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Abstract

Motivation: Tumours evolve as heterogeneous populations of cells, which may be distinguished by different gen-
omic aberrations. The resulting intra-tumour heterogeneity plays an important role in cancer patient relapse and
treatment failure, so that obtaining a clear understanding of each patient’s tumour composition and evolutionary
history is key for personalized therapies. Single-cell sequencing (SCS) now provides the possibility to resolve
tumour heterogeneity at the highest resolution of individual tumour cells, but brings with it challenges related to the
particular noise profiles of the sequencing protocols as well as the complexity of the underlying evolutionary
process.

Results: By modelling the noise processes and allowing mutations to be lost or to reoccur during tumour evolution,
we present a method to jointly call mutations in each cell, reconstruct the phylogenetic relationship between cells,
and determine the locations of mutational losses and recurrences. Our Bayesian approach allows us to accurately
call mutations as well as to quantify our certainty in such predictions. We show the advantages of allowing
mutational loss or recurrence with simulated data and present its application to tumour SCS data.

Availability and implementation: SCI®N is available at https://github.com/cbg-ethz/SCIPhIN.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

(10-20%) rate of allelic dropout whereby one allele is locally not
amplified at all and cannot be later detected in the sequencing data.

If SCS data are dichotomized into mutational presence or
absence per cell, a suite of phylogenetic methods were developed
(Kuipers et al., 2017a; Zafar et al., 2018) to handle the high false
negative rates (due to allelic dropout) particular to SCS and
accurately reconstruct the evolutionary history of tumours from the
genetic profiles of individual cells.

In order to obtain dichotomized data, the mutations need to be
called per cell based on the raw sequencing output. Bulk callers
adapted to the noise profiles of the mixed signals of many cells

1 Introduction

The development and rapid progress in single-cell DNA sequencing
(Gawad et al., 2016; Navin et al., 2011; Wang and Navin, 2015)
now allows the genetic profiling of individual cells. Particularly for
tumours, where somatic cell evolution can lead to multiple heteroge-
neous cell populations and subclones (Burrell and Swanton, 2016;
Greaves and Maley, 2012; Yates and Campbell, 2012), single-cell
sequencing (SCS) illuminates the underlying complexity or intra-
tumour heterogeneity (ITH) (Navin, 2014). Measuring and under-
standing ITH is central for precision medicine, given its strong links
to tumour relapse and treatment failure (Burrell et al., 2013;

Dagogo-Jack and Shaw, 2018; McGranahan and Swanton, 2015).
The power and resolution of SCS come with the cost of elevated
error rates, due to the small amount of DNA present in each individ-
ual cell (Gawad et al., 2016; Navin et al., 2011; Wang and Navin,
2015). For whole-exome sequencing (WES), a common amplifica-
tion protocol is multiple displacement amplification (MDA)
(Lasken, 2009), which is efficient in creating enough DNA material
for later sequencing, but suffers from uneven coverage and a high

©The Author(s) 2022. Published by Oxford University Press.

amplified with a different protocol are suboptimal, which has led to
the development of specialized callers for single-cell data (Dong
et al., 2017; Zafar et al., 2016) accounting for the noise profiles of
single-cell amplification and sequencing protocols. They often share
information across cells (Zafar et al., 2016), or locally across the
genome (Dong et al., 2017; Lihnemann et al., 2021) to improve per-
formance. Combining single-cell-specific read count modelling with
single-cell phylogenetic modelling, we previously developed SCI®
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(Singer et al., 2018) to jointly call mutations and learn the lineage
relationships between cells. As a Bayesian approach, the full poster-
ior certainty in the mutation calls can be assessed. The tree structure
allows information to be shared more effectively across cells,
particularly in correcting for allelic dropout (Singer et al., 2018),
leading to improved performance as compared to combining
information across cells without using the phylogeny (Zafar et al.,
2016).

