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ABSTRACT
Two recently introduced model-based bias-corrected estimators for
proportion of true null hypotheses (π0) under multiple hypotheses
testing scenario have been restructured for random observations
under a suitable failure model, available for each of the common
hypotheses. Based on stochastic ordering, a new motivation behind
formulation of some related estimators for π0 is given. The reduction
of bias for the model-based estimators are theoretically justified and
algorithms for computing the estimators are also presented. The esti-
mators are also used to formulate apopular adaptivemultiple testing
procedure. Extensive numerical study supports superiority of the
bias-corrected estimators. The necessity of the proper distributional
assumption for the failure data in the context of the model-based
bias-corrected method has been highlighted. A case-study is done
with a real-life dataset in connection with reliability and warranty
studies to demonstrate the applicability of the procedure, under a
non-Gaussian setup. The results obtained are in line with the intu-
ition and experience of the subject expert. An intriguing discussion
has been attempted to conclude the article that also indicates the
future scope of study.
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1. Introduction

The current work considers a segmented failure dataset, where failure time or some similar
entity of a particular component is available for a number of units but the units are oper-
ated or tested in different conditions, that may vary over space and time. Thus, the dataset
is divided into several segments and the observations are available for each segment. The
number of observations per segment (in order of tens or hundreds) might be much less
than the number of segments (in order of hundreds or thousands), as the segmentation is
done on the basis of time and space among other things. Thus the situation is quite similar
to that of microarray datasets where thousands of genes are tested to identify differen-
tially expressed genes based on gene expression levels of two small groups of subjects, viz.
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treatment group and control group. For segmented failure dataset, similar kind of ques-
tions may arise regarding identification of segment(s) for which the failure patterns of that
particular component is strikingly different (worse or better) from a benchmark, say the
average. To answer this question, appropriate hypotheses for each segment are framed and
tested simultaneously. While testing a large number of hypotheses, a control over the false
discovery rate (FDR) [1] is desirable and the classical Benjamini–Hochberg algorithm [1]
might be employed to achieve it. However, the power of Benjamini–Hochberg algorithmor
any general step-up procedure can be improved by incorporating a conservative estimate
of the proportion of true null hypotheses (π0) or equivalently the number of the true null
hypotheses [2,20].

Gaussian model assumption for failure data is inappropriate, especially when sample
size corresponding to each segment or equivalently each test is small. On the contrary, in
such situation, exponential distributionmay be a reasonable primary model choice. Under
such exponential setup, we modify both the estimators proposed in Cheng et al. [6] and
Biswas [3] and find that these model-based estimators are more efficient than the exist-
ing π0-estimators in practice. Application of adaptive Benjamini–Hochberg procedure has
the ability to list the significantly different segments with respect to such time to event or
equivalent entity of a certain component in our case study. For microarray datasets, the
model-based approach is well established, especially under normality assumption [3,6]. In
this article, we adapt and implement the same under the exponential model to a segmented
failure data, where such model assumption is appropriate and an alternative model for-
mulation may not be satisfactory to the desired extent. In what follows we introduce the
parameter π0 through the empirical Bayesian setup given in Storey [22].

Consider m similar but independent hypotheses are to be tested, viz. H1,H2, . . . ,Hm.
For Hi = 1, the ith null hypothesis is true and for Hi = 0, false for any i ∈ {1, 2, . . . ,m}.
Thus, Hi’s are Bernoulli random variables with success probability π0 ∈ (0, 1). Let m0 be
the number of true null hypotheses. Thus, m0 = ∑m

i=1Hi is a binomial random variable
with indexm and parameter π0. Clearly,Hi’s and hencem0 remain latent and can never be
realized in a givenmultiple testing scenario. As in case of single hypothesis testing problem,
the test statistics T1,T2, . . . ,Tm, respectively, for H1,H2, . . . ,Hm may be observed. For F0
being the common distribution of Ti|Hi = 1 and F1 being the same for Ti|Hi = 0, a two-
component mixture model for Ti is

Ti ∼ π0 F0 + (1 − π0) F1 for all i = 1, 2, . . . ,m. (1)

Thus, π0 may be thought of as the mixing proportion of the null test statistics with the
non-null test statistics when multiple tests are performed. In existing literature p-values
are considered as test statistics since its use ensures similar nature of critical region, irre-
spective of the nature of hypotheses framed. Usually, a little abuse of notation ismadewhile
denoting p-value by p irrespective of whether it is a randomvariable or a realization on that.
The distinction of usage ought to be understood as the situation demands. The marginal
density function of p-value [13] is

f (p) = π0 f0(p) + (1 − π0) f1(p) for 0 < p < 1, (2)

where f0 and f1 are two p-value densities, respectively, under the null and alternative
hypotheses. When the tested null is simple and the corresponding test statistic is abso-
lutely continuous, f0(p) is simply 1, the density function of a uniform random variable
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over (0, 1) and the p-value under the alternative hypothesis is stochastically smaller than
the uniformvariate. In addition, the density estimation-based approaches for estimatingπ0
impose certain restrictions on f1 [9,13,17]. Often p-values under the alternative are mod-
elled by parametric distributions [15,19] and π0 is estimated using maximum likelihood
methods. This requires the p-values to be independent among themselves which is rarely
satisfied. Storey’s estimator [22] is constructed on the basis of a tuning parameter λ ∈ (0, 1)
such that, f1(p) = 0 for p > λ. This assumption introduces a conservative bias in the esti-
mator that can be corrected or in practice, can be reduced as have been discussed in Cheng
et al. [6]. The setup given therein for the applicability of the Gaussian model-based bias
correction is discussed in Section 2. Biswas [3] has recently proposed an alternativemodel-
based bias-corrected estimator for π0 under the same setup. A comparative performance
study of both the estimators with simulated microarray datasets has also been provided.
There are several other works on estimation of π0, not directly related to the current work.
The interested readers are referred to Storey and Tibshirani [23],Wang et al. [26] and Tong
et al. [25].

The remaining part of the article is structured as follows. In Section 2, we reproduce
Storey’s estimator and the recently introduced bias-corrected estimators from stochastic
ordering approach which ties them in a yarn andmay inspire further works in similar line.
The next section is devoted to different testing scenarios and useful properties of respec-
tive non-null p-values. In Section 4, we briefly revisit the estimation algorithms and discuss
adaptation of the π0 estimates to Benjamini–Hochberg algorithm. Section 5 deals with
performance comparison of the new estimators with existing ones through extensive sim-
ulation experiment. In Section 6, a real-life synthetic segmented failure dataset is presented,
has been validated for applicability of the proposed methods, analysed to demonstrate the
superior performance of adaptive algorithm with the new estimators along with proper
justification of the findings. We conclude the article with a mention of a few limitations of
the present work and a glimpse of the future direction of the study.

2. Methods of estimation

Let p denote a p-value corresponding to a simple null hypothesis testing problem with
continuous test statistic. Thus, p has the support (0, 1). Consider another random variable
V on the same support (0, 1) with the distribution function G. Then,

P(p ≥ V) =
∫ 1

0
f (p)G(p) dp. (3)

In the following subsections, we take different choices for G and motivate different
estimators for π0 as mentioned in Section 1.

2.1. Storey’s bootstrap estimator and related approaches

Consider V to be degenerate at some λ ∈ (0, 1). Thus,

G(v) =
{
1 for v ≥ λ

0 for v < λ.
(4)
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Putting (2) and (4) in (3), we obtain

F̄(λ) = π0 (1 − λ) + (1 − π0)Q(λ) (5)

where F is the distribution function of p, F̄ = 1 − F andQ is the survival function of non-
null p-value. Assume,

• A1: For an appropriate choice of λ, Q(λ) = P(p > λ|H = 0) i.e the probability of non-
null p-value being greater than λ equals zero [22].

