
Citation: Kania, K.D.; Haręża, D.;
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Abstract: Ovarian cancer (OC) is one of the most common cancers threatening women’s lives
around the world. Epithelial ovarian tumors represent the most common ovarian neoplasms. Most
OC patients are diagnosed at the advanced stage, and there is an urgent need to identify novel
biomarkers of the disease. Single-nucleotide polymorphisms (SNPs) in TLR genes may serve as
crucial markers of cancer susceptibility. We investigated the frequency of TLR polymorphisms in a
group of 200 women, including 70 with OC. Four SNPs, two each in TLR4 (rs4986790 and rs4986791)
and TLR9 (rs187084 and rs5743836), were analyzed using polymerase chain reaction–restriction
fragment length polymorphism (PCR-RFLP). The digested fragments were separated and identified
by multicapillary electrophoresis. The load quantification of human papillomavirus (HPV) types
16/18 was determined using a digital droplet PCR method. We found an increased frequency of
heterozygous genotype and minor allele of the TLR4 rs4986790 SNP in women with OC compared
with healthy controls, and this result remained highly significant after Bonferroni’s correction for
multiple testing (p < 0.0001). No evidence of linkage disequilibrium was found with any of the
examined TLR SNPs. The findings suggest that the TLR4 Asp299Gly polymorphism could be a
genetic risk factor for the development of OC.

Keywords: toll-like receptor; single-nucleotide polymorphism; ovarian cancer; human papillomavirus

1. Introduction

Ovarian cancer (OC) is a leading cause of cancer-related deaths in women [1]. There
were almost 314,000 new cases of OC in 2020 worldwide, and it is estimated that this
number will increase to 429,000 by 2040 [2]. About 75% of women with OC are diagnosed
at the advanced stage of the disease because patients are often asymptomatic, while the
5-year relative survival rate is only 29% [3,4]. Most OC cases are high-grade serous ovarian
carcinomas (HGSOCs), which are the most common and aggressive subtype of OC [5].
It can originate from precursor epithelial lesions in the fimbriated end of the fallopian
tube (FT), although the genetic alterations and pathophysiological processes that drive the
progression of cancer are unclear [6–10]. The mutations in the BRCA1/2 and TP53 genes are
important risk factors for OC, as well as FT and primary peritoneal cancers [9,11]. In carriers
of these mutations, occult malignancy of serous histology accompanied by intraepithelial
carcinoma or dysplasia is frequently found in the fimbrial end of the FT [9,12]. Moreover,
the presence of human papillomavirus (HPV) DNA in cancerous ovarian and FT tissues
was found, although there is still no evidence that demonstrates an association between
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HPV infection and ovarian carcinogenesis [13–15]. However, there is still an urgent need to
identify new biomarkers of this disease and evaluate their prognostic value.

