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	 Background:	 Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy, characterized by high 
recurrence rate resulting in poor prognosis. Porphyromonas gingivalis, most closely correlated with chronic peri-
odontitis, is increasingly thought to play a significant role in OSCC development via influencing tumor-associ-
ated macrophages. However, its specific function remains unclear. In this study, we attempted to explore the 
mechanism of action of P. gingivalis in the recurrence of OSCC by bioinformatics analysis, to lay a foundation 
for subsequent basic experiments.

	 Material/Methods:	 The P. gingivalis-infected macrophage microarray dataset (GSE24897) and the OSCC advanced relapse patient 
microarray dataset (GSE87593) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially-
expressed genes (DEGs) were screened using R system, and the intersected DEGs were analyzed for function-
al enrichment, and protein–protein interaction (PPI) networks were constructed. The expression of significant 
DEG in GSE24897 microarray was assessed to determine its effect on macrophage immune infiltration in pan-
cancer by applying the TIMER 2.0 repository. To detect the expression of DOK3 in OSCC specimens, immuno-
histochemical (ICH) assay was used.

	 Results:	 A total of 106 co-expressed DEGs were upregulated and 131 were downregulation. The biological processes 
were mainly enriched in DNA-templated transcription terms, the cellular component enrichment was mainly 
enriched in the nucleus terms, and the molecular function enrichment was mainly enriched in protein-binding 
function terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DEGs were main-
ly enriched in the MAPK signaling pathway. Overall analysis of the PPI network showed a significant aggrega-
tion, with the top 10 hub co-expressed genes (CASP3, FYN, HNRNPA2B1, NR3C1, RELA, REL, POLR2F, RAN, RHOA, 
and STAT5B). DOK3 is significantly upregulated in P. gingivalis-infected macrophages, which is associated with 
macrophage infiltration and differentiation. There was more positive DOK3 staining in the group with P. gingi-
valis infection.

	 Conclusions:	 P. gingivalis can affect the recurrence of OSCC by increasing the expression of DOK3 in TAMs, which may be 
involved in activation of signaling pathways such as TNF and MAPK.
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Background

Cancer of the oral cavity has a high recurrence and high stag-
ing at diagnosis, which often does not allow surgical treat-
ment because the interventions are too destructive and have 
secondary complications; therefore, the treatment of choice is 
chemoradiotherapy [1]. Oral squamous cell carcinoma (OSCC) 
is the most common subgroup of head and neck malignan-
cies, which can develop in all parts of the oral cavity, resulting 
directly from apparently normal mucosa or progressively from 
potentially malign disorders [2]. Annually, there are around 400 
000 new cases diagnosed all across the globe, accounting for 
2% of all cancers [3]. Patients with advanced OSCC have poor 
prognosis due to strong invasive ability, high recurrence rate, 
and lymph node metastasis [4]. Locoregional recurrence is fre-
quent (approximately 32.7~44.9%) [5-7] and remains a criti-
cal issue in clinical management of advanced-stage OSCC [8].

Increased attention has focused on the interaction between 
oral microbiome and OSCC in the past few decades [9]. The 
accumulated evidence indicates that chronic periodontitis is 
one of the pathogenic factors resulting in OSCC [10-13], which 
was found to increase the incidence of OSCC by 5.23-fold [14]. 
Microbiota homeostasis plays important roles in health and 
disease. Dysbiosis of oral florae can disrupt the host im-
mune defense, thus deeply affecting tumorigenesis [15,16]. 
Porphyromonas gingivalis is a gram-negative absolute anaer-
obic bacterium that is a crucial bacterial pathogen of OSCC 
characterized by invading the cellular circle and normal physi-
ological metabolism of epithelial cells, interfering with the host 
immune system, and producing a toxic effect of inhibiting pro-
grammed cell death [17,18]. Many anatomical structures (eg, 
gingiva, buccal mucosa, dorsum of the tongue, lingual mar-
gin, hard and soft palate) are easily colonized by various types 
of microflora [19,20]; therefore, P. gingivalis can prolong the 
time of contact with tumor cells to promote OSCC progression 
[9]. Tuominen et al [21] has reported that P. gingivalis can in-
hibit apoptosis, activate cell proliferation, promote cell inva-
sion, induce chronic inflammation, and directly produce car-
cinogens. P. gingivalis has been detected in abundance in the 
oral cavity of patients with OSCC [22], suggesting it is an inde-
pendent bacterial factor that raises the risk of death in OSCC 
patients [23]. Abnormal aggregation of P. gingivalis can cause 
local microecological imbalance of the oral cavity and is a dom-
inant species in periodontitis, and further impact is the forma-
tion of a tumor microenvironment (TME) that is closely asso-
ciated with oro-digestive carcinogenesis [24]. TME refers to a 
restricted internal environment constituted by locally tumor-
associated infiltrating mesenchymal cells (eg, macrophages, 
fibroblasts, neutrophils, epithelial/endothelial cells) and their 
secretory extracellular matrix (ECM) together with inner can-
cer cells [25,26].