When parameter of interest under alternative hypothesis is substantially far from the
same specified under null hypothesis or sample size is moderate to large, p-value tends to
be smaller for consistent tests. Hence, even for moderate choice of λ, the probability of p-
value under false null dominating λ, vanishes. This is a reasonable but crucial assumption
in a sense that, violation of assumptions regarding the true value of the parameter of interest
and sample size may not result in Q(λ) = 0. Thus, applying A1 in (5) we get

π0 = F̄(λ)

(1 − λ)
. (6)

Let p1, p2, . . . , pm be the p-values corresponding to them hypotheses tested or equivalently
m realizations on p. DenoteW(λ) = ∑m

i=1 I(pi > λ) (I denoting the indicator function) to
be the number of p-values greater thanλ. Putting the plug-in estimator of F̄(λ), i.eW(λ)/m
in (6), an estimator for π0 depending upon the choice of λ may be suggested as

π̂0(λ) = W(λ)

m (1 − λ)
. (7)

For a given dataset, two different choices of λ would yield two different estimates and thus
an optimum choice of λ for a given dataset is necessary. For a subjectively chosen set with
possible values of λ ∈ �, where � = {0, 0.05, 0.10, . . . , 0.95}; a bootstrap routine is given
in Storey [22] and Storey et al. [24] to approximate the best λ. Thus, Storey’s bootstrap
estimator is: π̂B

0 = π̂0(λbest). In Storey and Tibshirani [23], natural cubic spline has been
fitted to the (λ, π̂0(λ)) curve for smoothing and the evaluated value of the fit at λ = 1 (as
motivated in Corollary 1 of [22]) is taken as the final estimate which we denote by π̂P

0 .
For a small choice of λ in π̂0(λ), the bias of the estimator is large while the vari-

ance is small. The situation is exactly opposite for large λ. It has been first noted by
Jiang and Doerge [12] and they have suggested the use of multiple λ’s instead of a single
best choice, in some sense. For the time being assume a fixed set Sλ = {(λ1, λ2, . . . , λk) :
0 < λ1 < λ2 < · · · < λk < 1} for a fixed k and equal width given by (λi+1 − λi) for i =
1, 2, . . . , k − 1 such that A1 holds. Then, the average estimate based approach suggests
π̂A
0 = (1/k)

∑k
i=1 π̂0(λi) to be an appropriate estimator for π0. The authors have also

suggested a change-point based algorithm to select Sλ.

2.2. Bias correction of Storey’s estimator

Without the assumption A1, from (5), we get

π0 = F̄(λ) − Q(λ)

(1 − λ) − Q(λ)
(8)
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for fixedλ. Cheng et al. [6] obtained (8) froma somewhat differentmotivation. Substituting
plug-in estimator of F̄(λ) has already been discussed in Section 2.1. For estimating Q(λ)

following assumptions are necessary.

• A2: The availability of a common test for all them hypotheses.
• A3: The data-arrays used for each test are generated from a known parametric family.
• A4: The closed form distribution of the test-statistics under the null are of a known

family, enabling the calculation of the exact p-values.
• A5: The distribution of the non-null test-statistics and hence the non-null p-values are

labelled by unknown effect sizes, which are different for each test.

A2 is generally true for microarray experiments and is also appropriate for the present
setup. Cheng et al. [6] assumed normality for each expression level, such that A3 is valid.
Time to events or its equivalent entities for each segment are assumed to be exponentially
distributed, thus satisfying A3. Under normality, the test-statistics for usual single-sample
or two-sample tests for the mean are normal under null. In this work, the test-statistics
for single-sample test related to the exponential rate parameter is a χ2 variate under null
and for a two-sample problem the test-statistic is distributed as a F variate. Thus, A4
also holds good. As mentioned earlier test for Hi is performed by Ti and we introduce
the notation δi to denote the effect size of the corresponding test. Non-null distribution
of Ti and hence the non-null distribution of pi is to be labelled by δi, i = 1, 2, . . . ,m.
Hung et al. [11] have discussed properties of non-null p-values, where non-null distri-
bution of the p-value for Z-test has been explored. For single sample and two sample t-test,
similar discussion is available in Section 3 of Cheng et al. [6]. We will discuss such prop-
erties of non-null p-value for single and two sample problems under exponential setup in
Section 3.

Let I = {1, 2, . . . ,m}. Also let T denote the set of indices corresponding to the orig-
inally true null hypotheses i.e, T = {i ∈ I : Hi = 1}. Thus, the cardinality of T , is m0.
Similarly denote the set of originally false null hypotheses by F . Clearly, F = I − T
with cardinality m1. Each null p has the same distribution, uniform over (0, 1); while
the distribution of non-null p-values are different but they belong to the same family.
Let f δ1 (p) denote the distribution of p with effect size δ. Then for all i ∈ F , Qδi(λ) =∫ 1
λ
f δi1 (p) dp, probability of ith non-null p-value being greater than λ. Define, Q(λ) =

(1/m1)
∑

i∈F Qδi(λ), the average of non-null p-values greater than λ. To estimate Q(λ),
individual δi’s are estimated by δ̂i, i ∈ F . In fact, δ̂i’s are strongly consistent for δi
for each i ∈ F . The estimation of δ under different testing problem is discussed in
Section 3. Each Qδi(λ) is continuous in δi and thus, Q

δ̂i
(λ) is strongly consistent for

Qδi(λ). Thus, a strongly consistent estimator for Q(λ) is Q̃(λ) = (1/m1)
∑

i∈F Q
δ̂i
(λ). In

practice, F is unknown and hence Q̃(λ) is unavailable. Assume Q̂(λ) to be a dummy
for Q̃(λ) such that Q̃(λ) ≥ Q̂(λ) with probability 1. The computation of Q̂(λ) is dis-
cussed in detail in Section 4. Substituting the plug-in estimators for F̄(λ) and Q(λ) in (8),
we get π̃U

0 (λ) (or π̂U
0 (λ)), bias-corrected estimator for π0 with fixed choice of λ. We

now address the issues related to reduction in bias and over-correction in the following
result.
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Result 2.1: With the setup and notations introduced in Section 2.2, for all λ ∈ (0, 1)

(a) ForW(λ)/m ≤ (1 − λ), π̃U
0 (λ) ≤ π̂U

0 (λ) ≤ π̂0(λ).

(b) π̃U
0 (λ) → π0, almost surely.

Result 2.1 combines claimswritten in Sections 2 and Section 4.2 of Cheng et al. [6].We have
been able to prove Result 2.1 in amore direct way. Thus, the approach reduces conservative
bias of Storey’s primary estimator while refraining from over-correction.

The situations π̂0(λ) ≤ 1 and Q̃(λ) ≤ (1 − λ) are quite usual inmultiple testing setup as
the first one is a reasonable estimate of π0 and Q̃(λ) is a consistent estimate ofQ(λ), which
is obviously less than (1 − λ). If these do not hold good, π̂U

0 (λ) lies outside the parameter
space and then we take the estimate to be the nearest boundary point.

� = {0.20, 0.25, . . . , 0.5} is taken as in Jiang and Doerge [12] for similar purpose (see
Section 2.2 in [6]) and we identify the following estimator as the bias and variance reduced
estimator for π0:

π̂U
0 = 1

#�

∑
λj∈�

min{1,max{0, π̂U
0 (λj)}},

where #� denotes cardinality of �.

