; Zhao et al., 2019), and its MRNA expres-
sion levels only change by ~2-fold during gametogenesis (Ning
et al., 2013; see Table 1). The abundance of a “GPCR-related” pro-
tein (Cre13.g604050) with extracellular pectate lyase repeats likely
involved in carbohydrate binding showed a similar gamete-specific
pattern with only a single peptide found in one vegetative cilia sam-
ple; this putative receptor has not been identified in cilia previously.
Importantly, although the topology of this protein is superficially
similar to that of GPCRs, Chlamydomonas lacks canonical Gy sub-
units (Merchant et al., 2007; Urano et al., 2012). An additional trans-
membrane protein (Cre12.9532850) in the ionotropic glutamate
receptor family and containing a type 2 periplasmic binding fold
often present in small molecule sensors was present only in gametic
cilia; this correlates well with the large increase in mMRNA expression
seen in gametic samples (Ning et al., 2013 and Table 1). In contrast,
peptides from a scavenger receptor (Cre05.9240700) and the blue
light receptor phototropin required for the acquisition of mating
competency decreased in gametic samples.

mRNA and protein abundance changes following
gametogenesis
Whole-cell transcriptomic analyses are often used as a proxy for
proteomic studies; if the mRNA increases the general assumption
is that protein levels follow, although the comparative magnitude
and timing of that increase is not always clear. Our analysis of the
ciliary proteomics of gametogenesis combined with the detailed
transcriptomic study of Ning et al. (2013) provides an opportunity
to make a broad assessment of the correlation between these
measures at the organelle level. The transcriptomic analysis mea-
sured whole cell mRNA levels in both asynchronous and synchro-
nized vegetative cells and resting gametes, as well as gametes
treated with lysin to remove the cell walls or activated with dibu-
tyryl cAMP (Ning et al., 2013). One important caveat for this com-
parison is that the wild-type strains used in the mRNA analysis are
different from those used here for proteomics, which may intro-
duce strain-specific anomalies. Even so, in general there is a
strong correlation between increased mRNA levels and the ap-
pearance of a protein in cilia following gametogenesis (Table 1).
In a few cases, this correlation fails, which might result from ex-
perimental issues or incorrect identification of a protein as gam-
ete-specific or be due to vegetative cells maintaining a store of
the protein product in the cytoplasm and only relocating it to cilia
following a gametogenic signal.

In conclusion, this comparative analysis has identified numerous
developmental changes in ciliary composition and found both veg-
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etative cell- and gamete-specific cilia components. Furthermore, it
provides a resource for understanding functional specializations that
occur in cilia from Chlamydomonas cells of different mating types
following life-cycle stage transitions.

METHODS

Chlamydomonas culture

Wild-type Chlamydomonas reinhardtii strains CC124 (mating type
minus) and CC125 (mating type plus) were grown in 2 x 1 | cultures
to a density of ~5 x 10¢ cells/ml in R medium containing acetate on
a 12 h:12 h light/dark cycle and aerated with a 5:1 air to CO, mix-
ture. One culture of each strain was processed as described below
to provide vegetative cell cilia samples. The second culture was har-
vested by centrifugation (Fiberlite F10 rotor, 1100 x g, 7 mins, 20°C),
resuspended in M-N/5 medium and incubated overnight to induce
gametogenesis. Successful gamete formation was assessed by mat-
ing and formation of quadriciliate cells. This second culture was then
processed to provide the gametic cilia samples.

Cilia isolation and fractionation

Cilia isolation was performed following (Craige et al., 2013) with
modifications. Cells were harvested by low speed centrifugation
(Fiberlite F10 rotor, 1,100 x g, 7 min, 20°C),and washed three times
for vegetative cells and twice for gametic cells with 10 mM HEPES
pH 7.5. Cells were then resuspended in 30 mM HEPES pH 7.5, 5 mM
MgSQy, 4% sucrose (HMS; 10 ml per tube) on ice; all solutions con-
tained protease inhibitor cocktail (Sigma-Aldrich, P9599) and 1 mM
DTT hereafter. Subsequently, 100 pl of 5.3% (wt./vol) CaCl, was
added to each tube followed by 2 ml of 25 mM dibucaine.HCl to in-
duce deciliation, which was assessed by phase contrast microscopy.
Deciliated cell bodies were collected by low speed centrifugation
(1800 xg, 5 min in a Sorvall ST8 centrifuge with a swing-out rotor).

