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Abstract: Health is influenced by how the gut microbiome develops as a result of external and internal
factors, such as nutrition, the environment, medication use, age, sex, and genetics. Alpha and beta
diversity metrics and (enterotype) clustering methods are commonly employed to perform population
studies and to analyse the effects of various treatments, yet, with the continuous development of
(new) sequencing technologies, and as various omics fields as a result become more accessible for
investigation, increasingly sophisticated methodologies are needed and indeed being developed
in order to disentangle the complex ways in which the gut microbiome and health are intertwined.
Diseases of affluence, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD), are commonly
linked to species associated with the Bacteroides enterotype(s) and a decline of various (beneficial)
complex microbial trophic networks, which are in turn linked to the aforementioned factors. In this
review, we (1) explore the effects that some of the most common internal and external factors have
on the gut microbiome composition and how these in turn relate to T2D and CVD, and (2) discuss
research opportunities enabled by and the limitations of some of the latest technical developments in
the microbiome sector, including the use of artificial intelligence (AI), strain tracking, and peak to
trough ratios.
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1. Introduction

One’s health is affected by environmental factors, diet preferences, social-economic
status, and lifestyle [1–3], yet ample progress can still be made on how these factors and
health are intertwined with the gut microbiome. The gut microbiome is highly diverse
(alpha diversity), including many microbial species that have yet to be even cultured,
and has a high degree of variability when comparing the gut microbiota compositions
of people (beta diversity), even when living in a community, but especially when com-
paring people of different ethnicities living in different parts of the world [4]. Archaea,
bacteria, viruses, and fungi are members of the gut microbiota [5], and all of these interact
with one another and the host. These interactions are essential, or even fundamental,
processes for host development, including endocrine signalling development, immune
responses, and bile acid signalling and metabolism [6]. With the arrival of metagenomic
and metabolomic techniques, it became feasible to examine gut compositions in various
contexts (e.g., healthy/diseased) [7]. A “healthy” gut microbiome cannot, however, be
generalized over a whole population, since every individual has a unique microbiome due
to external and internal factors, such as environmental factors, genetics, and diet [4,6,8–10].
However, as shown in Figure 1, some (combinations of) certain species are repeatedly dis-
covered to be related to or associated with specific diseases, conditions, and/or regions of
the world. A commonly used abstraction of gut microbiome compositions is the concept of
enterotypes. which are used to facilitate comparisons both within and between studies. The
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main two enterotypes that are commonly recognized are the Bacteroides and the Prevotella
enterotypes. These two genera tend to be mutually exclusive (antagonistic) and hence a gut
microbiome composition consisting of species that are compatible with either Bacteroides
or Prevotella occurs. Samples without a high abundance of either of these two genera also
exist between these two states, typically having a high abundance of Firmicutes instead.
While a sample is defined as being of a particular enterotype, and hence a supposed distinct
state, one should keep in mind that the reality is that a continuum of states exists between
supposed enterotypes, and that within this continuum/gradient of states, some are more
stable than others [11] (Figure 1). The Prevotella enterotype, dominated by the Prevotella
genus, but also enriched with various species that are in a complex trophic network with
some Prevotella species [4], is commonly found in rural populations in Africa [12–14],
South America [15], or South-East Asia [16], is associated with a non-industrialized dietary
fibre-rich diet, and is more commonly found in vegetarians. On the opposite side of the
microbial composition gradient, one finds two Bacteroides enterotypes, commonly found in
North America and/or urbanized environments. The Bacteroides 1 enterotype represents a
fermentatively functional microbiome composition, with adequate microbial density and
gene diversity levels [17], characterized by high levels of Bacteroides/Phocaeicola and Blautia,
yet the Bacteroides 2 enterotype constitutes a composition which should be considered
dysbiotic. The Bacteroides 2 enterotype is characterized by low microbial (gene) diversity,
low microbial density, increased Enterobacteriaceae levels (amongst others), decreased levels
of various (presumed) beneficial commensals, higher water content levels, and more likely
still being in the saccharolytic phase of fermentation, and has been linked to systemic
inflammation [17] and a plethora of other undesirable associations, such as IBD [18,19],
obesity [17,20,21], and T2D [22]. People in various European countries often share a gut
microbiome pattern dominant in the Bacteroides enterotype with a Firmicutes-enriched
composition. Such a pattern is considered gut dysbiosis, which may be prone to increased
risk of diseases (Figure 1) [4,14].
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Figure 1. Gradient-like depiction of enterotypes and their corresponding associations.

2. Confounding Factors and Mediators Affecting the Gut Microbial Composition

Although many microbiome studies provide essential insights into how intertwined
the gut microbiota and one’s health are, one should keep in mind that correlations or associ-
ations do not equal causality and that many confounders and mediators obfuscate matters
further. How these confounders are addressed (e.g., by matching, correction, or multi-
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omics) ultimately affects whether the intended results are legitimate and/or if appropriate
conclusions can be drawn. In this section, we (1) discuss several complicated multi-factorial
confounders commonly encountered while analysing the microbiome, (2) illustrate how
some of the most prevalent internal and external variables affect the composition of the gut
microbiome, and (3) show how these factors connect to various diseases and/or conditions.