Toll-like receptors (TLRs) are type I integral transmembrane proteins belonging to
the family of pattern recognition receptors (PRRs), which play a crucial role in immune
responses, especially pathogen recognition. These receptors are known to play a significant
role in innate immunity and chronic inflammation. Increasing evidence suggests that TLRs
are also important regulators of tumor biology that have either antitumor or protumor
effects on carcinogenesis or tumor progression [16,17]. Among them, human TLR4 was the
first discovered and reported to regulate inflammatory responses [18]. Endosomal TLR9
recognizes double-stranded DNA containing unmethylated cysteine–phosphate–guanine
(CpG)-DNA motifs present in microbial nucleic acids [19]. Both receptors can initiate a
signaling cascade involving NF-κB that culminates in the upregulation of proinflammatory
pathways. TLR signaling promotes carcinogenesis via proinflammatory, antiapoptotic,
proliferative, and profibrogenic signals within the tumor cells or tumor microenvironment
(TME) [20]. TLR4 has also been demonstrated to promote the epithelial–mesenchymal tran-
sition (EMT) and cancer cell migration [21–23]. Both TME and inflammation are thought to
be substantial for cancer initiation, development, and progression. Epithelial cells of the
female reproductive tract may acquire carcinogenic changes through TLR stimulation by
the pathogen-associated molecular patterns (PAMPs) [24]. The expression of TLRs is found
in OC, where their activation seems to have tumor-promoting effects [24–26]. Ovarian
cancer tissues demonstrated the upregulated expression of TLR4 at mRNA and protein
levels compared to normal ovaries [25,27,28]. Furthermore, the upregulation of TLR4
was associated with a different histologic type and tumor progression [27–30]. Similarly,
TLR9 expression increases with rising grades in OC [31]. In cervical cells, TLR9 expression
levels are higher in women persistently infected with the same human papillomavirus
(HPV) genotype with respect to women who cleared HPV infection [32]. Since genetic
polymorphisms are known to affect cancer susceptibility, progression, and metastasis, it is
vital to examine the associations between TLR SNPs and the development of OC. In the
TLR4 gene, the two most common polymorphisms, Asp299Gly (rs4986790) and Thr399Ile
(rs4986791), are known to modify susceptibility to various human pathogens [33]. These
polymorphisms seem to be related to the increased risk of different cancer types, including
colorectal cancer [34,35], precancerous gastric lesions, and gastric cancer [36–39]. The role
of TLR9 gene polymorphisms has been studied in several diseases, including various can-
cers [40,41]. Most of them focused on three polymorphisms, including rs5743836, rs187084,
and rs352140. Significant positive results were obtained for rs5743836 and Hodgkin’s
lymphoma [42], as well as rs187084 and cervical carcinoma [43–45]. Moreover, rs352140
polymorphism was associated with an increased risk of cervical cancer in the presence of
HPV16 infection [46]. However, there are no reports on the influence of TLR4 and TLR9
single-nucleotide polymorphisms (SNPs) on OC susceptibility.

It was hypothesized that the presence of TLR genotypes may lead to OC development,
especially HGSOCs, and may be associated with HPV-related cases. Hence, the relevance of
TLR4 SNPs, Asp299Gly (rs4986790) and Thr399Ile (rs4986791), as well as two TLR9 rs187084
and rs5743836 SNPs, were studied in 200 women, including 70 OC cases.

2. Materials and Methods
2.1. Clinical Samples

Seventy women with OC were enrolled in the study (median age: 62.5, range: 30–87 years).
All of the patients underwent cytoreductive surgery at the Department of Surgical and
Oncological Gynecology, the Medical University of Lodz, at the Department of Surgical,
Endoscopic and Oncological Gynecology, Polish Mother’s Health Center Research Insti-
tute, Lodz, and at the Tomaszow Health Center, Poland. Among them, examined whole
blood samples were obtained from 40 patients with high-grade serous ovarian carcinomas
(HGSOCs), 19 ovarian cancers of other histologic types, and 11 women with metastatic
OCs. Among the 19 women with other OC types, the following cancers were diagnosed:
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clear cell ovarian cancer (5 cases), borderline tumor of the ovary (BOT, 4 cases), endometri-
oid ovarian cancer (3 cases), adenocarcinoma mucinosum (3 cases), and 4 cases of other
types. Pathologic diagnoses were established at the Department of Pathology, either the
Medical University or Polish Mother’s Health Center Research Institute, Lodz, Poland.
One hundred thirty healthy women were included in the control group. The peripheral
blood samples (ca. 5 mL vol.) were collected from antecubital veins and stored at −80 ◦C
until required for assays. The blood samples from OC patients were obtained during
primary surgery. All individuals were enrolled from the central area of Poland and were
Caucasian. The study was approved by the Ethics Committee of the Medical University of
Lodz (RNN/346/17/KE and KE/1147/20) and was conducted according to the principles
expressed in the Declaration of Helsinki and good clinical practice guidelines. Written
informed consent was obtained from all participants before study entry.