2.3. Estimator based on sumof all p-values

Instead of taking V degenerated at some fixed λ, assume V ∼ Uniform(0, 1). Putting
G(v) = v for v ∈ (0, 1) in (3), we get

P(p ≥ V) =
∫ 1

0
p f (p) dp = E(p) = π0

2
+ (1 − π0) e (9)

since p|H = 1 ∼ Uniform(0, 1). In (9), we use e to denote expectation of non-null p-value:
e = E(p|H = 0). From (9), we get

π0 = E(p) − e
0.5 − e

. (10)

To estimate π0, both E(p) and e are to be estimated. E(p) can be estimated by the
mean of observed p-values: p̄ = (1/m)

∑m
i=1 pi. Define e = (1/m1)

∑
i∈F eδi . The aver-

age of expected p-values under the alternative, e can be estimated imitating the approach
of estimating Q(λ) with assumptions A2-A5. The corresponding estimator for π0 has
recently been introduced in Biswas [3] and computation of eδi = E(pi|i ∈ F) has been
demonstrated for single and two sample t-tests therein. Since each eδi is bounded and
continuous in δi, following the discussion in Section 2.2, a strongly consistent estima-
tor for e is ẽ = (1/m1)

∑
i∈F e

δ̂i
, which cannot be realized in practice for obvious reason

mentioned earlier and hence π̃E
0 = (p̄ − ẽ)/(0.5 − ẽ) cannot be implemented. For ê being

a dummy of ẽ with ê ≤ ẽ almost surely, an workable estimator for π0 is π̂E
0 = (p̄ − ê)/

(0.5 − ê).
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Result 2.2: With the setup and notations introduced in Section 2.3

(a) For p̄ ≤ 0.5, π̃E
0 ≤ π̂E

0 .

(b) π̃E
0 → π0, almost surely.

The situations p̄ ≤ 0.5 and ẽ ≤ 0.5 are very natural in multiple testing setup as p̄ is consis-
tent for E(p), which is less than 0.5 and similarly ẽ is consistent for e which is also less than
0.5. If theses do not hold good, π̂E

0 lies outside the parameter space and then we take the
estimator for π0 as

π̂E
0 = min

{
1,max

{
0,

p̄ − ê
0.5 − ê

}}
.

Both the model-based bias-corrected estimators are shown to have conservative bias for
estimating π0. In Cheng et al. [6], π̂U

0 has been shown to outperform the robust estimators
under reasonablemodel assumption, whereas under similar situation π̂E

0 outperforms, it in
terms of mean square error, as empirically studied in Biswas [3] through extensive simula-
tion study.Note that, both the estimators use an initial estimator forπ0 but the computation
of π̂E

0 does not require flexible threshold tuning parameters owing to the fact that it uses
all the p-values. To rule out the possibility of estimates taking value outside the parameter
space under very unusual situation, π̂E

0 is taken to be equal to the nearest boundary point
when it lies outside the parameter space. Proof of the results presented in this section are
provided in the Appendix.

3. Properties of non-null p-values

To implement the bias-corrected estimators π̂U
0 and π̂E

0 , appropriate estimates of the
unknown quantities Q(λ) and e are needed. To get explicit expressions for these quanti-
ties, we need to have the probability density functions f δi1 (p) (for notational convenience
we write this to be fδi(p) henceforth) for each non-null p-value with effect size δi, i ∈ F .
The subscript i in effect sizes are not specified in this section for ease of notation. Thus,
for different testing scenarios, we determine the probability density function fδ(p), then
Qδ(λ) by integrating fδ(p) from λ to 1 and finally obtain eδ through the following results.
As discussed in Section 2.2, Qδ(λ) for fixed λ and eδ are continuous in δ under each of the
testing problems considered here.

Result 3.1: Assume X1,X2, . . . ,Xn be a random sample of size n from an exponential
distribution with mean θ . Consider the following testing problem:

H0 : θ = 1 versus H0 : θ > 1. (11)

For the corresponding likelihood ratio test

(a) δ = θ and thus δ̂ = min{1, X̄}

(b) fδ(p) =
1
δ
fχ2

2n
( 1
δ
χ2
p,2n)

fχ2
2n

(χ2
p,2n)

for 0 < p < 1
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(c) Qδ(λ) = Fχ2
2n

(
1
δ

χ2
λ,2n

)
for 0 < λ < 1

(d) eδ = EX∼χ2
2n

[
1 − Fχ2

2n

(
X
δ

)]
.

Here fχ2
ν
, Fχ2

ν
and χ2

p,ν denote the probability density function, the distribution function
and the upper-p point of chi-square distribution with ν degrees of freedom, respectively.

Result 3.2: For X1,X2, . . . ,Xn to be a random sample from exponential distribution with
mean θ , consider the testing problem:

H0 : θ = 1 versus H1 : θ �= 1. (12)

For the corresponding likelihood ratio test

(a) δ = θ and thus δ̂ = X̄

(b) Qδ(λ) = Fχ2
2n

[
1
δ
χ2

λ
2 ,2n

]
− Fχ2

2n

[
1
δ
χ2
1− λ

2 ,2n

]
for 0 < λ < 1

(c) eδ = EX∼χ2
2n(0,μ)

[
Fχ2

2n

(
X
δ

)]
− EX∼χ2

2n(μ,∞)

[
Fχ2

2n

(
X
δ

)]
.

The notations used for stating Result 3.1 also remain relevant here. In addition to that,
χ2

ν (a, b) denotes the truncated chi-squared distribution with degree of freedom ν and
region of truncation being (a, b). Here μ denotes the median of χ2

2n distribution.

Result 3.3: Let X1,X2, . . . ,Xn1 and Y1,Y2, . . . ,Yn2 be two random samples of size n1 and
n2, respectively, from exponential distribution with mean θ1 and θ2. Consider the testing
problem

H0 : θ2 = θ1 versus H1 : θ2 > θ1. (13)

For the corresponding likelihood ratio test, we have the following.

(a) δ = θ2

θ1
and δ̂ = min

{
1,
n1 − 1
n1

∑n2
i=1 Yi∑n1
i=1 Xi

}

(b) fδ(p) =
1
δ
fF2n2,2n1

( 1
δ
Fp,2n2,2n1

)
fF2n2,2n1(Fp,2n2,2n1)

for 0 < p < 1

(c) Qδ(λ) = FF2n2,2n1

(
1
δ
Fλ,2n2,2n1

)
for 0 < λ < 1

(d) eδ = EX∼F2n2,2n1

[
FF2n2,2n1

(
X
δ

)]
.

Here fFν1,ν2
, FFν1,ν2

and Fp,ν1,ν2 , respectively, denote the probability density function, the
distribution function and the upper-p point of F distribution with ν1 and ν2 degrees of
freedom.
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Result 3.4: Consider X1,X2, . . . ,Xn1 and Y1,Y2, . . . ,Yn2 to be independent random sam-
ples of size n1 and n2 from exponential distributions with mean θ1 and θ2, respectively.
Consider the testing problem

H0 : θ2 = θ1 versus H1 : θ2 �= θ1. (14)

For the corresponding likelihood ratio test, we have

(a) δ = θ2

θ1
and δ̂ = n1 − 1

n1

∑n2
i=1 Yi∑n1
i=1 Xi

(b) Qδ(λ) = FF2n2,2n1

[
1
δ
F λ

2 ,2n2,2n1

]
− FF2n2,2n1

[
1
δ
F1− λ

2 ,2n2,2n1

]

(c) eδ = EX∼F2n2,2n1 (0,μ)

[
FF2n2,2n1

(
X
δ

)]
− EX∼F2n2,2n1 (μ,∞)

[
FF2n2,2n1

(
X
δ

)]
.