Tumor-associated macrophages indeed are among the most 
plentiful and important tumor-infiltrating immune cell types 
in TME. They have great plasticity in function, which can pres-
ent diverse phenotypes to act within distinct microenviron-
ments based on their biogenesis and biological properties [27]. 
According to different regulatory signals and states, macro-
phages can be categorized into 2 polarizations: classical ac-
tivation type (M1 type) and alternative activation type (M2 
type) [28]. More importantly, the pro-tumor effects of TAMs 
have strong links with their M2 polarized phenotype [29,30]. 
The downstream of kinase (DOK) is a new type of family of 
tyrosine residue phosphorylated proteins that participates in 
the regulation of tumor cell growth [31]. To date, there are 7 
known human DOK genes (DOK1 to DOK7) that participate in 
regulation of various signaling pathways, such as cell growth, 
proliferation, migration, and apoptosis [32,33]. As one of these 
subtypes, the DOK3 gene, located at 5q35.3, exon 8 [34], is 
an immune-specific possessing specific pattern of expression 
in immune cells [36,36]. Macrophages studies showed it can 
downregulate the macrophage response stimulated by gran-
ulocyte macrophage colony-stimulating factor (GM-CSF) [37], 
and can be strongly positively associated with marker genes 
in M2 TAMs [35].

Herein, we hypothesized that P. gingivalis might affect the 
macrophages infiltrated in TME to give rise to OSCC recurrence 
through modulation of DOK3, so the possible molecular mech-
anism was explored by performing bioinformatics analysis to 
provide research directions for future experimental studies.

Material and Methods

Ethics

Our study was reviewed and approved by the Ethics Committee 
at the First Affiliated Hospital of Xinjiang Medical University, 
Urumqi, PR China (approval number: K202107-06). Procedures 
in this research were completed in keeping with the standards 
of the Helsinki Declaration and laboratory guidelines of re-
search in China. Written informed consent was not applicable.

Data Preparation

To screen the datasets related to P. gingivalis infection of mac-
rophages, as well as late recurrence of OSCCs, we download-
ed 2 expression profile sequencing datasets (GSE24897 and 
GSE87593, respectively) from the Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/geo) database using 
GSE24897 by GPL570 Platform (Affymetrix Human Genome 
U133 Plus 2.0 Array) and GSE87593 by GPL14550 Platform 
(Agilent-028004 SurePrint G3 Human GE 8x60K Microarray). 
Their probes were converted to the corresponding gene symbols 
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based on annotation information on the platform. GSE24897 
dataset contains 3 sets of uninfected macrophages and 3 sets 
of P. gingivalis-infected macrophage samples, and the GSE87593 
dataset contains 8 sets of OSCC late non-recurrent tissue sam-
ples and 8 sets of OSCC late recurrent tissue samples.

Differentially-Expressed Gene Analysis

The 2 datasets were separately analyzed using the Limma pack-
age in R software version 4.0.2 (R Foundation for Statistical 
Computing, Vienna, Austria). The probes without correspond-
ing gene symbols or with multiple gene symbols were removed 
or taken as intersection. The differentially-expressed genes 
(DEGs) were screened and heat-mapped using the R heatmap 
package. Accordingly, differences were considered statistically 
significant with logFC (fold change) >1 and adj. P value <0.01.