The underlying tree model for SCI® contained the simplifying in-
finite sites assumption, which restricts mutations to only occur once
in the phylogeny and to persist after occurrence, though the model
did allow for homozygous mutations. Binarized single-cell data have
allowed us to test such assumptions, and find that it may be often
violated in real tumour samples (Kuipers et al., 2017b). More com-
plex phylogenetic models mitigating, or entirely avoiding the infinite
sites assumption, have also been developed (El-Kebir, 2018; Kozlov
et al., 20205 Satas et al., 2020; Zafar et al., 2017, 2019), though
there is an apparent trade-off in model complexity between too sim-
ple models that cannot capture all relevant aspects of the evolution-
ary process, and too complex models that are prone to over-fitting
or computationally too expensive to be learned efficiently from
data. The existing models rely on processed data, where the muta-
tions have already been called. Here, we therefore bring the advan-
ces of allowing mutational recurrence and loss in tree modelling to
improve mutation calling from raw SCS data. We present a novel
approach to relaxing the infinite sites assumption, building on SCI®
(Singer et al., 2018) while staying within the same computational
complexity class. The new method, called SCI®ON (N can abbreviate
knight in chess/crosswords so the reading SCI-finite should indicate
Single-Cell mutation Identification via finite-sites Phylogenetic
Inference), allows us to jointly call mutations and the phylogenetic
relationship between cells under loss and recurrence, while
quantifying the uncertainty in our results.

2 Materials and methods

2.1 Model overview

During tumour evolution, mutations may be accumulated by cells,
but regions of the genome may also undergo copy number changes,
in particular the loss of one allele (loss of heterozygosity, LOH). In
our model, SCI®ON, we consider originally diploid regions of the
genome which may experience somatic point mutations, monoploid
regions which have already lost one allele, as well as the loss of one
allele, including its mutations, during tumour evolution (Fig. 1).

At each genomic position, a cell may then be wild type, or have a
heterozygous or hemizygous mutation. Along with mutational
losses, mutations are also allowed to reoccur independently in the
phylogeny. With this space of underlying aberration events, we
develop the probabilistic tree model for single-cell read and variant
counts, and employ Markov chain Monte Carlo (MCMC) to per-
form Bayesian inference of mutation calls.

A cell lineage tree T is a binary tree with labelled leaves corre-
sponding to the single cells. Along the branches of the tree, muta-
tional events may occur. For each genomic locus i, we record as
element 7; of the vector 7 the branch where the mutation affecting
that locus occurs. For example, the blue 8-pointed star mutation in
Figure 1 occurs in the branch above node 3 and is present in all des-
cendant cells (cells 1, 2 and 3). The knowledge of the tree T, and the
placement of the mutations within that tree 7, provides us with the
underlying genotypes of each cell j. For each genomic locus i and
cell j with v;; variant reads (of a particular non-reference nucleotide)
and coverage c¢;;, we summarize the data as Dj; = (vjj, ¢;j). This
allows us to define the likelihood of the data
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where 7 is the number of genomic loci, 72 the number of cells, and
we assume independence of the noise per cell and mutation. The

parameters fye, Wy and oy, are related to the noise modelling of the
amplification and sequencing protocols, which we expound in
Section 2.2. For notational convenience, we drop their explicit de-
pendence in the following.

For Bayesian inference of the tree topology and mutation calls,
we first marginalize over the unknown placement of the mutations
(for which we use a uniform prior over the tree branches)

P(D|T) x ZﬁﬁP(Di,-lT, 7)P(1)
T i=1j=1 (2)

= HZP(Ti)HP(Dif‘T’ i)
i=1 j=1

By rearranging the terms to treat each mutation separately, we
reduce the complexity of the computation from the naive O(nm"+1)
on the left of the equality to O(nm?) on the right. As we show
below, this can be further reduced to O(nm) via tree traversals.

To compute the contribution to the likelihood from each muta-
tion, we treat five mutation cases:

ht: a heterozygous mutation occurs in a diploid region;

hm: a hemizygous mutation occurs in a monoploid region which has
previously lost one allele;

wl: a wild-type allele is lost after a heterozygous mutation occurred;

ml: a mutated allele is lost after a heterozygous mutation occurred,;
and

pm: a heterozygous mutation occurs twice in the tree in parallel

branches.