2.1. Diet

While being an internal part of the human body, the digestive system and its mi-
crobiome are directly exposed to various external factors. such as diet, medication use,
lifestyle choices [2], and environmental factors [3]. The gut microbiome directly contributes
to the primary purpose of the human digestive system through the biosynthesis of vita-
mins and amino acids, as well as the production of critical metabolic by-products [23].
These by-products include short-chain fatty acids (SCFAs), such as butyrate, a promi-
nent energy source for intestinal epithelial cells [24]. Secondly, bile acids constitute an-
other category of metabolites generated by microbes. Numerous studies have noted
a connection between the gut microbiota, bile acids, and obesity [25,26] Interestingly,
species associated with a trophic network associated with the Firmicutes enterotype (e.g.,
Christensenellaceae and Methanobrevibacter) are involved in primary bile acid deconjugation
via bile salt hydrolases [27].

High consumption of red meat, sugars, and fried foods at the expense of the intake of
whole grains, fruits, fish, seeds, and nuts is typical in Western diets. As a result, Western
diets contain high amounts of trans fats, saturated fats, and animal protein, and a low
amount of dietary fibre [28]. Sugars, trans fats, saturated fats, and animal proteins are
characterized as negative contributors to vascular health, since they are associated with
the upregulation of blood cholesterol (total and LDL) [29–32]. Increases in these same
dietary components are similarly associated with shifts in the gut microbiome towards
compositions that are Bacteroides-dominated (Bacteroides enterotype) [33–37], especially the
Bacteroides 2 enterotype, which has a low microbial alpha diversity and typically increased
Enterobacteriaceae levels [17,38], and is commonly linked to diabetes [22], obesity [17,20,21],
and various other risk factors directly associated with cardiovascular disease (CVD) [39,40].
In the study by Lassen and Attaye et al. [37], it was illustrated using two cohort studies,
HELIUS and MetaCardis [41,42], that taxonomical signatures could be associated with
animal protein intake, regardless of ethnicity.

Although no current therapy offers a cure to obesity, lifestyle interventions with or
without antidiabetic agents have been used to treat obese patients. Typically, lifestyle inter-
ventions focus on reducing caloric intake and increasing physical activity by incorporating
behavioural modification [40,43]. The Mediterranean diet, rich in dietary fibre, fresh fruits,
nuts, and vegetables [43], is commonly implemented as part of such interventions. Various
(dietary) intervention studies are initially successful at inducing weight loss [40,44,45], yet
they prove difficult to maintain in real-world settings, not uncommonly ultimately leading
to a gain in weight shortly after the last intervention. This same pattern is mirrored by
shifts seen in the gut microbiome of overweight subjects participating in such studies that
are either on the Mediterranean [46] or other high-fibre-content diets [47,48]. In all high-
fibre-content diet studies, a positive association between high fibre consumption and the
abundance of species and/or genera related to the Prevotella enterotype has been observed.
In the study by Hjorth et al. [47], 62 overweight subjects were randomly assigned to a whole
grain diet or a regular diet, with the former resulting in greater weight loss rates. Of interest,
however, was that patients that initially already had a high Prevotella/Bacteroides ratio (P/B
ratio) lost more weight on average when on a whole-fibre diet than those with an initially
low P/B ratio. In line with these findings, Kovatcheva-Datchary et al. [48] illustrated that
improved glucose metabolism as a result of a high-fibre-content barley-kernel-based bread
diet was coupled with an increase in the P/B ratio, and more specifically with the enrich-
ment of Prevotella copri. In contrast, however, the Mediterranean diet has been reported to
be potentially more helpful in ameliorating insulin sensitivity in subjects with a low P/B
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ratio [46]. Instead of increasing the Prevotella levels, the Mediterranean diet was found to
increase the abundance of butyrate-producing species, such as Faecalibacterium prausnitzii
and Roseburia, while resulting in a decrease in Ruminococcus gnavus, a species more com-
monly associated with the more dysbiotic Bacteroides 2 enterotype [49]. Mirroring the high
fibre–Prevotella connection and mimicking the effects of the Mediterranean diet, capsaicin
supplementation has been found to mainly generate favourable effects in Bacteroides en-
terotype subjects and not in those of the Prevotella enterotype, and induce a shift towards
more Faecalibacterium prausnitzii [50,51]. Similarly, a balanced, more traditional Korean
diet, richer in capsaicin and fibre than a more Western diet, has been associated with a
shift away from the Bacteroides enterotype(s) [49]. The effects of interventions or diet in
general and the concomitant microbial shifts and metabolic changes hence should not be
expected to generate uniform outcomes, but are dependent on the interplay between the
type of diet/intervention and the initial microbial composition. Prevotella has, in general,
been regarded as a beneficial contributor to health, as it is associated with a plant- and
fibre-rich diet. However, some research indicates that Prevotella may also have a downside,
as it is, for example, also associated with elevated serum uric acid levels, which are in turn
associated with kidney-related disorders (e.g., kidney stones) [52]. Having a Prevotella-
dominant microbiome combined (suddenly, in the case of immigration) with high sugar
consumption [53] may lead to such complications.