The supernatant containing detached cilia was laid over a 25%
sucrose solution made in 30 mM HEPES pH 7.5, 5 mM MgSQ,. The
tubes were then spun in a swing-out rotor (2400 x g, 10 min in a
Sorvall ST8 centrifuge) to pellet any remaining cell bodies through
the sucrose under layer. The top sucrose layer and the 4%/25% su-
crose interface (the latter contains most of the cilia) were transferred
into fresh tubes. Cilia were harvested by centrifugation in a Fiberlite
F21S 8 x 50y rotor (30,000 x g, 20 min, 4°C). Pellets were resus-
pended in 0.5 ml of HMEK buffer (30 mM HEPES pH 7.5, 5 mM
MgSQOy, 0.5 mM EDTA, 25 mM KCl) and spun in a Fiberlite F21S 8 x
50y rotor (30,000 x g, 20 min, 4°C). Isolated cilia were resuspended
in appropriate volumes of HMEK to adjust the concentration to
4 mg/ml. Protein concentration was determined with the BCA assay
using BSA as standard. IGEPAL-CA630 detergent (Sigma-Aldrich,
13021) was then added to a final concentration of 1% (vol/vol) and
extraction allowed to occur on ice for 30 mins with mixing every
10 mins. Following centrifugation (Fiberlite F21S 8 x 50y rotor,
30,000 x g, 20 mins, 4°C), the supernatant was removed and used
as the membrane plus matrix sample, while the extracted axoneme
pellet was resuspended in gel sample buffer directly.

Gel samples derived from equal total cilia mass equivalents
(50 pg) were denatured at 80°C for 10 min and fractionated in 4-15%
SDS gradient MINI-PROTEAN TGX polyacrylamide gels (Biorad,
Hercules, CA). For mass spectrometry, samples were separated using
a short gel protocol in which the sample entered only about 2 cm
into the gel. Each sample was run in triplicate in a different electro-
phoresis unit to ensure crossover contamination did not occur.
Following staining with newly prepared Coomassie blue, each lane
was excised, subject to in-gel tryptic digestion and the peptide prod-
ucts analyzed by mass spectrometry (see below).
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Mass spectrometry

Trypsinized cilia samples were spiked with 2 pmol trypsin-digested
yeast alcohol dehydrogenase (ADH) for quality control and normal-
ization. Mass spectral (LC-MS/MS) analysis was performed at the
University of Massachusetts medical school mass spectrometry facil-
ity. Each sample was injected into a Thermo Scientific Q exactive
quadrupole-Orbitrap hybrid mass spectrometer with Waters Nano-
Acquity ultra-performance liquid chromatography. Six ADH pep-
tides were used to evaluate the acquisitions and yielded a mass er-
ror of ~2 ppm. Data were searched against the Chlamydomonas
genome v.5.5 with Mascot in Proteome Discoverer 2.1.1.21 using a
fragment tolerance of 0.050 and a parent ion tolerance of 10 ppm;
a maximum of two missed cleavages were allowed. Modifications
assessed were carbamidomethyl on Cys, C-terminal Gly-loss plus
amide, N-terminal pyroglutamylation on GlIn, oxidation on Met, and
N-terminal acetylation and phosphorylation on Ser, Thr, and Tyr. Pro-
tein threshold was set to 99.0% minimum with a two-peptide mini-
mum; data were analyzed using Scaffold ver. 5.0.1.

Total normalized spectral count data were plotted using Graph-
Pad Prism ver.7. For bar charts, mean £ SD is shown; for scatterplots
of vegetative versus gametic cilia samples, the average spectral
counts from n = 3 samples were used. Pearson correlation coeffi-
cients (r) were calculated using GraphPad Prism.

Domain Analysis

Protein domain organization was analyzed using SMART (http://
smart.embl-heidelberg.de/), Prosite (https://prosite.expasy.org/),
and cDART (https://www.ncbi.nlm.nih.gov/Structure/lexington/docs/
cdart_about.html). SignalP was employed to assess the presence of
potential signal sequences (https://services.healthtech.dtu.dk/
service.php?SignalP-5.0), and TOPCONS used to predict mem-
brane protein topology (https://topcons.net/; Tsirigos et al., 2015).
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