Functional Annotations Analysis

We employed DAVID (Database for Annotation, Visualization 
and Integrated Discovery) (https://david.ncifcrf.gov/) resourc-
es to obtain information for gene ontology (GO), including bio-
logical processes, cellular component, and molecular function. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis was used to annotate the potential functions. A 
significance level of P<0.05 was set as the cutoff criteria and 
the plots were constructed by the gplots package in R software.

Protein–Protein Interaction Analysis

The DEGs were enrolled in a protein–protein interaction (PPI) 
network through the STRING database (https://string-db.org/). 
The filtering condition was medium confidence (0.400), and 
isolated nodes were excluded to generate the PPI network. The 
hub genes were calculated using Hubba plug-in of Cytoscape 
software version 3.8.0 (Free Software, Boston, MA, USA).

Macrophage Infiltration

We used the TIMER 2.0 online tool (http://timer.comp-genom-
ics.org/ or http://timer.cistrome.org/) to explore macrophage 
infiltrates across diverse cancers using the immune module.

Collection of Clinical Samples

Fifty patients with recurrent OSCC admitted to our center from 
January 2020 to June 2022 were selected for the study, of whom 
27 were males and 23 were females, aged 55~75 years. All 
patients were tested for P. gingivalis before enrollment (the 
detection method for P. gingivalis is shown in Supplementary 
Figure 1), of which 25 were P. gingivalis-positive and 25 were 
P. gingivalis-negative. All patients in this study voluntarily par-
ticipated and signed the informed consent form. There was 

no significant difference between the 2 groups in terms of 
general information such as sex and age (P>0.05). The use 
of human samples in this study was approved by our cen-
ter’s Ethics Committee and was performed according to the 
STROBE (Strengthening the Reporting of Observational Studies 
in Epidemiology) statement.

Histopathological Evaluation

Fresh OSCC tissues excised during clinical procedures were 
placed in 4% formaldehyde solution for fixation, and then 
were dehydrated, paraffin-embedded, and serially sectioned 
to 4-μm thickness. The sections were dewaxed in xylene; hy-
drated in ethanol with gradients of 100%, 95%, 90%, and 85% 
for 5 min each. Antigen repair was performed with 10 mmol/L 
sodium citrate buffer for 15 min, washed 3 times with PBS af-
ter natural cooling, and reacted with peroxidase blocker for 
15 min to block endogenous peroxidase, then washed 3 times 
with PBS and incubated with goat serum. Sections were in-
cubated with DOK3 monoclonal antibody (Abcam, ab236609, 
1: 500) and incubated overnight at 4°C in a refrigerator. After 
rewarming for 2~5 min, goat anti-rabbit IgG was added after 
washing with PBS and incubated at room temperature for 25 
min, then washed 3 times with PBS, and horseradish peroxi-
dase-labeled streptavidin working solution was added for 15 
min. After washing 3 times with PBS, the DAB kit (Beyotime, 
Shanghai, China) was used for 3~5 min; hematoxylin was used 
for restaining, 1% hydrochloric acid alcohol fractionation for 
1~2 s, and water was used to return the blue. After natural 
drying, 10% neutral gum was used to seal the film. Double-
blind scoring was performed by 2 professional pathologists. 
Eight fields of view per section were randomly selected for ob-
servation at 200× and 400×.

Statistical Analysis

All data-mining work was performed using the packages Limma 
(Version 3.46.0) [38], MethylMix (Version 2.20.0) [39], clus-
terProfiler (Version 4.3.1) [40], survminer (Version 0.4.9), sur-
vival (Version 3.2.13), glmnet (Version 4.1.2) [41], pheatmap 
(Version 1.0.12), corrplot (Version 0.90), timeROC (Version 0.4) 
[42], WGCNA (Version 1.70.3) [43], maftools (Version 2.6.5) 
[44], and pRRophetic (Version 0.5) implemented in R software, 
version 4.0.2 (R Foundation for Statistical Computing, Vienna, 
Austria). When measurement data were normally distributed, 
data were expressed by mean±standard deviation (SD), and 
an independent samples t test was used for comparison of 2 
groups, while the chi-square test was used for comparison of 
count data. For all analyses, two-tailed P<0.05 was set as the 
threshold for determining statistical significance. Differences 
were considered significant if * P<0.05; ** P<0.01; *** P<0.001, 
**** P<0.0001.
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Results