2.2. Environment, Ethnicity, and Genetics

In the last few centuries, many parts of the world have seen rapid societal and con-
comitant dietary changes as a result of rapid industrialization and increased urbanization,
which now seem to have reached a tipping point in the past few decades with regard to their
impact on the gut microbiome, resulting in continuous increases in the obesity, T2D, and
CVD rates [1]. Obesity is typically associated with an energy imbalance between consumed
and burned calories, largely resulting from exercise choices and personal diet preferences.
Increasingly, however, this imbalance commonly results from social and economic changes
at levels beyond the control of individuals [54,55]. These so-called obesogenic changes
include nutrient-poor food becoming less expensive, with the reverse pattern occurring for
more nutritiously less-commendable foods, increased levels of mechanized transportation,
and more sedentary lifestyles/jobs.

The most common microbial compositions within a population depend largely on di-
etary culture and living conditions. Ethnicity is commonly strongly linked to the above two
factors, yet when people migrate from one place to another, (dietary) acculturation often oc-
curs, resulting in the gut microbiome of a particular ethnic minority becoming more similar
to that of its host’s population over time, especially when viewed across generations [16].
When comparing people of the same ethnicity, it is hence important to take their history and
habits into account. Acculturation, and as a result microbiome shifts, are, as said, far from
instantaneous, as Dutch, Ghanaians, Moroccans, Turks, African Surinamese, and South
Asian Surinamese living (for a long time) in Amsterdam are still quite distinguishable
from one another from a gut microbiome perspective on a population/ethnicity-wide
level. Despite frequently not yet having a gut microbiome composition similar to the host
population (more Bacteroides-rich), the rates of diseases of affluence are commonly still
higher in ethnic minorities in Western countries. This apparent contradiction is due to
the fact that diseases of affluence are multifactorial. Immigrants commonly start at the
bottom of the socioeconomic ladder, and there is a very strong correlation between income
and the rate of diseases of affluence [55]; affluence in this respect should be regarded as a
misnomer. Ghanaians, Moroccans, and Turks, despite having higher Prevotella abundances
than Dutch people on average, all have higher rates of diabetes (~5% vs. 10 + % in the
HELIUS cohort). Surinamese, and especially South Asian Surinamese, who have low
Prevotella abundances and even higher Bacteroides abundances than the Dutch, on the other
hand, have extremely high diabetes rates (one in four in the HELIUS cohort), highlighting
this cumulative multifactorial effect [56].
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Nevertheless, urbanization has a profound effect on the gut microbiome composition,
typically causing a shift towards more Bacteroides-rich compositions with a lower alpha
diversity [16,33,57,58]. The study by Keohane et al. [59] on Irish Travellers is particularly
revealing with regard to the effects of a change in lifestyle. In this study, 118 adult Irish Trav-
ellers, of whom 87% were nomadic in childhood, were compared with non-industrialized
and industrialized populations. These formerly nomadic individuals were forced to aban-
don their nomadic lifestyle due to legislation in 2002 and became (more) urbanized as they
had to live in so-called ‘halting sites’ and state-sponsored housing. The gut microbiome
composition of nomadic Travellers was, on average, initially in between those of the non-
industrialized and industrialized populations, erring towards those of non-industrialized
populations, but rapidly became more similar to that of the non-Traveller Irish urbanized
population after legislation was implemented. This may be explained by the fact that the
urbanized population has less interaction with cattle and other animals [60] and experiences
higher levels of air pollution linked to the Bacteroides 2 enterotypes [61].

While previous (Caucasian) GWAS studies suggested that genetics play a small role in
the gut microbiota composition [62], more recent data from a more heterogenous (multi-
ethnic) population cohort suggest that the gut microbiota diversity and composition are
influenced by specific genetic single-nucleotide polymorphisms (SNPs) [61]. However, the
largest genetic difference found between humans (one entire chromosome) affecting the gut
microbiome is ethnicity-independent. Constipation more commonly occurs in females and
their bowel movements tend to be slower [63], resulting, on average, in lower Bristol stool
scale scores [64] and accompanying gut microbiome compositions. Indeed, men are far
more commonly found to be of the Prevotella enterotype [42,65,66] in areas where not nearly
everybody is either of the Prevotella enterotype (rural Africa) or of a Bacteroides enterotype
(America). Ethnicity-associated gut composition-relevant genetic differences do, of course,
exist, such as the higher prevalence of lactose intolerance in various Asian ethnicities. A
lack of the mutation that confers lactose tolerance (rs4988235) leads to relatively decreased
ability to absorb lactose into adulthood from the gut, leading to higher levels of available
lactose in the large intestine [67] and resulting in higher Bifidobacterium levels. In Han Chi-
nese people, lactose malabsorption is very common (>90%, [68]) and, despite the absence
of animal milk use in traditional Chinese diets, bifidobacterial numbers remain relatively
high, commonly resulting in Bacteroides–Bifidobacterium-rich compositions [69,70]. This,
however, strongly contrasts with (culturally pastoral) Mongolians, who, despite also being,
genetically speaking, lactose intolerant (>90%), obtain up to a third of their calories from
milk products. Mongolians nonetheless rarely experience the expected levels of lactose-
induced discomfort, possibly due to their Prevotella–Bifidobacterium-rich gut microbiome
compositions [71], which affects the final balance of fermentation products.