2.2. Genotyping of TLRs Polymorphisms

The total genomic DNA was extracted from EDTA-anticoagulated peripheral blood
using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol. The concentration and purity of DNA were estimated using a NanoDrop
2000c UV–vis Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). A total of four
SNPs in the TLR4 (896A > G, rs4986790, Asp299Gly; 1196C > T, rs4986791, Thr399Ile) and
TLR9 (1486T > C, rs187084; 1237T > C, rs5743836) genes were determined and analyzed.
The SNP selection was based on their possible functional effect and associations with
infectious diseases. The molecular typing of TLR SNPs was performed by polymerase
chain reaction–restriction fragment length polymorphism (PCR–RFLP) as described else-
where [47–50]. PCR was carried out in a 50 µL mixture containing: 0.5 µg template DNA
(5 µL), 5 µL 10 × DreamTaq™ Buffer (ThermoFisher, Vilnius, Lithuania), 5 µL 2.5 mM
dNTP, 0.5 µL gene-specific primers (100 pmol/µL of each, Genomed, Warsaw, Poland),
0.25 µL DreamTaq™ Polymerase (5 U/µL); ThermoFisher), and nuclease-free water. The
thermal cycling conditions for the TLR4 gene fragment were 15 min at 95 ◦C and 35 cycles
of 30 s at 94 ◦C, 30 s at 62 ◦C for rs4986790, or 30 s at 60 ◦C for rs4986791, and 30 s at 72 ◦C
for both SNPs. The PCR parameters for TLR9 rs5743836 were as follows: 4 min at 94 ◦C and
40 cycles each of 30 s at 95 ◦C, 20 s at 50 ◦C, and 30 s at 72 ◦C. The PCR parameters for TLR9
rs187084 were 4 min at 95 ◦C and 35 cycles each of 30 s at 95 ◦C, 20 s at 60 ◦C, and 30 s at
72 ◦C. The reactions were performed in the Biometra TAdvanced thermal cycler (Analytik
Jena Gmbh, Göttingen, Germany) and T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA).
The amplicons corresponding to the TLR4 rs4986790 and rs4986791 and TLR9 rs187084 and
rs5743836 polymorphisms were digested with the restriction enzymes NcoI, HinfI, AflII,
and MvaI, respectively (Thermo Scientific). The digested DNA fragments were separated
and analyzed using the QIAxcel system (Qiagen). To determine the PCR-RFLP product
sizes, the QX DNA Size Marker 50–800 bp and the BioCalculator software (Qiagen) were
used (Figure 1). The samples of each TLR SNP were sequenced using the Sanger method to
confirm the detected genotypes.

2.3. Quantification of TLR4 mRNA

The whole blood samples were drawn into PAXgene® Blood RNA tubes (PreAna-
lytiX GmbH, Qiagen and BD, Hilden, Germany). The tubes were gently inverted, kept
at room temperature overnight, and stored at −80 ◦C. The total RNA was extracted
from frozen peripheral blood with a QIAamp RNA Blood Mini Kit (Qiagen) and the
PAXgeneTM Blood RNAKit 50 (PreAnalytiX), according to the manufacturer’s instruc-
tions. cDNA for quantitative RT-PCR was synthesized using the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific, Inc., Vilnius, Lithuania). The relative
transcription of the TLR4 gene was determined by real-time PCR using Power SYBR™
Green PCR Master Mix (Thermo Fisher Scientific) and a 7900HT Fast Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). The expression of the human TLR4
gene (Gene ID: 7099; forward primer: AAGCCGAAAGGTGATTGTTG; reverse primer:
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CTGAGCAGGGTCTTCTCCAC) [51], as well as ACTB (Gene ID: 60; forward primer:
AGAAAATCTGGCACCACACC; reverse primer: TAGCACAGCCTGGATAGCAA) and
GAPDH (Gene ID: 2597; forward primer: AATGGGCAGCCGTTAGGAAA; reverse primer:
GCCCAATACGACCAAATCAGAG), as reference genes were evaluated. For each sample,
the relative expression level of the mRNA was calculated by the comparison with the
control housekeeping ACTB/GAPDH genes using the 2−∆∆Ct method. Each sample and
non-template controls were run in duplicate.
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Figure 1. Visualization of selected PCR-RFLP products for TLR4 rs4986790, rs4986791 (A) and TLR9
rs187084, rs5743836 (B) genotyping. Gel image: (A), TLR4 genotyping (1–3—rs4986790); 1, AA
genotype; 2, heterozygous AG genotype; 3, GG genotype; (4–6—rs4986791); 4, CC genotype; 5, CT
genotype; 6, TT genotype; (B), TLR9 genotyping (1–3—rs187084); 1, CC genotype; 2, CT genotype; 3,
TT genotype; (4–6—rs5743836); 4, TT genotype; 5, TC genotype; 6, CC genotype. Alignment markers
(15 bp, 1 kbp).