Identification of DEGs

After normalizing the expression profile of sequencing data, 

the distributions of differential gene expression between 2 
samples were visualized using volcano plots (Figure 1A, 1B). 
A total of 747 differentially-expressed genes were identi-
fied in the GSE24897 dataset, including 496 upregulated 
genes and 251 downregulated genes (Figure 1C), while 747 
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Figure 1. �Distributions of differentially-expressed genes. (A, B) The volcano plot of GSE24897 and GSE85793. Green dots 
represent significantly downregulated genes, red dots represent significantly upregulated genes, and black dots represent 
insignificantly changed genes. (C, D) The heatmaps of DEGs. Blue color represents low expression genes, red color represents 
high expression genes, and different color brightness represents gene expression. R software 4.1.3 version was used for 
visualization.
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Figure 2. �Venn plots of differentially-expressed genes (DEGs). Venn plots of DEGs showing upregulated (A) and downregulated genes 
(B). R software 4.1.3 version was used for visualization.

Term Fold enrichment p-Value Count

BP enrichment

Transcription, DNA-templated 1.68 0.00 40

Negative regulation of granulocyte differentiation 30.72 0.00 3

Protein targeting to vacuole 30.72 0.00 3

Golgi to plasma membrane protein transport 12.14 0.00 4

Positive regulation of neuron projection development 5.52 0.00 6

Somatic stem cell population maintenance 6.30 0.01 5

Blood vessel development 8.62 0.01 4

Positive regulation of I-kappaB kinase/NF-kappaB signaling 3.56 0.01 7

Lymph node development 14.46 0.02 3

activation of MAPKK activity 7.12 0.02 4

Positive regulation of type I interferon production 6.42 0.02 4

Development of secondary female sexual characteristics 81.91 0.02 2

Viral process 2.47 0.03 9

Positive regulation of erythrocyte differentiation 10.24 0.03 3

Response to tumor necrosis factor 9.83 0.04 3

Peptidyl-tyrosine phosphorylation 3.21 0.04 6

Endodermal cell differentiation 9.10 0.04 3

Glutamate secretion 8.78 0.05 3

Hematopoietic progenitor cell differentiation 4.96 0.05 4

Creatinine metabolic process 40.96 0.05 2

Positive regulation of viral transcription 8.47 0.05 3

Transcription from RNA polymerase II promoter 1.92 0.05 12

Table 1. The GO and KEGG enrich terms.
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Table 1 continued. The GO and KEGG enrich terms.

Term Fold enrichment p-Value Count

CC enrichment

Nucleus 1.45 0.00 92

Cytoplasm 1.38 0.00 84

Cytosol 1.52 0.00 59

Nucleoplasm 1.57 0.00 51

Microtubule organizing center 3.91 0.01 7

Neuron projection terminus 19.74 0.01 3

Apical part of cell 5.70 0.01 5

Centrosome 2.41 0.01 12

Spindle 4.24 0.01 6

Trans-Golgi network membrane 5.15 0.02 5

Midbody 3.98 0.02 6

Trans-Golgi network 3.77 0.02 6

Microtubule 2.48 0.03 9

Membrane raft 2.91 0.03 7

TAP complex 57.04 0.03 2

Recycling endosome 3.89 0.04 5

Lysosomal membrane 2.50 0.04 8

MF enrichment

Protein binding 1.24 0.00 127

Receptor signaling protein serine/threonine kinase activity 9.70 0.00 6

Transcriptional activator activity, RNA polymerase II distal enhancer 
sequence-specific binding

13.71 0.00 4

RNA polymerase II distal enhancer sequence-specific DNA binding 6.59 0.01 5

Metal ion binding 1.53 0.01 37

Poly(A) RNA binding 1.67 0.02 22

Activin-activated receptor activity 85.69 0.02 2

Transferase activity 4.46 0.03 5

Peptide antigen-transporting ATPase activity 57.13 0.03 2

TAP1 binding 42.85 0.05 2

KEGG enrichment

Tuberculosis 3.49 0.01 8

TNF signaling pathway 4.33 0.01 6

Focal adhesion 3.00 0.02 8

Neurotrophin signaling pathway 3.86 0.02 6
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differentially-expressed genes were identified in the GSE87593 
dataset, including 226 upregulated genes and 521 downreg-
ulated genes (Figure 1D). Posterior to taking the intersection 
of the 2 collections, there were 106 genes in common among 
all upregulated genes (Figure 2A) and 131 genes in common 
among all downregulated genes (Figure 2B).