The importance of various environmental factors with regard to the development of
the gut microbiome is still uncertain. For example, it was assumed for a long time that
the majority of the microbes originating from the outside world via food and/or saliva
would be eliminated by the high-acidity environment of the stomach [72,73]. Additionally,
it was believed that individuals with certain diseases or conditions, such as rheumatoid
arthritis [74], inflammatory bowel disease [75], and colorectal cancer [76,77], had an in-
creased ability to transport bacteria that are typically present in the mouth to the stomach.
However, research by Schmidt and Hayward et al. [78] offered evidence that bacteria with
an oral origin travel to the gut more frequently than previously believed. Increased oral
hygiene has shifted oral microbiomes worldwide, causing a shift away from compositions
rich in Methanobrevibacter [59,79], a species that also appears to be on the decline in the
gut in more urbanized settings [59]. The colonization process of the gut with other orally
derived species might be similarly affected.

2.3. Antibiotics Use and Other Drugs

Antibiotics are indispensable in the medical world, and their use continues to rapidly
increase worldwide [80]. Concomitant with the increase in antibiotics, the levels of an-
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tibiotics resistance continue to increase, even in developed countries where they try to
limit their use [81–83], posing a major threat to human health as some infections become
untreatable due to strains becoming multi-resistant [84,85]. It needs no explanation that
antibiotics disrupt the gut microbiome severely, possibly having long-term effects on health
by disrupting/delaying normal gut microbiome development in infants [86,87] and in
general by causing the disappearance of various strains that cannot re-establish themselves
after treatment [88–92].

With the disappearance of one or multiple species within the gut ecosystem, trophic
networks are especially vulnerable to antibiotics and other drugs, resulting in a lower alpha
diversity [93] and a selection for compositions that are dominated by strains that are less co-
dependent, such as Prevotella copri [94] or the Bacteroides 2 enterotype. Both in the short and
long term, many studies report that antibiotics tend to favour the Bacteroides enterotypes.
The study by Palleja et al. [95] illustrated that, after a mixture of three so-called last-resort
antibiotics (meropenem, gentamicin, and vancomycin), a bloom of various pathobionts
occurred initially, followed by the recovery of the alpha diversity in the weeks thereafter,
yet various important commensals, such as specific bifidobacterial strains, certain butyrate,
producers and Methanobrevibacter smithii, a key member of trophic networks associated with
various health benefits [96,97], never returned. Similar findings of (similar) species disap-
pearing or being reduced in number are frequently reported [98–101]. Indeed, an increase
in the Bacteroidetes phylum is often reported, which includes Bacteroides(/Phocaeicola) and
Prevotella copri [98,99].

Owing to the indirect selection for the Bacteroides enterotype(s) by antibiotics, and
owing to the link of this enterotype to various diseases, evidence is accumulating that
antibiotics use may instigate/propel the development of such diseases. Recently a case–
control study by Nguyen et al. highlighted that 23,982 individuals with IBD more frequently
used broad-spectrum antibiotics than 117,827 healthy controls [102]. Prior to this, the study
by Vich Vila et al. illustrated that individuals who suffered from microbial dysbiosis (e.g.,
Crohn’s) tended to have a higher level of the antibiotic resistance gene cepA, which is
in turn correlated with the abundance of the Bacteroides genus [103]. Along with cepA,
resistance genes such as cfxA and cfiA have been similarly linked to various Bacteroides
strains [104–106]. The increase in the antibiotic resistance levels within Bacteroides spp. is
also reflected by a decreased richness of Bacteroides strains [107], as more resistant strains
naturally quickly outcompete non-resistant strains, even after antibiotics exposure; non-
resistant strains may go extinct, and exclusion competition with resident surviving resistant
Bacteroides strains may diminish their re-colonization chances.

Other medications, such as antidiabetics (metformin), statins, and beta-blockers, simi-
larly affect the gut microbiome in various directions. In T2D diabetics, Forslund et al. [108]
found that metformin induced a shift away from the Bacteroides1 enterotype towards the
Bacteroides 2 enterotype, whilst statins induced a shift towards the Firmicutes enterotype
away from Bacteroides 2. Together, however, with the use of antibiotics, this led to an overall
shift towards the Bacteroides 2 enterotype, depletions of the Firmicutes and Prevotella en-
terotypes, lower microbial diversity, and a higher abundance of antibiotics resistance genes.
Even before T1D is diagnosed (pre-diabetes), the gut microbiome is typically affected (pos-
sibly leading to T1D) as trophic networks supporting and including the butyrate-producing
Faecalibacterium genus tend to be less abundant, while Bacteroides instead commonly seems
to be elevated [109]. At the onset of T1D, this situation only seems to be even more aggra-
vated, with not only even higher Bacteroides numbers, at the cost of Prevotella in populations
where Prevotella is common [110], but frequently also with elevated Enterobacteriaceae
numbers, possibly as the result of increased blood glucose levels. Sugar consumption
is, by itself, also a risk factor for developing T1D [111] and also increases (inflammatory)
Enterobacteriaceae numbers [112]. Gut microbiome compositions, however, typically nor-
malize to a degree once diabetes is controlled [110]. As can be seen from the above, the
situation is commonly a chicken and egg situation of factors aggravating the situation in
tandem in a downward spiral to the bottom (Bacteroides 2 enterotype).
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2.4. Age