The notations used for Result 5 also remain relevant here. In addition to that, Fν1,ν2(a, b)
denotes the truncated F-distribution with degrees of freedom ν1, ν2 and region of trunca-
tion (a, b). Here μ denotes the median of F2n2,2n1 distribution. Interested readers may find
proof of the results in the Appendix.

4. Algorithms

Algorithm for computing π̂U
0 under normal model assumption is given in in Cheng

et al. [6] and for π̂E
0 under same setup, see Biswas [3]. First, we reframe the algorithms

under current setup tomaintain readability and formaking the proposed estimationmeth-
ods readily available to the practitioners. For the sake of brevity we only consider the testing
problem in Result 3.2 and use the corresponding non-null p-value properties here. For
all the four situations discussed here, the following algorithms can be implemented with
obvious modifications.

Algorithm 4.1 (For computing π̂U
0 ):

• For all i = 1, 2, . . . ,m, estimate δi by δ̂i = X̄i.
• For all i = 1, 2, . . . ,m and for each λj ∈ �; estimate the upper tail probability Qδi(λj)

by Q
δ̂i
(λj) given by

Q
δ̂i
(λj) = Fχ2

2ni

[
1
δ̂i

χ2
λj
2 ,2ni

]
− Fχ2

2ni

[
1
δ̂i

χ2
1− λj

2 ,2ni

]
.

where, ni denotes the available sample size for testing ith hypothesis.
• Using an available estimator of π0 as initial estimator π̂ I

0, calculate d = [m × (1 − π̂ I
0)],

where [ ] denotes the usual box function. Arrange Q
δ̂i
(λj)’s in increasing order and

denote the ith quantity in the list as Q̂(i)(λj). Thus a conservative estimator for Q(λj) is

Q̂(λj) = 1
d

d∑
i=1

Q̂(i)(λj).
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• Given Q̂(λj) ∀ λj ∈ �, calculate

π̂U
0 = 1

#�

∑
λj∈�

min

{
1,max

{
0,

W(λj)
m − Q̂(λj)

(1 − λj) − Q̂(λj)

}}
.

Algorithm 4.2 (For computing π̂E
0 ):

• For all i = 1, 2, . . . ,m, estimate δi by δ̂i = X̄i.
• For all i = 1, 2, . . . ,m, estimate the mean of non-null p-value eδi by

êδi = EX∼χ2
2ni

(0,μi)

[
Fχ2

2ni

(
X
δ̂i

)]
− EX∼χ2

2ni
(μi,∞)

[
Fχ2

2ni

(
X
δ̂i

)]
.

where ni denotes the available sample size for testing ith hypothesis and μi denotes the
median of χ2

2ni distribution.
• Using an initial estimator of π0 as initial estimator π̂ I

0, calculate d = [m × (1 − π̂ I
0)], as

before. Arrange êδi ’s in increasing order and denote the ith quantity in the list as ê(i).
Thus a conservative estimator for e is

ê = 1
d

d∑
i=1

ê(i).

• Given ê, calculate

π̂E
0 = min

{
1,max

{
0,

p̄ − ê
0.5 − ê

}}
.

Note 1: The role of π̂ I
0 is important in obtaining Q̂(λ) and ê. For π̂ I

0 ≥ π0, observe that
m1 ≥ d. Clearly, Q̂(λ) ≤ Q̃(λ) and ê ≤ ẽ. Thus, π̂U

0 ≥ π̃U
0 and π̂E

0 ≥ π̃E
0 .

Note 2: For implementation of both the algorithms, we choose Storey’s bootstrap esti-
mator, given by π̂B

0 as the initial estimator. This choice seems reasonable albeit being
non-universal and further research on this is warranted. The algorithms could also be
implemented with other choices of π̂ I

0. The performance analysis of the bias-corrected
estimators under the current setup requires extensive simulation study, starting with
different choices of the initial estimator. In fact, the algorithms could in principle be
done several times, each time with the estimate of π0 from the previous iteration.
Obviously, this technique will become computation intensive for all practical purposes.
We refrain from addressing these issues, as they are beyond the scope of the current
study.

It has already been mentioned in Section 1 that Benjamini–Hochberg procedure for
controlling the FDR is conservative. To understand this, we briefly discuss FDR and the
algorithm for controlling it at a prefixed level q ∈ (0, 1). While testingm hypotheses simul-
taneously, letR be the total number of rejected hypotheses by application of certainmultiple
testing algorithm. From the entire set of rejected hypotheses, some hypothesesmay be orig-
inally true. These are categorized as false discovery and let V denote the total number of
such false discoveries. Then the false discovery proportion (FDP) is defined as
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FDP =

⎧⎪⎨
⎪⎩
V
R

if R > 0

0 if R = 0.

Note that, prior to the application of any algorithm bothV and R are random variables and
the expected value of FDP is termed as FDR. Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered
sequence of the available p-values. Benjamini–Hochberg procedure identifies the largest k
such that p(k) ≤ (k/m)q and rejects all hypotheses with corresponding p-value less than
p(k) along with the hypothesis with p-value p(k). This procedure is conservative, as the
implementation of the same ensures FDR = π0 q where, π0 = m0/m. To overcome this
shortcoming, Craiu and Sun [7] worked with the following adaptive Benjamini–Hochberg
procedure which uses an approximation of π0.

Algorithm 4.3 (Implementing adaptive BH procedure to control FDR at level q):
• Let the p-value corresponding to the problem of testing Hi be pi for i = 1, 2, . . . ,m.

Arrange the available p-values in increasing order: p(1), p(2), . . . , p(m). Denote the
corresponding hypotheses by H(i) : i = 1, 2, . . . ,m.

• Given the dataset, estimate π0. Let it be π̂0.
• Compute the adjusted p-value corresponding to p(i):

adj.p(i) = min
{
π̂0

mp(j)

j
: j ≥ i

}
∀ i = 1, 2, . . . ,m.

• For all i = 1, 2, . . . ,m, reject H(i)if adj.p(i) ≤ q.
Both adaptive BH procedure and Storey’s q-value approach are justified to be equiva-

lent in Craiu and Sun [7]. They have also emphasized that both the approaches require a
good approximation of π0. Less conservative estimators for π0 are in demand since closer
approximation of π0 will bring superiority in the adaptive procedure by increasing the
number of rejections while controlling FDR at level q, as evident from Algorithm 4.3. In
numerical study, we use adjust.p( ) function (available in cp4p library from Bioconductor)
by Gianetto et al. [8] for obtaining the adjusted p-values.

5. Simulation study

We have conducted an extensive simulation study to investigate the performance of the
bias-corrected estimators under different settings. The well-known and established esti-
mators apart from the proposed π̂U

0 and π̂E
0 , considered for performance comparison are

listed below.