We consider that each possible mutation type has a fixed prior
probability, namely v for a mutation occurring in a genomic region
with only one allele, 4, and /A for losses of heterozygosity and «
for a parallel heterozygous mutation. We may then express the
likelihood contributions as a mixture of the possibilities

ZP(T,)ﬁP(D,,‘T, ’L’,‘) = S(D,‘T)
T j=1

=(1—v— 2w — Am — 1)Sue(Di| T) + vSpun (Di| T)
+ )”WISWI(DllT) + )vmlSml(Df‘T) + KSpm(Di‘T)

We detail below how to compute the individual terms S in this
mixture in time O(m) using tree traversals and tracking partial
sums. The overall time complexity of computing the tree marginal-
ized likelihood is O(mn), the same complexity class as in SCI®.

Artefacts in sequencing data may mimic the effects of violations
of the infinite sites assumption (Kuipers et al., 2017b), while their ef-
fect on the likelihood would scale with the number of mutations. To
compensate for such effects, we introduce a regularizing prior, com-
pounded for each lost or parallel mutation, with an exponential
form as

P(D|T) oc ¢ #htartn TTS " S(D;| T) (4)

i=1 7

where y =0 would correspond to no regularization, while the limit

% — oo would enforce the infinite sites assumption and allow no lost

or parallel mutations. A fixed prior, which does not scale with the
1

number of mutations, would roughly correspond to y ~ 7.

2.2 Variant read model

The MDA process (Lasken, 2009) is akin to a Polya urn, where suc-
cessfully amplified genomic fragments are returned to the Pool to
potentially be amplified in the next round. For the distribution of
variant reads at a given coverage ¢, we therefore employ a Beta-
binomial distribution with density
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Fig. 1. Genomic events modelled in the cell lineage tree. Starting from the tumour founder cell at the root, which has a deletion in one genomic region, different clones evolve
along the different lineages. On the right-hand branch at node 2, the yellow (four-pointed star) mutation occurs as a hemizygous mutation in the remaining allele of the deleted
region, later joined at node 5 by the heterozygous red (two-pointed star) mutation. This mutation reoccurs independently at node 8. There are two loss of heterozygosity
events: in the left branch, the heterozygous purple (six-pointed star) mutation at node 1 becomes hemizygous in its right subtree at node 4 when the non-mutated wild type al-
lele region is lost. At node 6 in its left subtree instead, the allele carrying the purple (six-pointed star) mutation is lost so that the mutation status returns to wild type
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where B is the beta function, and we parameterize in terms of the
expected frequency f =4 of the variant and the overdlsperswn

w = a+ f. For heterozygous mutations, we expect a frequency f ~ 1.
For wild-type positions, we only expect sequencing or MDA errors,
which can also be modelled with a Beta-binomial distribution with a
low frequency fy:;. When the underlying state is wild type, the
likelihood is

Py(Dy) = d(vijlcij, fwr, Owe) (6)

Similarly, when the underlying state is hemizygous so that only a
mutated allele remains, we have

Ppm(Djj) = d(cij — vijlcij, 3fwe, Owe) (7)

where sequencing errors may lead to any of the other three bases
giving the additional factor here [which was not considered in
Singer et al. (2018)].

Finally, when the underlying state is heterozygous, we explicitly
include an allelic dropout parameter 1, and have the following mixture

Pu(Dy) = 5 Puc(Dy) +5 P (D)
(®)

1
+(l — ﬂ)d (U,‘,‘C,‘,., z — fwty wht)

where the first two terms are the loss of the variant and reference al-
lele, respectively, and the third when both alleles are amplified. In
that case, we adjust the expected frequency slightly to account for
errors resulting in the other bases [this is a corrected version
compared to Singer et al. (2018)].

2.3 A heterozygous mutation

We compute a mixture over the different types of mutation placed
upon each branch of the tree, so we start by considering, for a par-
ticular locus 7, placing a heterozygous mutation everywhere in the
tree T (Supplementary Fig. S1a) and wish to compute

Sue(Di|T) = 12) H Py (Dy) H Pw(Dy)  (9)
=1 j=1
j=T JET
where we divide by (2m —1) to normalize over the possible
placements in the tree, and where j < 7; means that cell j is below
the attachment point of the mutation and so should exhibit a
heterozygous mutation at locus 7, while it should be wild-type

otherwise. To proceed, we factor out the contribution where every
cell is wild type