Assuming a healthy start in life, all humans begin with a Bifidobacterium-dominated
composition, yet once weaning commences, various complex adult-like gut microbiome
configurations establish themselves rapidly within the first three years of life [12,113–116].
Various factors, however, such as antibiotics use, formula feeding, and the mode of deliv-
ery (Caesarean section), may delay or even prevent this initial Bifidobacterium-dominated
composition, leading to diminished growth and immune-related issues years later in
life [117,118]. Caesarean section has been found to be associated with an underrepre-
sentation of Bifidobacterium and Bacteroides several months after birth and an increase in
Enterobacteriaceae [119–121]. Although milk formulae have been improved to resemble
breastmilk more closely, several studies still report that formula-fed infants have higher
abundances of Bacteroides and Clostridium spp. compared with breastfed infants [122–124].
Furthermore, as new-borns move from a milk-based to a carbohydrate solid-foods-based
diet, the abundance of Bifidobacterium decreases drastically and bacterial diversity increases
concomitantly as a variety of species take its place [119,120]. Depending on the dietary
components (e.g., animal proteins, fats, and high fibre) and environmental factors [125–127],
the gut microbiome will develop in a particular direction, reaching a more “adult-like” state
within three to five years after birth [15,128]. Beyond this, alpha diversity will continue to
increase, albeit at a much lower rate, and enter a stable phase after the age of twelve [6].
Population-wide, it can be said that the alpha-diversity again starts to decline with age
after 70 [6,129], yet in elderly people reaching extremely high ages, such a decline is not ob-
served. One study by Biagi et al. [130] showed that Italian people over the age of 100 years
still had high levels of bacterial groups associated with health, such as Christensenellaceae
(associated with Methanobrevibacter), Bifidobacterium, and Akkermansia. Comparable trends
with the same indicator species were also seen in Chinese individuals who lived long
lives [129,131], indicating that a connection exists between the development of one’s gut
microbiota and one’s health over one’s entire lifespan. Not only is the trophic network of
which Christensenellaceae and Methanobrevibacter are key members associated with extremely
high age, it is also linked to low blood pressure [132], reduced body weight [133–136], and
reduced blood triglyceride values [17,135–137].

3. The Latest Technical Development in the Microbiome Field
3.1. The Rise of Machine Learning in Gut Microbiota Analyses

Artificial intelligence (AI) is becoming indispensable in today’s world. From cars to
mobile (smart) phones, AI can help interpret patterns in the real world [138] and the same
is true in the medical world, and, more specifically, in the gut microbiome field. Species
within the gut microbiome interact with the host and one another, but these interactions
often tend to be non-linear. Most machine learning methodologies allow one to capture
these non-linear patterns. To achieve good performance, there is always a trade-off between
the model’s complexity (e.g., number of variables, trees, or layers) and the number of
samples. For gut microbiome intervention studies, the number of subjects varies between
double and quadruple digits [56,139–143]. In addition, the model performance depends
heavily on the phenotype of interest. For machine learning or AI concepts, the number
of samples in microbiome studies tends to be on the low side [144]. For these types of
studies where only relatively few subjects are included, decision-tree-based models, such
as xgboost [145], gradient boosting [138,146], and extreme random decision trees [147,148],
are often applied since these models are known to perform well when dealing with many
variables compared with the number of subjects [129,140–143]. Although research questions
differ across different studies, the type of information obtained from these methodologies
can be generalized, i.e., which biomarkers or features are involved in distinguishing the
target of interest. Along with the implementation of improved sequencing techniques,
more unique, yet uncultured, species/sequences are identified as features of interest by
these machine learning models.
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For example, research by Thomas et al. [141] showed that decision trees are capable of
identifying biomarkers via feature importance that appear to be risk factors with regard to
colorectal carcinoma development. These include Fusobacterium nucleatum, parvimonas spp.,
and Solobacterium moorei, species that were also suggested to be important in earlier colon
cancer studies [149,150]. Contrary to expectations, patients with carcinomas have been
shown to have higher bacterial alpha diversity when compared with healthy individuals.
The authors hypothesize that this increased gut microbiome diversity might be due to them
also harbouring a comparatively large number of orally derived species.