π̂B
0 : Storey’s bootstrap estimator (discussed in Section 2.1)

π̂L
0 : Convest estimator [13]

π̂A
0 : Jiang and Doerge’s average estimator (discussed in Section 2.1)

π̂P
0 : Natural cubic spline smoothing-based estimator (discussed in Section 2.1)

π̂H
0 : Histogram-based estimator [16]

π̂D
0 : A robust estimator of π0 [18]

π̂S
0 : Sliding linear model based model-based estimator (Wang et al. [26]).
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5.1. Simulation setting

We imitate a segmented time to event dataset to generate artificial datasets. For this pur-
pose, we choose m = 100, 500, 1000 segments. Two different settings are considered,
balanced setting with sample size for each segment being equal to 35 and unbalanced set-
ting with different sample sizes 15, 25, 35, 45, 55 for equal number of segments. For fixed
π0 = 0.1, 0.2, . . . , 0.9, calculatem0 = [mπ0] and takem1 = m − m0.We set themean fail-
ure time under null θ0 as ‘unity’. Form0 randomly chosen numbers from I = {1, 2, . . . ,m}
we fix θ = θ0 = 1 and for the remaining cells in the array θ , we generate values through
some stochastic mechanism ensuring that they are not equal to θ0. For segments with
better average lifetime θ ∼ Uniform(1, 1.5) and for segments with poor average lifetime
θ ∼ Uniform(0.5, 1). We take the proportion of better (or poor) non-null mean lifetimes
to be 0.5.

After generating the array of parameter θ , we generate a sample of size ni from the expo-
nential distribution with mean θi for all i = 1, 2, . . . ,m. Thus the dataset withm rows and
varying number of columns is generatedwhere each row correspond to observations froma
particular segment and out of themm0 (fixed by the choice of π0) segments originally have
mean lifetime equal to θ0 = 1. From each row of the dataset we obtain p-value by applying
appropriate test and construct a p-value array of length m to compute the bias-corrected
estimators fromAlgorithms 4.1 and 4.2. The other estimators are computed using estim.pi0
R-function (available in cp4p library). Algorithm 4.3 also uses this array of p-values and an
estimate of π0 to identify the significantly different segments with control over FDR.

5.2. Simulation results

Under different settings mentioned in Section 5.1, each experiment is repeated N = 1000
times and the estimators are compared through MSE(π̂0) = 1(/N)

∑N
i=1(π̂0i − π0)

2 and
Bias(π̂0) = (1/N)

∑N
i=1(π̂0i − π0). We also validate whether the adaptive BH algorithm

using differentπ0 estimators are conservative or not by simulating FDRvalues as a function
of π0 for the adaptive algorithms. Here we identify power of an multiple testing algorithm
as the proportion of rejected nulls among the hypotheses in F . The non-adaptive BH
algorithm and its different adaptive versions are also compared with respect to power. The
comparative study form = 100 under balanced setting is provided in Figure 1. The results
for other simulation settings are provided in Figures 1–5 of the supplementary material.
From Figure 1, it can be pointed out that the bias-corrected estimators beat other estima-
tors over a significant region of the parameter space (for π0 ∈ (0, 0.6)) while π̂U

0 performs
slightly better than π̂E

0 . Thus, their performance may be considered to be approximately
equivalent. Thus using the bias-corrected estimators for small to moderate values of π0
brings significant improvement while for larger values of π0, it remains a viable alterna-
tive. For MSE, similar comments may be made. Additionally, we point out that π̂U

0 really
reduces the bias of π̂B

0 for a significant portion of the parameter space. As expected, the
mean squared error for different estimators increase with increasing m/n ratio, while rel-
ative performance of the proposed bias-corrected estimators gets better when the same
ratio increases. However, the gain from improved estimation of π0 needs to be elaborated.
Precise estimation of π0 is used to apply adaptive algorithm for identifying significant seg-
ments as mentioned in Section 4. For lower to moderate values of π0, the adaptive versions
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result in substantial gain in power. Percentage relative gains in power of π̂U
0 -adaptive BH

over non-adaptive are 41%, 27%, 17% for π0=0.2, 0.4, 0.6, correspondingly. Marginal gain
is observed for larger values of π0 (8% for π0=0.8). It is evident that the bias-corrected esti-
mators outperform the others for lower to moderate values of π0, where it really matters
as pointed out from Figure 1. For higher values of π0, effect of bias correction is there but
in a lesser extent. When almost all the null hypotheses are true, Q(λ) and e are close to 0.
Thus the bias correction does not work as effectively as it does for lower to moderate val-
ues of π0.. FDR of all the adaptive BH algorithms are seen to be controlled below 0.1, while
non-adaptive BH is the most conservative and the π̂0

U-adaptive BH is the least conser-
vative one. Similar conclusions can be made from results of the other simulation settings
reported in the supplementary material.

6. Data analysis

For the case-study we have considered the real-life data (with proper camouflaging, after
taking care of the data confidentiality issue) used by Gupta et al. [10] in connection with
reliability and warranty studies. The detailed description of the data is available there and
we report only the relevant part of it, which is required in the present study. The date of fail-
ure of a particular component of automobiles along with the mileage at failure as reflected
through the odometer readings are available. Although the entire data set cover two disjoint
geographical regions, as reported in Gupta et al. [10], they may be further subdivided into
failures corresponding to seven sub-regions, termed as zones.Owing to data confidentiality
issue, let us number them from 1 to 7. We have considered failure data corresponding to a
particular year and the mileage figures of the failures in successive calendar months across
the zones as the response variable. The twelve calendar months are recorded as JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV and DEC. Thus the entire dataset is
inherently segmented by 7 different zones and 12 differentmonths in a year. In otherwords,
our synthetic dataset contains mileage at failure for 84 different month×zone segments.
In total, little less than 3000 component failures have been reported in the year consid-
ered with varying number of warranty claims over the month×zone segments. Thus on
an average around 35 failures are reported in each segment. In line with the discussion in
Section 1, here we are primarily interested in identifying the segments which have signifi-
cantly better or poor performance in terms of mileage at failure in comparison to a bench
mark. Thus, appropriate hypotheses are needed to be formed and tested separately for each
of the segments making way for application of adaptive FDR-controlling algorithms.

To validate our model-assumption we performKolmogorov-Smirnov’s test with empir-
ical p-value for exponential distribution (using R-function ks.exp.test available in exptest
package) and find that, at level 0.05 exponentiality fails for only 18 out of 84 segments
whereas at level 0.01 only 7 rejections are there. QQ-plot of some randomly chosen seg-
ments are given in Figure 6 of the supplementary material. As the sample sizes for most of
the segments are moderate, we also check normality applying Shapiro-Wilks’ test (using
default R-function shapiro.test). At level 0.05, 59 out of 84 hypotheses gets rejected and
at level 0.01, the number is 42. The first line of information justifies applicability of the
model-based estimators for π0 discussed in this article whereas the results from the nor-
mality test demonstrate the necessity of the modifications achieved through this work over
the existing related works, usually done under normal model.
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Figure 1. Bias andmean squared error of the estimators π̂B
0 (twodashed line), π̂

L
0 (long-dashed line), π̂

A
0

(dot-dashed line), π̂P
0 (solid line), π̂H

0 (dotted line), π̂D
0 (dashed line), π̂ S

0 (∗-marked line), π̂U
0 (o-marked

line), π̂ E
0 (	-marked line) and comparison of false discovery rate and power between ordinary BH (+-

marked line) and the adaptive BH with the specified estimators form = 100 under balanced setting.