Py(Di) = [ [ Pwe(Dy) (10)
j=1
and define
~ Pp.(D;;
Pyu(Di[T, ) = % (11)
j -1 wt 1
J =T

as the (relative) likelihood of the data when a heterozygous mutation
at locus i is placed at position t; in the tree T. For simplicity, we will
number the branches above the leaves with the number of the cell
below, from 1 to m and label the inner branches from (m + 1) to
(2m — 1), see Supplementary Fig. S1a. For the leaves in the tree, the
computation just involves the likelihood ratio of heterozygous muta-
tions and wild type for each cell

Pre(Dy) io1

Py (Dy|T, j) = Pue(Dy) ,
wt(ij

m (12)
For the inner nodes, we can compute the probabilities using a
depth-first tree traversal

Pr(Di|T, x) = Pye(Di| T, x1)Pre(Di| T, ;) (13)

where we denote the two children of x in the tree T as x; and x,.
This relationship is illustrated in Supplementary Fig. S1b, where
having a mutation placed on the branch labelled 11 means the muta-
tion is inherited down the tree into cells 1-3. Placing the mutation at
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each of the child branches (labelled 8 and 3 in Supplementary Fig.
S1b) also ensures that cells 1-3 inherit the mutation. The likelihood
contribution from having the mutation in cells 1 and 2 was com-
puted when placing the mutation in the branch labelled 8, while the
contribution from cell 3 was computed when placing the mutation
in the branch labelled 3. By simply combining these two child
contributions according to Equation (13), we obtain the likelihood
contribution when placing the mutation at the parent branch. The
sum

1 .
Su(Di|T) = WZPht(Di\T7 )Py (D) (14)
can then be computed in time O(m).

2.4 A hemizygous mutation
If a mutation occurs in a region with only one allelic copy, we have
the same recursion

phm(Di‘Tﬁ x) :Ishm(DilTv X1)th(D,‘|T, xr) (15)
for the inner nodes and the following starting values

5 . th Di'
Punl DT 1) = 200
w if

i=1,...,m (16)
for the leaves. For the sum, however, we exclude hemizygous muta-
tions occurring in a single cell. The rationale is that we cannot dis-
tinguish between a hemizygous mutation in a single cell from the
drop-out of the wild-type allele in the amplification process for that
cell. Since drop-out occurs relatively frequently in SCS, we assume
this as the simpler explanation of the data, and only consider
hemizygous mutations when corroborated by at least two cells. We
therefore define the sum as

1 -
Stn(DilT) = = > Phn(Di[T, w)Puc(Di) - (17)

T >m

which we can again compute in time O(m).

2.5 Loss and parallel mutations

By tracking partial likelihood sums throughout the tree, we can in-
clude loss and parallel mutations also in linear time O(m1), which we
detail in Supplementary Section A.

2.6 Tree scoring complexity

The overall tree score can therefore be computed in time O(mn),
since we employed tree traversals to compute the terms and partial
sums needed for its computation. This is akin to the peeling algo-
rithm of Felsenstein (1981) used to track partial likelihoods and
marginalize the inner node states in leaf-labelled trees. The differ-
ence here is in the kind of biological effects we permit in our tree,
and that our restrictions span generations leading to more compli-
cated tree recursions. The restrictions we impose are such that if
there is a simpler model which generates the exact same cell geno-
types as the more complex one, we rule out the more complex case.
For example, if two parallel mutations can be replaced by a single
mutation affecting the same cells in the tree, we do not allow the
parallel mutation case. Likewise, if the loss of mutation can be
replaced by allelic dropout, we exclude the loss from the modelling.

2.7 Posterior mutation probabilities
With non-informative priors on the parameters and T, we obtain
P(T, fut, Owt, 0pe|D) o< P(D|T, fut, ®wt, ®he). To obtain a sample
from the posterior space, we employ MCMC where we may swap
leaf labels or prune and reattach a subtree or perform a Gaussian
random walk for the continuous parameters, as detailed in Singer
etal. (2018).

From the sample of trees and parameters, we reverse the margin-
alization to obtain the posterior probability of each mutation

occurring in each single cell. We average over the full sample of trees
and parameters to obtain the posterior mutation probabilities.