Similarly, another study by Balvers et al. [140] showed that T2D South Asian and
African Surinamese participants could be identified using a decision-tree-based machine
learning approach. The authors further demonstrated how machine learning may be
used to identify novel T2D biomarkers that have not previously been identified using
traditional statistics. Here, bacterial strains connected to the species Anaerostipes hadrus,
a butyrate producer, were associated with health. Despite being a butyrate producer,
a characteristic commonly, but not always, associated with health, Anaerostipes hadrus
has been found to be strongly associated with Bacteroides enterotypes. Most Surinamese
people living in Amsterdam, especially those of South Asian origin, are, however, of the
Bacteroides enterotype. Within this enterotype, quite a lot of variation is possible and
Anaerostipes hadrus is indeed likely a good indicator of health, as it can be said to be on
top of the food pyramid of metabolic products, producing butyrate as an end product,
indicative of an adequate fermentative capacity [140]. In addition, using multivariate
analysis for both ethnic groups’ usage of metformin appears to follow a similar pattern
in terms of a strong correlation with Escherichia/shigella, which is known to be connected
to the Bacteroides 2 enterotype, thereby confirming the findings of Forslund et al. [108]
that metformin use plays a confounding or mediating function in the development of the
Bacteroides 2 enterotype gut microbiome profile. Interestingly, a possibly ethnic-driven
confounding effect can be observed when comparing both ethnic groups. Correlations
in South Asian Surinamese with metformin use were stronger for a variety of species,
including Faecalibacterium spp., Blautia spp., and Anaerostipes. Furthermore, significantly
lower alpha diversity was only found in South Asian Surinamese with type 2 diabetes
who used metformin compared with diabetics who did not. It is important to note that
the alpha diversity in African Surinamese people is higher than that in Asian Surinamese
people, as the latter often lack Christensenellaceae, Methanobrevibacter, and species associated
with these groups. Similar effects of ethnicity and medication use have been observed in
pathway analyses, including large negative associations within the isoleucine and lysine
pathways and a minor positive association within the pathways for menaquinone and
demethylmenaquinol production. This indicates that, while machine learning models
can offer innovative targets and insights, connecting these findings to functionality or
causality remains challenging due to various potential confounding factors. In order to
better comprehend the revealed consequences of the exposed targets acquired by these
complex non-linear machine learning models, one might use or explore cross-sectional
processes across many different data domains (e.g., the microbiome, metabolomic, clinical,
or epigenome) (Figure 2).

3.2. Multi-Omics

Multi-omics approaches are increasingly being implemented to understand the associ-
ations and functionality of how microbiome biomarkers are linked to a target phenotype
(e.g., disease or the outcome of an intervention), as well as with other data types, such
as clinical, metabolomic, and epigenomic data [139,151–153]. These multi-omics analyses
primarily include multivariate regression models combined with or without individually
trained machine learning models. One study by Kootte et al. [139] demonstrated the ef-
fects of faecal microbiota transplantation (FMT) on the gut microbiome and on the blood
plasma metabolite levels. Microbiome and metabolomic profiles were produced using
a combination of traditional statistics, clustering methods, and rigid regression models
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revealing a significant influence of FMT on both bacterial diversity and insulin sensitivity.
On the species level, a few lactate- and butyrate-producing species were found, including
Lactobacillus salivarius, Butyrivibrio, Clostridium symbiosum, and Eubacterium spp. that dis-
tinguish allogeneic (faeces from donor) from autologous recipients (faeces from the self).
Furthermore, within the allogeneic group, responders were characterized by an increase in
Akkermansia, which is commonly associated with health [129,131]. Interestingly, no signif-
icant effects were reported in this study with regard to Prevotella and Bacteroides-related
species in contrast to the follow-up study by van der Vossen et al. [154]. This study reported
that modifications in the gut microbiota, specifically increased levels of Prevotella after an
allogeneic FMT, might be connected to specific plasma metabolite levels and modifications
in DNA methylation in plasma blood mononuclear cells by including epigenome data in
addition to the data used in the study by Kootte et al. An increase in Prevotella was only
observed in a minority of allogeneic FMT recipients, as most FMT donors also did not har-
bour substantial levels of Prevotella, yet its effect seemed most profound on the other data
types, in comparison with the microbiome changes reported earlier by Kootte et al. These
two studies highlight how more can be learned using more data types and incorporating
improved methodologies.
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corresponding information accordingly.

However, combining different data sources remains a challenge, as certain states
(health/disease) are commonly reflected across the different data domains. To combine
the knowledge contained within the different domains, one might consider a manifold
approach, yet such an approach might not be directly applicable to transfer the knowledge
to one particular target domain. In one study by Pereira et al. [155], an approach based
on manifold mixing combined with stacked regularization was developed to account for
this problem. In their approach, a mixed manifold of the various data modalities was first
created and used to merge one meta-model, including all of the different data types. By
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including a meta-model, more direct effects across different data domains, and thus across
different parts or systems of the system, can be exposed. A follow-up study by Pereira and
Bresser et al. [153] showed how additional data sources, such as faecal microbiome, clinical,
nutrition, and plasma metabolomics data, when paired with a stacked regularization model,
may achieve excellent model performance and uncover biomarkers associated with the
impacts of the examined intervention. In spite of the fact that several cofounders were
controlled throughout these studies, it is clear that mediators, such as genetics, diet, and sex,
in the modality considerably aided in the interpretability of the data, and even potential
gut–axial linkage associations across different domains. Numerous Bifidobacterium species
were shown to be closely connected to the glutamate, lactic, and succinic acid blood levels,
and of particular relevance are Veillonella and the relationship between the intestinal GABA
levels known for being related to brain diseases [156,157].