Now we consider framing of the appropriate hypotheses. We assume that the mileages
at failure for the ith segment to be exponentially distributed with mean θi miles. Thus, θi’s
are the mean mileage to failure (MMTF) for the ith. segment, a quantity similar to mean
time to failure (MTTF) in terms of the response variable ‘mileage’, for i = 1, 2, . . . , 84. We
consider, as an indicator of the bench mark, the MMTF of the entire dataset as our null
hypothesis point, approximately given by θ0 = 10973 miles. This value as an benchmark
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seems to be justified, as the warrantymileage limit for the data base is 36, 000miles and it is
well known that such failure data are usually positively skewed. According to the research
question we then simultaneously test the following hypotheses:

H0i : θi = θ0 versus H1i : θi �= θ0 for i = 1, 2, . . . , 84. (15)

The two-sided choice of the alternative hypotheses at all the segments needs clarification.
In the absence of any prior knowledge about the functioning of the component, it is not
possible to mark any segment to be better/worse than the overall benchmark in terms of
MMTF. As a result, to be on the safe side, we have suggested the alternative hypotheses at all
segments to be two-sided. This is very common in multiple testing situations. As an exam-
ple, in microarray data analysis, the samples used as a reference are called control samples.
The other samples exhibiting different phenotypic status are called treated samples. The
gene expression levels among these groups may be different. To identify whether a gene is
differentially expressed or not, we fix two-sided alternative [5].

Likelihood ratio tests are performed for each of the hypotheses after scaling the original
observations by θ0, maintaining equivalence of the test and the corresponding p-values
along with effect sizes for each test are stored for further use. Table 1 of supplementary
material provides details under the following heads:

• segment: This column provides serial number of the segment, 1 to 84 such that segment
i is for ith month of zone 1 for i = 1(1)12, segment 12+ i is for ith month of zone 2 for
i = 1(1)12 and so on for the 7 zones in order as mentioned in the first paragraph of this
section.

• n: Provides available sample size for each segment.
• pval: Provides the obtained p-value corresponding to common likelihood ratio test

performed for each segment.
• del: Provides maximum likelihood estimates of the effect sizes corresponding to each

test.

These array of values can be readily fed into Algorithms 4.1–4.3 to get π̂U
0 , π̂E

0 and the list
of rejected hypotheses when adaptive FDR-controlling algorithm is applied with different
π0-estimates. Estimate of π0 along with the corresponding list of rejected hypotheses using
the estimators already mentioned in this article are also reported. The estimated π0-values
using different estimators are reported in the second column of Table 1.

In Table 2, we indicate the segments that are found to be significantly different from the
average in terms of the mean mileage at of the designated component failure when adap-
tive BH-algorithm with different π0-estimators and non-adaptive(N/A) BH-algorithm are
applied to control FDR at level q = 0.05, 0.1. For visual display, we plot the adjusted p-
values for non-adaptive Benjamini–Hochberg algorithm and its adaptive version using π̂U

0
with cut-off q = 0.1 (see Figure 7 of the supplementarymaterial). FromTable 2, it is evident
that, the adaptive BH-algorithm using the proposed methods has the ability to identify a
larger number of segments with significant variation from benchmark by controlling the
FDR at the same level, compared to the non-adaptive BH-algorithm as well as adaptive
BH-algorithm using existent estimators for π0.
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Table 1. Estimate of π0 using different estimators under
different model assumptions for the synthetic data.

Estimators
Exponential

model
Normal
model

π̂B
0 0.5555 0.4961

π̂ L
0 0.5565 0.4559

π̂A
0 0.5761 0.5111

π̂P
0 0.6074 0.5707

π̂H
0 0.5555 0.4497

π̂D
0 0.6662 0.5730

π̂ S
0 0.8065 0.6786

π̂U
0 0.4842 0.0000

π̂ E
0 0.5096 0.0000

Table 2. Significantly different segments identified by adaptive-BH algorithmwith different estimators
for π0 for the synthetic data.

Segment Zone Month mean:X̄ 95%CI(θ ) π̂B
0 π̂ L

0 π̂A
0 π̂P

0 π̂H
0 π̂D

0 π̂ S
0 π̂U

0 π̂ E
0 N/A

16 2 APR 1.44 (1.12, 1.93) 2 2 2 2 2 2 2 2 2 2
18 2 JUN 1.29 (1.01, 1.70) 0 0 0 0 0 1 0 1 0 0
20 2 AUG 1.47 (1.11, 2.04) 2 2 2 2 2 2 1 2 2 0
21 2 SEP 1.33 (1.01,1.82) 0 0 0 0 0 0 0 1 0 0
23 2 NOV 1.69 (1.30, 2.29) 2 2 2 2 2 2 2 2 2 2
38 4 MAR 0.55 (0.37, 0.92) 1 1 1 1 1 0 0 1 1 0
39 4 APR 0.50 (0.34, 0.79) 2 2 2 2 2 2 2 2 2 2
40 4 MAY 0.58 (0.40, 0.92) 1 1 1 1 1 0 0 1 1 0
41 4 JUN 0.63 (0.44, 0.95) 0 0 0 0 0 0 0 1 1 0
46 4 OCT 0.64 (0.45, 0.98) 0 0 0 0 0 0 0 1 0 0
52 5 APR 1.77 (1.10, 3.33) 1 1 1 1 1 1 0 1 1 0
56 5 AUG 1.82 (1.14, 3.32) 1 1 1 1 1 1 1 2 2 1
62 6 FEB 0.66 (0.53, 0.84) 2 2 2 2 2 2 2 2 2 2
63 6 MAR 0.60 (0.48, 0.78) 2 2 2 2 2 2 2 2 2 2
64 6 APR 1.27 (1.03, 1.61) 1 1 1 1 1 0 0 1 1 0
69 6 SEP 0.67 (0.54, 0.85) 2 2 2 2 2 2 2 2 2 2
74 7 FEB 0.20 (0.11, 0.51) 2 2 2 2 2 2 2 2 2 2
76 7 APR 0.48 (0.20, 0.48) 0 0 0 0 0 0 0 1 0 0

Notes: Values in fourth and fifth columns are reported after scaling the original variable by θ0 = 10973.30. For columns 6 to
15, 2 indicates that the segments are found significant for q = 0.05 and trivially for q = 0.1 both while 1 indicates same
only for q = 0.1 and 0 indicates negation of the previous two statements. The segments not reported in this table are not
found to be significantly different from the the overall average, taken as the null hypothesis point.

From the domain knowledge (not to be mentioned explicitly, owing to confidentiality
issue), it is known that the functioning of the automobile component under considera-
tion is likely to be influenced by the climate condition, reflected through the effect of the
month, as well as by the effect of the zone of their usual operation. The effect of climate
on the functioning of the automobiles is well known and has also been reported in Law-
less [14]. For simplicity and demonstration purpose, we assume that each automobile is
used only in the designated zone where the failure is reported. Although, we have used
the two-sided alternative, as being done in any multiple testing problem, the correspond-
ing confidence interval falling entirely below or above of the scaled null hypothesis point
of ‘unity’, indicates the actual one-sided alternative for which the respective significance
appears. Thus, the MMTFs of zone 4 are consistently and significantly smaller than the
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benchmark value (the null hypothesis point) indicating usage related adverse problem of
the automobiles and this problem is persistent in the first or second quarter of the year
indicating a transition from colder to warmer climate or the fourth quarter of the year
indicating the transition from warmer to colder climate. Interestingly for zone 2, exactly
the converse situation is prevailed and this seemingly high MMTF might not be due to
the climate condition and on the contrary may be attributed to better usage scenario. For
zone 5, better usage scenario is evident at least in two months, although weather related
issues might not be associated with such improvement. The findings for zone 6 is heavily
dependent on climate condition especially during the advent of spring where a signifi-
cant decrease in MMTF is identified followed by significant increase in MMTF just after.
Again during the fall a significant decrease in MMTF is found establishing the climate
dependence of failure data. For zone 7, climate plays an adverse role during the end of the
winter and start of the summer. The data corresponding to remaining two zones, do not
reveal any deviation from the usual usage pattern and/or are not affected by extreme cli-
mate conditions. It is to be noted that for almost all the zones, the month of April becomes
significant concerning either betterment or worsening of the scenario in comparison to the
benchmark. On the other hand the two months, viz. December and January never become
markedly different from the benchmark at all the locations. It might be attributed to the
fact that in the winter, the relatively colder temperature does not affect all the zones, while
a transition in temperature, as observed in April, may play a decisive role in operating
conditions in almost all the zones. Zones 1 and 3 never figure in the list and no marked
deviation from the benchmark in any climate condition (non-rejection of the null hypoth-
esis at all seasons) is observed. This homogeneity might be attributed to the fact that these
two zones correspond to a relatively warmer climate and hence climate dependence on the
operating conditions are not present here. Although, we have to suppress the zone identity
for confidentiality issue, the findings are as corroborated by the domain knowledge experts.