From each sampled tree and parameter combination in the aver-
age, we first compute the probability of each mutation type. For het-
erozygous mutations, we know the relative probability of the
mutation occurring at each node by normalizing Py,,(D;|T, x) by
their sum. Propagating these probabilities down from the root to the
leaves provides the conditional probability of mutational presence in
each cell given that it is a heterozygous mutation. For hemizygous
mutations and the loss of the wild-type allele, we compute the prob-
abilities analogously.

For the posterior probabilities of loss of the mutated allele and
parallel mutations, we need to track additional terms during the tree
traversal, which we detail in Supplementary Section A.4.

2.8 Hill climbing

As well as using the MCMC scheme to sample trees, parameters and
variant calls from the posterior, we can adapt it to find a point esti-
mate with fewer iterations and at lower computational cost. For
this, we employ hill climbing by accepting any move which increases
the tree score. We terminate the search when no structure change
has happened for 10 iterations. After each termination we accept
all moves for m iterations to rejig the tree before hill climbing again,
and repeat the procedure 10 times.

2.9 Simulation settings

The simulated datasets were generated similarly to the process
described in Singer ef al. (2018). In a first step, we generated a ran-
dom binary genealogical cell linage tree with 25 cells and assigned
100 mutations to the inner nodes. The mutations of node x were
then propagated to the leaves in the subtree rooted at x. In addition,
with probability 0.2 either the mutation or the wild-type allele was
lost, simulating drop out events.

The mutations were then mapped to a 1 million base pair (bp)
long random reference, with a nucleotide distribution following a
Polya urn model as detailed in Singer ez al. (2018). In addition, we
also simulated sequencing errors with a frequency of 10~ and poly-
merase chain reaction (PCR) amplification errors with a frequency
of 5x 1077 In contrast to Singer et al. (2018), we also simulated
the loss of one allele of a mutation and the appearance of the same
mutation twice independently in two distinct subtrees. With prob-
ability /, a mutation in the subtree rooted at node x becomes wild
type or homozygous alternative in the subtree rooted at node 1y.
Here, the choice of node y is uniform in the subtree of x. With prob-
ability x, two nodes in two distinct subtrees were chosen to be
mutated to simulated the occurrence of a parallel mutation.

3 Results

3.1 Benchmarking on simulated data

To explore the performance in calling mutations, we simulated data
with various violations of the infinite sites assumption (Fig. 2). First,
we added increasing amounts of losses with no parallel mutations
(Fig. 2a and Supplementary Fig. S3), and we see similar F1 perform-
ance to SCI®, with better performance at higher levels of losses, but
a slight decrease in performance when there are no losses. The more
complicated model of SCI®N can explain some randomly correlated
drop-out events as mutational losses, which is ruled out by the
model of SCI® leading to a slight relative loss of recall, but better
precision since actual loss events can now be properly identified by
SCION instead of being misclassified by SCI®. Loss of wild-type
alleles results in hemizygous mutations, which are harder to misclas-
sify as unmutated, leading to the general increase in recall at higher
rates of loss (Supplementary Fig. S3a).

With parallel mutations (Fig. 2b and Supplementary Fig. S4),
there is a clear degradation in the precision of SCI®, while SCION
has near perfect precision because such events are included in the
modelling. There is a slight cost of the more complex model of
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Fig. 2. Effect of infinite sites violations on single-cell mutation calling. We compare the F1 score for the mutation calls of SCION to SCI® (Singer et al., 2018) and Monovar
(Zafar et al., 2016). Also included are the results for the faster hill-climbing version of SCI®N denoted SCI®N . (a) Losses, with no parallel mutations. (b) Parallel muta-

tions, with no losses. (c) Losses with 5% parallel mutations

SCI®N in terms of the recall, but the overall F1 score show the ad-
vantage of the SCION model even at low rates of parallel mutations.

When both losses and parallel mutations are present (Fig. 2¢ and
Supplementary Fig. S5), these effects combine to amplify the im-
provement of SCI®N over the simpler infinite sites model of SCI®.
In all cases (Fig. 2), SCION performs more strongly than Monovar
(Zafar et al., 2016) since Monovar does not use the phylogenetic re-
lationship between cells to help improve mutation calling.