3.3. The Underlying Linear Motor behind Microbiome Machine Learning Analysis

The use of machine learning in the microbiological sector is growing along with new
methodologies to reveal particularly novel species in addition to existing models. The
enhancement of the interpretability of the model’s decision-making has received great
attention during the creation of these new approaches. Decision trees use approaches based
on feature importance to reveal which features or variables are linked to the performance
of a model, which allows it to discriminate successfully between two or more groups.
Although the feature importance of decision trees provides information about the creation
of the model, it only provides indirect information about why the model made a certain
decision [158]. Various approaches, which may be used with other machine learning and
deep learning models, have been developed to address this issue, including permutated
importance [148,158], pairwise permutated importance [159], and local interpretable model-
agnostic explanations (LIME) [160]. These approaches assess the impact of all variables
on the overall model and provide direct information about the effects of the variables.
However, these non-linear decision tree-based models are more complex than traditional
linear regression models. They are not complex compared with deep neural networks, and
biologically relevant relationships/information might be left unexposed. Inspired by the
imaging world, where neural networks are becoming the gold standard for segmentation
and classification purposes for various imaging types (e.g., CT, MRI, and PET), including
additional artificially generated data might improve the development of such deep neural
networks for microbial-based predictive purposes, since a massive amount of data is
required [144]. In the imaging world, generative adversarial networks (GAN) are developed
to create artificial images from real data with generally more noise. Due to their excellent
performance, GANs have been adopted in many fields, including biomedical research.
One particular study by Rong et al. illustrated that, by applying Microbiome Generative
Adversarial Networks (MB-GANs), the gut microbiome properties, including sparsity,
diversities, and taxa–taxa correlations, remained intact when compared with real gut
microbe data [161].

Even though significant advancements have been made over the years with regard
to revealing novel cultured and uncultured species, methodologies for understanding the
non-linear links between the species and features derived from other data domains are
still underdeveloped. To this day, traditional statistical techniques, such as univariate tests,
linear regression, and correlations, have mainly been used to highlight these relationships
within species and between other areas [139,153,154]. Studying linear relationships and
patterns, while comparing them with comparable studies, renders it more crucial and/or
straightforward to make certain connections between what has been observed by the
machine learning model and phenotype. However, one could question if these standard
approaches can represent the outputs of machine learning from technical and biological
viewpoints, as the non-linear biomarkers are reflected and compared with results derived
from linear analyses. Laboratory investigations, such as mice or cell models, are often
required to determine causal relations. It is, however, frequently impossible, from a practical
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point of view, to unravel all of these complicated relationships among the (many) relevant
features through lab investigations. More biologically based approaches are, however,
emerging and being used in the microbiome field to perform pathway analyses, including
kinetic/ordinary differential equation (ODE) models [162,163] and the study of metabolic
pathways based on energy generation and composition-based models [164,165].

3.4. Microbiome Viability and Origin

Numerous analyses have been carried out with the presumption that the species
discovered by sequencing are strains that were alive at the time of sampling. The fact that a
particular microbial strain in such a high-microbial-biomass sample, such as faeces, can
be sequenced led many to believe that this presupposition is true. For highly abundant
strains, this is indeed likely the case, yet for many strains of intermediate abundance, this
is not always clear. New technological advancements have made it feasible to ascertain
the level of viability in terms of active duplication. Research by Korem, Zeevi, Suez, and
Weinberger et al. [166] illustrated how the read coverage for various microbial genomes
comprises a single peak and a single trough lead, which subsequently correspond to
the bacterial source of replication. The ratio between the peak and trough provides a
quantitative method of assessing the growth rate of a species or its viability. Although this
method shows promise, it is currently difficult to use in microbiome studies for all species
as complete reference genomes are required for all strains present within a sample and
the sequencing coverage of a strain should be high enough [166,167]. A multisampling
approach called dynamic estimator of microbial communities (DEMIC) was developed by
Gao and Li [168] based on contigs and coverage values to determine growth rates using the
relative distance from the origin of replication, allowing one to estimate the growth rates of
still unknown or not fully sequenced species. Throughout the course of the investigation,
reliable performance was attained across a range of sample sizes and assemblies. Despite
the fact that these technical advancements show great promise, it is worth noting that they
only allow for strain-level analysis at the species level.