To conclude this section, we emphasize the appropriateness of the model-based bias-
correction approach.We try to explore a ‘what-if’ type scenario and try to assess the validity
of the findings if we assume the mileages at failure in each segment to be normally dis-
tributed, instead of the exponential assumption. Our main objective remains same, i.e to
identify the significantly different segments with respect to MMTF values. If we assume
that the mileages at failure for the ith segment be normally distributed with mean θi and
variance σ 2

i , the testing problem is still the same as in (15). We perform single sample
both-sided t-test for each of the segments and obtain the array of p-values over all the
segments. Computation of robust estimates may be done similarly as mentioned, but for
the bias-corrected estimators we follow algorithms given in Cheng et al. [6] (for π̂U

0 ) and
Biswas [3] (for π̂E

0 ) instead of Algorithms 4.1 and 4.2 for obvious reasons. The estimates
of π0 under normality assumption are reported in the third column of Table 1. The robust
estimators are seen to underestimate π0. When the rates of exponential distributions are
considered as the means of normal distributions, the sample means being the estimators
under both the model assumptions overestimate the normal means. Since the overestima-
tion of normal means makes the null hypotheses appear false, the observed p-values are
less compared to those under the exponential case. The robust estimators of π0 are non-
decreasing functions of p-values and hence the underestimation of π0. The bias-corrected
estimators get disrupted owing to the inappropriate model assumption and hence mis-
leading effect size of test, upper tail probability and expectation of non-null p-values. The
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problem of overestimation of normal means transcends to overestimation of effect sizes
for the single sample t-tests. The inflated estimates of effect sizes result in large estimates
of Q(λ) and e. As a result, the numerator in π̂U

0 and π̂E
0 usually turns out to be zero or

negative. Hence both the bias-corrected estimates in Table 1 are zero. Thus, appropriate
model-based bias-correction seems to be appropriate and efficient by bringing out more
power in adaptive algorithms, while the findings may bemisleading when not applied with
adequate confidence on underlyingmodel assumption. As a result, the necessarymodifica-
tion of bias-correction technique under exponential model seems to be the only way out,
particularly while dealing with multiple testing problem arising from segmented failure
data, usually encountered in survival and reliability studies.

7. Discussion

We have approached the problem of estimating π0 and thus construction of adaptive FDR-
controlling procedure from suitable model assumptions and a common test for all the
hypotheses to be tested.Within the framework suggested in Cheng et al. [6] and Biswas [3],
we have tried to develop methods for estimation of π0 under exponential model and pre-
sented a simple adaptive Benjamini–Hochberg algorithm in a spirit similar to Craiu and
Sun [7], which is shown to be more efficient than its counterparts for simulated as well as
real-life synthetic data. The current work also motivates the Storey’s bootstrap estimator
for π0 and the π0-estimator based on sum of all p-values based on P(p ≥ V). The cases
of V being degenerated at some λ and V being uniformly distributed over (0, 1) have also
been discussed. This may motivate other choices of V for further study of model-based
π0 estimators. The study on V having negatively skewed density function over (0, 1) is
presently under consideration, which tries to give more importance to the p-values cor-
responding to true null hypotheses and the construction of new estimators in future. In
the current work, it has been assumed that the p-values corresponding to the true null
hypotheses are uniformly distributed.However, if there are composite null hypotheses as in
one-sided hypothesis testing scenarios, p-values corresponding to the true null hypotheses
are stochastically larger than the uniform variate. Superuniform p-values make the pro-
posed estimators conservative due to the increased value of W(λ) and p̄. The results and
methods proposed in this work do not address the issues related to superuniformity of null
p-values. Though the results presented in the current work strengthens the foundations of
bias-corrected estimation of π0 in general, the distinguishing feature of this work lies on
the innovative application of multiple testing procedure to segmented failure data. To the
best of our knowledge, such procedures have never been applied to answer such interesting
research questions framed in Section 6 related to large-scale industrial data. In this work,
however, we have focused on presenting andmotivating a simple yet powerful technique of
identifying significantly different segments in terms of the performance of automobile and
exploring the effect of zone of operation coupled with climate, that too under exponen-
tial model assumption. The synthetic data explored in this work pose several other issues
that may be solved by the application of modified methods, which are to be formulated in
future.

This analysis of the real-life synthetic data is based on one year data and may be carried
out on the basis of monthly or even weekly data associated with the component failures.
Owing to the limited number of such failure data in each segment, one has to use the
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standard failure models like exponential or Weibull. Instead, if one uses the usual Gaus-
sian model to describe the failure pattern, then one is expected to commit a gross mistake
and consequently, a false perception on the MMTF may be reached. This issue has been
addressed with the same failure data. Instead of the exponential model, the normal proba-
bility model has been used and the test for equality of respective means in all 84 segments
with the same null hypothesis point representing the bench mark, as being done in the
usual multiple testing procedure, has been attempted. Interestingly, the test for normality
at majority of the 84 segments fails miserably and hence conclusion on the basis of the test
forMMTFwith reference to the benchmark under normality will give a wrong signal about
the true status of MMTF in those segments.

This work only focuses on controlling FDR by adaptive Benjamini–Hochberg algo-
rithms with two new estimators for the proportion of true null hypotheses. It would be
interesting to study control of family wise error rate (FWER) by adaptive procedures [21]
with the π0-estimators discussed here. We have demonstrated that the new π0-estimators
devise conservative procedures through simulation experiments. The proof is also done in
asymptotic setting. Still, it is desirable to prove the same under finite sample considerations
and future research on this aspect is warranted. Sarkar [20] and Blanchard and Roquain
[4] provide sufficient conditions on π̂0 for proving control over FDR by the correspond-
ing adaptive algorithms. Almost all the recently proposed estimators for π0 including the
two taken up in this work lack such structural simplicity and hence the desired result can
only be verified through finite sample simulation experiments [3,5,24,26]. The estimators
taken up in this work need an initial estimate of π0. The current work does not focus on
a simulation-based choice of the initial estimate. However, the choices are not expected
to be universal and in this regard one may follow the routine presented in Biswas [3] for
identifying the working initial estimator. The choice of initial estimate in the current work
is justified by Cheng et al. [6] and Biswas [3]. As the proposed method makes assump-
tion regarding the distribution of the mileage to failure data, we should accept the fact
that, the proposed estimator is not universally suitable in all situations. At the same time,
multiple testing problem in a non-Gaussian framework seems to be novel and may cover
all parametric models for scenarios where non-negative valued random variables seem to
be appropriate. In such a framework, we have introduced two simple estimators for π0
which simultaneously reduces the bias and variance of the existing estimator over a rela-
tively important part of the parameter space. The behaviour of such estimator is studied
through extensive simulation studies and the new estimator is shown to be more precise
under some practical assumptions in comparison to those available in the existing liter-
ature. Involvement of numerical or Monte-Carlo integration for each segment makes the
proposed method rather computation intensive. This extra labour is expected to be com-
pensated by the gain in precision of the analysis, thusmeaningfully addressing themultiple
testing problem in a non-Gaussian setup.
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Appendix

Proof of Result 2.1: Consider,

g(x) = a − x
b − x

.