2.4. Quantification of HPV16/18 DNA

The HPV16 and HPV18 viral load quantification in DNA isolates was determined
using a digital droplet PCR (ddPCR) assay and the QX200 Droplet Digital PCR System
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The specific primers and TaqMan probe
sets for the HPV16 E6 gene [52,53] or HPV18 E7 gene [54] and the endogenous human
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RPP30 assay [55] were used. Subsequent amplification was performed in a T100 Thermal
Cycler (Bio-Rad) with a ramp rate of 2 ◦C/s according to the following stages: 95 ◦C for
10 min followed by 45 cycles at 94 ◦C for 30 s and 60 ◦C for one minute, and 98 ◦C for
10 min. Droplets positive for FAM (HPV E6/E7) and HEX (RPP30) fluorescence were read
in a QX200™ Droplet reader (Bio-Rad Laboratories, Inc.). The ddPCR data were analyzed
using QuantaSoft™ Software Version 1.6.6. Manual thresholds were set for both HPV
genotypes and the human control gene. HPV-negative human sample, a non-template
control, and an HPV-positive control (DNA from Ca Ski or HeLa cells) were included in
each run. The limit of detection of this assay was 50 HPV DNA copies/mL of blood.

2.5. Statistical Analysis

The data were statistically analyzed using GraphPad Prism 9.00 (GraphPad Software,
San Diego, CA, USA). The categorical data were analyzed using Fisher’s exact test. The
association between TLR SNPs and the viral load was estimated using the Mann–Whitney
U test. The association of TLR SNPs and disease risk was estimated using an odds ratio
(OR) with a 95% confidence interval (95% CI). p-values of less than 0.05 were statistically
significant. The Hardy–Weinberg equilibrium (HWE) and haplotype analyses were per-
formed using the SNPStats Software [56]. Linkage disequilibrium (LD) and haplotype
analysis were analyzed by Haploview software version 4.2 (Broad Institute, Cambridge,
MA, USA) [57,58]. The Bonferroni correction of the significance level was applied for four
multiple comparisons; the significance level for PB was 0.017 instead of the standard 0.05.

3. Results
3.1. Frequency of TLR4 and TLR9 Gene Polymorphisms

The TLR4 896A > G (rs4986790), 1196C > T (rs4986791), TLR9 1486T > C (rs187084),
and 1237T > C (rs5743836) SNPs were genotyped in 200 women, including the 70 subjects
with OC and 130 healthy women (see Table 1). In the women with OC, the frequencies
of genotypes at both the analyzed TLR4 SNPs and TLR9 rs187084 were in HWE (p = 0.57
for rs4986790, p = 0.19 for rs4986790, and p = 0.088 for rs187084). In the control group,
the frequencies of genotypes at TLR4 SNPs were in HWE (p = 1.000). In contrast, TLR9
rs5743836 was not in HWE (p ≤ 0.050) and was excluded from further analysis.

The distribution of the rs4986790 genotypes of the TLR4 gene was different between
the controls and OC cases (see Table 1 and Figure 2; p < 0.0001). The frequency of the
wildtype genotype of this SNP was statistically higher in healthy women than in OC cases
(98.5% vs. 80.0%; p < 0.0001; Fisher’s exact test). The heterozygous variant of this SNP was
more frequently found among cancer patients than in healthy individuals (18.6% vs. 1.5%;
p < 0.0001; Fisher’s exact test). Consequently, the recessive G allele of TLR4 SNP rs4986790
was detected more frequently in OC patients than in healthy individuals (10.7% vs. 0.8%;
p < 0.0001; see Table 2). No other differences in the frequency of studied TLRs alleles were
observed (p > 0.05).