Using hill climbing to target the highest scoring tree (Fig. 2,
SCI®N,,x) offers similar performance in mutation calling, with a
slight gain in recall and slight loss in precision (Supplementary Figs
S3-S5) compared to taking a sample from the posterior with
SCI®N. Finding the point estimate is however much faster, taking
on average under 3 min compared to about 1 h for SCI®N sampling
in this simulation setting. (Computation times are for a single core
of a cluster with Intel Xeon Gold 5118 and 6150, and AMD EPYC
7H12, 7742 and 7763 nodes.)

To benchmark the tree structure learning, we use the root mean
square difference in genotype between all pairs of cells (which is
their shortest path in the tree) for the inferred tree compared to the
generating tree [as in Singer et al. (2018)]. SCION again offers a
strong improvement over SCI® (Supplementary Fig. S6), as soon as
we leave the infinite-sites simulation setting. Although faster and
with a similar performance in mutation calling, we observe a con-
sistent slight worsening of performance in recreating the tree struc-
ture when using hill climbing to target the tree with the highest score
(Supplementary Fig. S6, SCI®N,,.x) compared to the sampling ap-
proach of SCI®N.

3.2 Mutation calling and phylogenetic reconstruction

from tumour data

First, we applied SCION to a WES dataset of 16 single cells from a
breast cancer (Wang et al., 2014). For the somatic mutations previ-
ously identified by SCI®, we examine the effect of the regularization
of losses and parallel mutation (Fig. 3). This can be seen more clear-
ly when we consider the differences to the infinite sites case
(Supplementary Fig. S7), or separate out the contributions to the
probability of mutation presence from the different mutation types
considered in our modelling (Supplementary Fig. S8). While the ma-
jority of mutations are shared in all cells (with the possible exception
of cell h1 where mutation calling is more uncertain), we observe sig-
nificant amounts of loss with no penalization (y=0, Fig. 3a,
Supplementary Fig. S8, top row). With increasing penalization, only
losses and parallel mutations with stronger evidence in the sequenc-
ing data are retained, until none are allowed under the infinite sites
assumption (y = oo, Fig. 3e, Supplementary Fig. S8, bottom row).

To better interpret the penalization, we extract highly confident
clonal mutations (with a posterior probability above 95% in at least
95% of cells) under the infinite sites assumption, and compute how
much of their mutation probability derives from cases with mutation
loss or parallel mutations (Supplementary Fig. $9a). For example, the
penalization y = 100, keeps their average contribution below 1%.

When we compare the mutation calls to Monovar (Zafar et al.,
2016), SCI®N finds many more mutations (Supplementary Fig.
$10), particularly since it can correct for allelic dropout by sharing
information across cells through the inferred phylogeny, in line with
the simulation results. SCI®N and SCI® are highly consistent across
the cells. Since SCI® cannot model mutational loss it must call as
present mutations which are supported by other cells in a subtree
even without variant reads. Whereas, for neighbouring cells without
variant reads, SCION can identify a shared mutational loss allowing
it to call a few fewer mutations than SCI®. In terms of runtime,
Monovar is notably faster than SCI®N since it does not use or infer
a phylogeny, taking around 1h for this dataset compared to about
12 h for SCI®ON (and about 7h for SCI®), though the hill climbing
version SCI®N,,, is even faster, taking around 20 min.

As a second dataset, we considered panel-based sequencing of
255 single cells on positions detected in bulk WES for a patient with
acute myeloid leukaemia (Gawad et al., 2014). This dataset involves
high-throughput sequencing, which may be more error and doublet
(inadvertent sequencing of two cells together) prone and, with a
large number of cells relative to the number of mutations profiled, is
challenging for cell lineage reconstruction. With no penalization
(Supplementary Fig. S11a), we observe lots of violations of the infin-
ite sites assumption to explain the data, which are smoothed out
with moderate penalization (Supplementary Fig. S11b and ¢). Under
the infinite sites assumption (Supplementary Fig. S11d), mutations
are missing which could otherwise be explained as loss or parallel
mutations with more moderate penalization (Supplementary Fig.
$13). The overall mutation probabilities are still highly similar
across the different penalizations (Supplementary Figs S11 and S12),
but the assignment of their constitute parts to different mutation
types varies significantly (Supplementary Fig. S13). With no penal-
ization, the data can be explained under the loss and parallel muta-
tion models, while under the infinite sites model everything is
explained only as mutations. Again, for high confidence clonal
mutations, the penalization y =100, keeps the average contribution
from loss and parallel mutations below 1% (Supplementary Fig.
S9b).