Note that, g is non-increasing in x for a ≤ b. Let a = W(λ)/m and b = (1 − λ). Since, 0 ≤ Q̂(λ) ≤
Q̃(λ), g(0) ≥ g(Q̂(λ)) ≥ g(Q̃(λ)), which proves (a). Now,

π̃U
0 (λ) =

W(λ)
m − Q̃(λ)

(1 − λ) − Q̃(λ)
.

δ̂i
a.s−→ δi ∀i = 1, 2, . . . ,m as min{n1, n2, . . . , nm} → ∞. Thus,

π̃U
0 (λ)

a.s−→
W(λ)
m − Q(λ)

(1 − λ) − Q(λ)
= π̃0, say.

Note that, W(λ)/m a.s−→ F̄(λ) as m → ∞. Hence π̃0
a.s−→ (F̄(λ) − Q(λ))/((1 − λ) − Q(λ)) = π0 as

m → ∞. �

Proof of Result 2.2: We consider g as in Result 2.1 and assume a = p̄, b = 0.5. Since, ê ≤ ẽ, g(ê) ≥
g(ẽ), which proves (a). Here,

π̃E
0 = p̄ − ẽ

0.5 − ẽ
.

δ̂i
a.s−→ δi ∀i = 1, 2, . . . ,m as min{n1, n2, . . . , nm} → ∞. Thus,

π̃E
0

a.s−→ p̄ − e
0.5 − e

= π̃0, say.

Note that, p̄ a.s−→ E(p) asm → ∞. Hence, π̃0
a.s−→ (E(p) − e)/(0.5 − e) = π0 asm → ∞. �

Proof of Result 3.1: The likelihood ratio test corresponding to the hypothesis in Result 2.1 uses
the test-statistic T = 2

∑n
i=1 Xi ∼ θχ2

2n. Effect size of the test δ = θ . As E(T) = 2nδ, an unbiased
estimator of δ is δ̂ = T/2n = X̄, the sample mean.
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As we reject H0 for larger observed value of T, the corresponding p-value is defined as p =
PH0(χ

2
2n > T) = 1 − Fχ2

2n
(T) since under H0, T ∼ χ2

2n. Therefore, p ∼ Uniform(0, 1), under H0.
Under H1, T ∼ δχ2

2n and therefore the density function of T, labelled by δ is

fδ(t) = 1
δ
fχ2

2n

(
t
δ

)
for t > 0. (A1)

From the relation between T and p, t = F−1
χ2
2n

(1 − p) = χ2
p,2n. The corresponding absolute Jacobian

of transformation is fχ2
2n

(χ2
p,2n). Thus from (A1), the density function of p labelled by δ is

fδ(p) =
1
δ
fχ2

2n
(χ2

p,2n)

fχ2
2n

(χ2
p,2n)

for 0 < p < 1. (A2)

For λ ∈ (0, 1) upper tail probability labelled by δ, using (A2) in expression of Qδ(λ) we get

Qδ(λ) =
∫ 1

λ

1
δ
fχ2

2n
( 1
δ
χ2
p,2n)

fχ2
2n

(χ2
p,2n)

dp = I, say.

By change of variable from p to v such that v = (1/δ)χ2
p,2n we get

I = Fχ2
2n

(
1
δ
χ2

λ,2n

)
.

which proves the result in (c). For an explicit expression for expected p-value under the false null,
we apply

eδ =
∫ 1

0
Fχ2

2n

(
1
δ
χ2
p,2n

)
dp

By change of variable from p to v such that v = χ2
p,2n, we get

eδ =
∫ ∞

0
Fχ2

2n

( v
δ

)
fχ2

2n
(v) dv

= EX∼χ2
2n

[
Fχ2

2n

(
X
δ

)]
.

�

Proof of Result 3.2: The corresponding likelihood ratio test uses the same test-statistic as in
Result 3.1 and thus part (a) of Result 3.2 follows directly from part (a) of Result 3.1. For the next
part, it should be noted that due to two-sided alternative hypotheses, the corresponding p-value is
defined through T, where

p = 2min
{
P(χ2

2n > T), P(χ2
2n < T)

}
= 2min(p∗, 1 − p∗), say.

Here p∗ = P(χ2
2n > T) is the p-value defined for the testing problem in Result 2.1. Thus from part

(b) of Result 3.1, we have

fδ(p∗) =
1
δ
fχ2

2n
(χ2

p∗,2n)

fχ2
2n

(χ2
p∗,2n)

. (A3)
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Now for any λ ∈ (0, 1),

Qδ(λ) = P(p > λ)

= P
(

λ

2
< p∗ < 1 − λ

2

)

=
∫ 1− λ

2

λ
2

1
δ
fχ2

2n
(χ2

p∗ ,2n)

fχ2
2n

(χ2
p∗,2n)

dp∗ [using (A3)]

=
∫ 1

δ
χ2

λ
2 ,2n

1
δ
χ2
1− λ

2 ,2n

fχ2
2n

(v) dv by taking v = 1
δ
χ2
p∗ ,2n,

which proves the result in (b).

eδ =
∫ 1

0
Qδ(λ) dλ

=
∫ 1

0
Fχ2

2n

[
1
δ
χ2

p
2 ,2n

]
dp −

∫ 1

0
Fχ2

2n

[
1
δ
χ2
1− p

2 ,2n

]
dp

= I1 − I2, say.

Now, we consider the problem of evaluating the integral I1. By change of variable from p to v such
that v = χ2

p
2 ,2n

, we get

I1 = 2
∫ ∞

χ2
1
2 ,2n

Fχ2
2n

( v
δ

)
fχ2

2n
(v) dv

= EX∼χ2
2n(0,μ)

[
Fχ2

2n

(
X
δ

)]

Following the same steps for evaluating I1, I2 can also be evaluated and thus the result in (c). �

Proof of Result 3.3: The likelihood ratio test corresponding to the hypothesis in Result 3.3 uses the
test-statistic T = ∑n2

i=1 Yi/
∑n1

i=1 Xi ∼ (θ2/θ1)F2n2,2n1 . Effect size of the test δ = θ2/θ1. As E(T) =
δ[n1/(n1 − 1)], an unbiased estimator of δ is δ̂ = [(n1 − 1)/n1]T and thus the result in (a) follows.
Rest of the proof follows from the proof of Result 3.1 with obvious changes. �

Proof of Result 3.4: For the testing problem in Result 3.4, the likelihood ratio test uses the same test-
statistic as in Result 3.3. Since the critical region is two-sided, the corresponding p-value is similarly
defined as in Result 3.2. One can follow the steps elaborated through the proof of Result 3.2 and use
Result 3.3 to easily prove Result 3.4. �
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