Functional Analysis of DEGs

To understand the biological meaning behind lists of DEGs, 
enrichment analysis of signaling pathways and functions was 
performed using DAVID (Table 1). Biological processes (BP) 
were mainly enriched in DNA-templated transcription terms 
(Figure 3A), the cellular component (CC) enrichment was mainly 
enriched in the nucleus terms (Figure 3B), and molecular func-
tion (MF) enrichment was mainly enriched in protein-binding 
function terms (Figure 3C). KEGG enrichment analysis found 
that the genes were predominantly enriched in the MAPK sig-
naling pathway (Figure 3D).

The PPI Network of the Co-Expression of DEGs

The co-expression of DEGs was imported into the online STRING 
Data Resources to derive the PPI network, which showed a to-
tal of 225 nodes and 232 edges. After hiding the isolated nodes 
in the network, 198 expected nodes remained, with a PPI en-
richment P value of 0.0108. The overall analysis of the network 
showed a significant aggregation (Figure 4). Using cyto-Hub-
ba software package, all the proteins in PPI network were cal-
culated by applying maximum correntropy criterion (MCC) al-
gorithm, which displaying that the top 10 ranked genes were 
CASP3, FYN, HNRNPA2B1, NR3C1, RELA, REL, POLR2F, RAN, RHOA, 
and STAT5B (Figure 5).

The Relationship Between DOK3 Expression and 
Macrophage Infiltration

To investigate the effect of DOK3 expression on macrophage 
infiltration, we first analyzed the expression of DOK3 in P. gin-
givalis infection of macrophages microarray. The analysis re-
vealed that the expression of DOK3 significantly increased 

after macrophages were treated with P. gingivalis (Figure 6A, 
P<0.0001). The effect of DOK3 on macrophage infiltration was 
further analyzed, showing that expression of DOK3 affected 
the infiltration of M1 and M2 TAMs in oral cancer (Figure 6B, 
P<0.05).

Expression of DOK3 in Patients with Recurrent OSCC with 
Different P. gingivalis Infections

To confirm the expression of DOK3 in patients with different P. 
gingivalis infections, we collected oral cancerous tissues from 
patients with recurrent OSCC through clinical biopsy and di-
vided the patients into P. gingivalis-infected and non-infected 
groups by P. gingivalis detection. The expression of DOK3 in 
2 groups was detected by immunohistochemistry (ICH), and 
the results showed that the DOK3 staining was stronger in the 
group with P. gingivalis infection than in the group without P. 
gingivalis infection (Figure 7).

Discussion

Progress in surgical skills of radical reconstruction, radiothera-
peutics, chemotherapy approaches, anti-cancer-immune-drug 
development, and molecular characterization of OSCC in this 
new millennium were expected to lead to better prognoses 
for OSCC patients. However, clinical outcomes have barely im-
proved in recent years, particularly for OSCC, and the short-
term and long-term treatment-associated relapse rates are 
still high. Tobacco and alcohol consumption, as well as the 
microbiological agents mentioned in the Introduction section 
above, have important roles in the occurrence and progression 
of OSCC [45,46]. One of the reasons why high morbidities of 
recurrence and metastasis are observed among OSCC cases is 
the rich blood supply and lymphatic reflux of this anatomical 
site [47]. Another reason may be the easy bacterial coloniza-
tion under suitable conditions, supported by the connection 
between the respiratory and digestive tracts [48].

Different severity of factors, including microbial dysbiosis and 
immune dysfunction, likely contribute to oral tumorigenesis. 