With regard to the origin of species themselves, strain-tracking techniques have been
able to show links between the microbiomes of various body sites, such as the oral and
the gut microbiome [78]. In the study by Schmidt and Hayward et al., associations or
correlations were based on single-nucleotide variants (SNV) from which a transmission
score was calculated. New methods are emerging that offer more conclusive evidence of
the strain engraftment of the microbiome from the oral area into the gut. These method-
ologies incorporate shotgun-read metagenomics sequencing of SNV using probabilistic
or non-probabilistic methods [169]. It has been shown in the past that probabilistic ap-
proaches are more advantageous in terms of sensitivity and precision [170]. The field is
still evolving rapidly and methodologies with even greater performance are expected to
become available in the upcoming years. Despite the fact that strain tracking is still in its
infancy, investigations concentrating on FMT and gut microbiome intervention studies
have already demonstrated its potential. As with the FMT trial by Kootte et al. [139], one
study by Wilson et al. that used strain tracking on a lean donor FMT capsule intervention
showed a significant beneficial shift in the direction of the enterotype similar to that of the
corresponding donor. One study by Li et al. [171] further demonstrated that donor-specific
microbiome strains were initially absent in the recipient, but could be detected two days
after the intervention and were still found in these recipients three months later.

3.5. Sequencing Limitations and Future Directions

16S sequencing is still one of the most applied sequencing techniques in the micro-
biome field. Within the 16S ribosomal gene, one or combinations of multiple so-called
variable regions (e.g., v1 and v3) are sequenced and subsequently analysed with vari-
ous pipelines and reference libraries to ascertain the relative abundances of microbial
groups [172,173]. Studies utilizing the same variable regions can be compared to a degree,
if raw reads are processed through the same pipelines, yet differences in the DNA isolation
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protocol and primer choice, or even operator differences will still cause batch effects. As
a result, only qualitative comparisons are typically feasible. Shotgun sequencing studies
have become more popular over the years as they, amongst other advantages and capabili-
ties, are not dependent on a specific variable region or on primer choice, yet comparisons
between studies will still suffer from batch effects due to differences in the pre-sequencing
processing steps [174]. Furthermore, while the relative abundance describes abundances
within a single sample, comparing samples in the same manner remains challenging, as
fractions do not equal the absolute bacterial abundances. One solution to this issue is to use
a 2D method that considers both the absolute microbial load and the relative abundance
of microbial groups, which can be achieved by cell counting techniques [175,176] or by
including a positive control of a known quantity within every sample before performing
DNA isolation [177]. A current disadvantage of shotgun sequencing, apart from its cost, is
that its data analysis pipelines [178] are still reference library-dependent, while the latest
16S data analysis pipelines generate Amplicon Sequencing Variants (ASVs) independently
of a reference library. Sequencing technologies continue to improve at an impressive pace,
and this is particularly the case for Nanopore sequencing [179]. While its utility was limited
in the past due to high error rates, it has now become a viable alternative to 16S and shotgun
sequencing, as it can, for example, sequence the entire 16S gene at high sequencing depth
and accuracy, enabling species-level identification, and has the advantage of speed and
potentially even being of clinical diagnostic use at a relatively low cost, as samples are
sequenced individually instead of in batches [180].

4. Conclusions

The gut microbiome continues to garner attention from the public at large as its role
in human health becomes increasingly undeniable. It has been demonstrated that the
gut microbiome coevolves with its human host and that this is an ongoing process as
society is (again) changing rapidly. Although many consequences of internal and external
factors remain to be further elucidated, certain patterns form a reoccurring theme. The
formation of Bacteroides enterotypes is generally stimulated as a result of the high levels
of sugar, animal protein, and fat consumption that come with Western diets. High-fibre
diets, in contrast, typically have a positive contribution to one’s health. The effect of this
type of diet, however, seems to depend on the initial gut microbiota composition of the
individual, illustrating that the effect of diet is significant, but also that its multifactorial
effects on health are modulated by a variety of internal and external factors. Along with
diet, the increased use of antibiotics selects for less diverse and less co-dependant micro-
bial compositions, typically of the Bacteroides enterotype, and Bacteroides strains that are
resistant to these antibiotics. This, in turn, is linked to severe dysbiosis and obesity, and
the accompanying risk factors, such as T2D and CVD. Although these associations were
linked to the Bacteroides enterotype, one should consider that correlations or associations
do not infer causality or functionality. Multi-omics analyses aid in the interpretation of
the relationships between certain species’ functions or mechanisms and their impact on
human health. By incorporating data from different data domains and locations, more
can potentially be learned, as certain phenotypes, such as disease reverberate, are caused
by factors in different data domains. In addition to more established approaches, such
as diversity analyses, clustering/enterotypes, and regression, novel methods, such as AI,
peak-to-trough, and strain tracking, are becoming increasingly popular for studying the
microbiome. AI has exhibited significant promise for capturing non-linear relationships
between various species and phenotypes. However, as the human mind is mainly capable
of comparing variables on a linear scale, it often remains difficult to interpret AI findings,
which confounders, such as diet, ethnicity, medication use, and the environment, already
made challenging. By incorporating multi-omics data into one or multiple modalities,
certain confounders can be included in these analyses. In addition, as sequencing tech-
niques evolve in the coming years, more advanced strain-tracking techniques will become
available to connect species across different origins of the human body. The combination
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of established and novel techniques and microbial ecological insight will be needed to
answer challenging questions with regard to a variety of gut axes, such as the brain–gut
and oral–gut axes and their interplay with our diet.
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