In terms of runtime, Monovar is much faster, taking around
45 min for this second dataset compared to about 30 h for SCI®N
(and about 15h for SCI® and 7h for SCI®N,,.«), but does not
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Fig. 3. Mutation calling on 16 breast cancer cells. (a—e) The probability of mutation presence, P,, in the single cells for different values of the regularization y on parallel muta-
tions and mutation losses. The ordering of the mutations and cells is determined by the tree (f) learned under moderate penalization (y=100)

benefit from sharing information across cells that we leverage with
the phylogenetic modelling of SCI®N.

4 Discussion

We developed SCIDN, a tree inference method for cell lineage build-
ing and mutation calling from SCS data which allows for mutational
losses and recurrent mutations, and which therefore better models
the complex evolution of tumours. Compared to the previous, sim-
pler model of SCI® which assumes the infinite sites assumption, the
new method developed here offers superior mutation calling. Also,
despite the strength of SCI®N in modelling tumour evolution more
realistically, we managed to constrain its computational complexity
to the same class as the infinite sites model through tracking partial
likelihood terms through judicious tree traversals.

SCI®N considers the full read and variant counts for each cell at
each genomic position to better distinguish mutations from sequenc-
ing and amplification noise. In addition, the tree building allows us
to effectively share information across cells, especially to correct for
allelic dropout, and improve mutation calling. In relaxing the infin-
ite sites assumption, we only allowed certain types of violations
including mutational losses and recurrent parallel mutations. Allelic
dropout is relatively common in SCS data, so that violations like
mutational losses in individual cells, that could be easily explained
by allelic dropout instead, were excluded. Likewise, we also
excluded violations that would recreate genotypes allowed under
the infinite sites assumption. For example, a pair of parallel muta-
tions in child branches generates the same genotypes as a single mu-
tation in the parent branch. Our relaxation therefore only considers
violations which should have an additional signal in the data beyond
the infinite sites base model and typical sequencing noise. The relax-
ation is correspondingly more conservative than transition-based

classical phylogenetic models adapted for SCS (Kozlov et al., 2020;
Zafar et al., 2017).

Even with our stricter model, extra noise sources in the data can
mimic infinite sites violations and create spurious signals (Kuipers
et al., 2017b). For real-data analyses, we include additional penal-
ization to reduce fitting such patterns and obtaining overly complex
evolutionary histories. Though we might expect to see some viola-
tions in the infinite sites assumption during tumour evolution, we
may not expect large numbers suggesting that some penalization is
required. Future work which models all noise intrinsic in the gener-
ation of SCS data will be needed to remove such penalization. This
will be particularly important for high-throughput sequencing with
potentially higher noise, including doublet samples which combine
genotypes from different phylogenetic branches, and relatively more
cells than mutations.

A restriction of SCION is the assumption of an underlying dip-
loid genome which may experience LOH, and we distinguish cases
where none, all or half the alleles exhibit a mutation. For non-
diploid regions, we still expect the read count distributions to be
quite distinct when none or all of the alleles have the mutation, com-
pared to some, and therefore to have a degree of robustness to
ploidy changes, as was the case for SCI® (Singer et al., 2018).
However, the model of SCI®N does not account for finer copy num-
ber changes, essentially treating all non-homozygous states as het-
erozygous, and so cannot resolve them or their evolutionary
relationships.

For large scale datasets, the speed of MCMC schemes can be-
come an issue. An interesting avenue has been to recode the max-
imum likelihood point estimate corresponding to SCI® as integer
linear programming (ILP) constraints, which can offer significant
speed-ups (Edrisi et al., 2019), as can hill-climbing in the search
space (Edrisi et al., 2022), as we also explored here. Branch and
bound algorithms have also been shown to offer a substantial speed-
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up for the binarized phylogeny problem (Sadeqi Azer et al., 2020).
Interfacing these ideas may provide pathways to speed up Bayesian
inference to account for model uncertainty, as well as for the more
complex model developed here.
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