Term Fold enrichment p-Value Count

KEGG enrichment

Viral myocarditis 5.42 0.04 4

MAPK signaling pathway 2.44 0.04 8

Apoptosis 4.99 0.04 4

Viral carcinogenesis 2.64 0.05 7

Table 1 continued. The GO and KEGG enrich terms.
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Figure 3. �The GO and KEGG analysis. The significant enrichment terms in (A) BP, (B) CC, and (C) MF were shown using a scatter plot. 
The significant pathways involved in (D) KEGG enrichment was shown using a scatter plot. Colors represent the P values and 
sizes of the spots represent the counts of genes. R software 4.1.3 version was used for visualization.
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Figure 4. �The PPI network. A network of protein–protein interactions (PPI) was built using STRING. Different nodes represent different 
proteins and the edges represent the degree of connection between proteins. String version 11.5 was used for visualization.
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Figure 5. �Hub genes computed by MCC algorithm. The top 
10 hub genes were obtained by the MCC algorithm. 
Cytoscape version 3.9.0 was used for visualization.

Many studies have confirmed that microorganisms directly af-
fect the activities of primary epithelial and OSCC cells, which 
mediates assorted biological behaviors in a process that starts 
from benign lesions, progresses to intermediate proliferative 
stages, and eventually deteriorates into oral cancer in situ or 
generating sharp invasion, proving its synergism in cancerous 
growth [23,49]. This suggests that the elements and/or trans-
formation of microbial communities can have a great impact 
on oral carcinogenesis [50]. Foremost among these is P. gingi-
valis, which promotes OSCC progression via generating a can-
cer-promoting microenvironment composed of bacterial pro-
duction, tumor cells, and infiltrating immune cells [51]. In the 
field of high-throughput gene sequencing, P. gingivalis outer 
membrane vesicles containing different packaged small RNAs 
is a novel insight into the host-pathogen interaction, where-
by P. gingivalis boosts the invasion and migration of OSCC in 
vitro [52]. P. gingivalis-induced inflammatory efficacy is the 
causative keystone sustaining and stimulating a pre-cancer-
ous niche [53] to continuously generate reactive oxygen spe-
cies, reactive nitrogen intermediates, inflammatory chemokines, 
and pyroptosis-related cytokines that exacerbate the accumu-
lation of mutations by triggering DNA damage, reducing ge-
netic stability, and causing epigenetic alterations, which sub-
sequently promote cellular carcinogenesis [54-56].

Oral epithelial cells infected by P. gingivalis enhance the pro-
liferation of pre-cancerous cells, as well as the angiogenesis, 
local invasion, and distal metastasis of cancer cells, and, crit-
ically, the formation of chronic inflammation into the TME 
[47,57,58]. Entry of microbial metabolites into the TME pro-
motes tumor progression by eliciting tumor‑potentiating 

immune cell responses [51]. Part of our preceding work found 
that CXCL2 and neutrophils were markedly increased in OSCC 
tissues and the TME infected by P. gingivalis, indicating that 
P. gingivalis and CXCL2 are involved in the recruitment of neu-
trophils, which contributes to the progression of OSCC [59]. A 
recent study also reported that P. gingivalis can accelerate in-
flammation-and-tumor formation by interfering with the mi-
gration of macrophages and inhibiting their phagocytosis of 
apoptotic neutrophils [60]. TAMs represent yet another con-
siderable cell subpopulation that accounts for more than half 
of the immune microenvironment of OSCC [61]. In this present 
study, we obtained 2 sequencing datasets: (1) microarray of 
macrophages treated with P. gingivalis, and (2) microarray of 
OSCC advanced relapse. According to bioinformatics analysis, 
a total of 237 co-expressed DEGs were identified between the 
2 datasets, including 106 upregulated genes and 131 down-
regulated genes. We performed functional de novo analysis 
using GO and KEGG to determine which enriched points of en-
try are associated with the TME. In BP enrichment, we found 
positive regulation of I-kB kinase/NF-kB signaling, activation 
of MAPK activity, response to tumor necrosis factor, the endo-
dermal cell differentiation, glutamate secretion viral process, 
and positive regulation of viral transcription. In KEGG analy-
sis, we also observed significant enrichment of co-expressed 
genes in the TNF signaling pathway, MAPK signaling pathway, 
apoptosis, and viral carcinogenesis. A definite correlation be-
tween the presence of P. gingivalis and Epstein-Barr virus (EBV) 
infection has been established, as well as the mechanisms by 
which EBV and P. gingivalis independently or synergistically 
can collaborate, indicating the oral cavity is the principal site 
where both of them are harbored due to their oncogenic po-
tential [62]. Collectively, the results of our enrichment analy-
sis showed that the changes in cell-biology-related functions 
and pathways caused by P. gingivalis may be consistent with 
those caused by viral infections. The enrichment of the afore-
mentioned points of entry analyzed in our study suggests 
that the occurrence of P. gingivalis infection in macrophages 
can give rise to alterations in cellular biological functions and 
pathways, which in turn lead to alterations in the TME and 
promote tumorigenesis. To further screen the hub genes of 
co-expressed DEGs, we established a PPI network and further 
calculated the network by MCC algorithm to find the 10 most 
expressed genes: CASP3, FYN, HNRNPA2B1, NR3C1, RELA, REL, 
POLR2F, RAN, RHOA, and STAT5B. Previous studies have found 
that CASP3 and STAT5B are involved in formation of the TME 
and are associated with tumorigenesis in some solid neo-
plasms; genetic defects including mutations in RHOA and FYN 
have been examined to reveal inactivate immunosurveillance 
in angioimmunoblastic T cell lymphoma [63-65].

Significantly higher expression level of DOK3 was associated 
with the TME of OSCC infected via P. gingivalis. We found that 
the DOK3 staining was stronger in the group with P. gingivalis 
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Figure 6. �The relationship between DOK3 expression and macrophage infiltration. (A) The DOK3 expression in P. gingivalis infection 
of macrophages microarray; (B) macrophages infiltration affected by DOK3. GraphPad Prism 8 was used for visualization in 
Figure 5A, and the TIMER 2.0 online tool was used for visualization in Figure 5B.
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infection. In another tumor study, DOK3 was reported to af-
fect colorectal cancer tumorigenesis [66]. DOK3 can function 
as an adapter molecule in the negative regulation of immu-
noreceptor signaling in macrophages, and influences immune 
microenvironment to result in an aggressive growth pattern 
of cancer cells manipulated by a high degree of local macro-
phage infiltrations. For the analyses of macrophage infiltra-
tion of distinct cancers, we ascertained that DOK3 is obvious-
ly highly expressed in macrophages of P. gingivalis, affirming 
that DOK3 is a vital regulator of innate immune responses in 
macrophages [67]. DOK3 was also found to be strongly pos-
itively correlated with marker genes of TAMs and M2 macro-
phages, but not M1 [35], and the ability M2 macrophages re-
lies heavily on the elevation of DOK3 expression in a glioma 
study repertoire, which led to poor prognosis [68]. Our analysis 
of the TIMER2.0 database also showed that DOK3 expression 
is associated with M2 polarization differentiated from TAMs.

Limitations

The present study is a bioinformatics analysis based on data 
provided by a public database (GEO), and although we found 
high expression of DOK3 in tumor tissues of patients with re-
current OSCC and P. gingivalis infection by ICH detection using 
clinical specimens, the generalizability of our final conclusions 
remains limited. In the future, we will confirm through experi-
mental in vitro cellular studies and in vivo animal studies that 
P. gingivalis affects TAMs infiltration and promotes tumor ma-
lignant progression in recurrent OSCC TME by DOK3 regulation.

Conclusions

Our study shows the participation of Porphyromonas gingiva-
lis in the TME, as well as how P. gingivalis possibly modulates 
TAMs in OSCC. Via the role of DOK3 in TAMs, high expression 
of DOK3 is regulated in TNF/MAPK signaling pathways. The 

A

C

B

D

Figure 7. �The expression of DOK3 in recurrent OSCC patients with different P. gingivalis infections (B and D, 200×) compared with 
non-immune IgG staining as a control (A and C, 200×). The yellow-stained granules represent DOK3 staining-positive cells, 
and the larger yellow staining area represents higher DOK3 expression.
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contribution of the TME has been important in identifying the 
role of components other than tumor cells that cause the de-
velopment of oral cancer, thus changing the outlook. As the 
key molecule, DOK3 might be the keystone modulator of M2 
macrophage polarized from infiltrated TAMs, in order to fur-
ther mediate immune surveillance/escape to promote cancer-
ous progression.
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