Most individuals (182/200, 91.0%) possessed the wildtype TLR4 rs4986791 CC geno-
type, and we did not observe significant differences in the frequency of genotypes in the
case and control groups (p > 0.05 in all genetical models). Moreover, the heterozygous TC
variant of the TLR9 rs187084 was the most prevalent genotype in both examined groups.
No difference was observed in the distribution of both TLR9 SNPs between the controls
and cases (p > 0.05).

We determined the frequency of TLR SNPs and investigated the association between
polymorphisms and the risk of HGSOC incidence. Significant differences in the frequencies
of genotypes of TLR4 rs4986790 were observed between women with HGSOC and controls
(Table 3). The AG genotype of this SNP was more frequently observed among HGSOC
patients than in controls (25.0% vs. 1.5%; p < 0.0001; Fisher’s exact test).
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Table 1. The distribution of genotype frequencies of TLR SNPs in healthy women and those with
ovarian cancer. An association of TLR genotype with the occurrence of ovarian cancer related to HPV
infection.

Gene
SNP Model Genotype

Genotype Frequencies,
n (%) a Unadjusted Adjusted b Adjusted c

Controls Cases OR (95% CI) p OR (95% CI) p OR (95% CI) p

TLR4 Codominant AA 128 (98.5) 56 (80.0) 1.00 <0.0001 1.00 0.0005 1.00 0.0085

rs4986790 AG 2 (1.5) 13 (18.6) 14.86
(3.24–68.03)

14.40
(2.99–69.41)

8.83
(1.54–50.53)

GG 0 (0) 1 (1.4) NA
(0.00–NA)

11.77
(0.00–NA)

NA
(0.00–NA)

Dominant AA 128 (98.5) 56 (80) 1.00 <0.0001 1.00 0.0001 1.00 0.003

AG-GG 2 (1.5) 14 (20) 16.00
(3.52–72.76)

14.40
(2.99–69.41)

11.03
(2.04–59.72)

Recessive AA-AG 130 (100) 69 (98.6) 1.00 0.15 1.00 1 1.00 0.075

GG 0 (0) 1 (1.4) NA
(0.00–NA)

11.30
(0.00–NA)

NA
(0.00–NA)

Overdominant AA-GG 128 (98.5) 57 (81.4) 1.00 <0.0001 1.00 0.0001 1.00 0.013

AG 2 (1.5) 13 (18.6) 14.60
(3.19–66.81)

14.40
(2.99–69.41)

8.53
(1.49–48.78)

TLR4 Codominant CC 119 (91.54) 63 (90.0) 1.00 0.35 1.00 0.87 1.00 1

rs4986791 CT 11 (8.5) 6 (8.6) 1.03
(0.36–2.92)

0.71
(0.19–2.64)

1.05
(0.28–3.98)

TT 0 (0) 1 (1.4) NA
(0.00–NA)

0.00
(0.00–NA)

0.00
(0.00–NA)

Dominant CC 119 (91.5) 63 (90.0) 1.00 0.72 1.00 0.59 1.00 0.95

CT-TT 11 (8.5) 7 (10.0) 1. 20
(0.44–3.25)

0.71
(0.19–2.64)

1.05
(0.28–3.98)

Recessive CC-CT 130 (100) 69 (98.6) 1.00 0.15 1.00 1 1.00 1

TT 0 (0) 1 (1.4) NA
(0.00–NA)

0.00
(0.00–NA)

0.00
(0.00–NA)

Overdominant CC-TT 119 (91.5) 64 (91.4) 1.00 0.98 1.00 0.59 1.00 0.95

CT 11 (8.5) 6 (8.6) 1.01
(0.36–2.87)

0.71
(0.19–2.64)

1.05
(0.28–3.98)

TLR9 Codominant TT 35 (28.2) 15 (22.4) 1.00 0.091 1.00 0.14 1.00 0.85

rs187084 TC 81 (65.3) 41 (61.2) 1.18
(0.58–2.41)

0.90
(0.41–1.94)

0.96
(0.40–2.32)

CC 8 (6.5) 11 (16.4) 3.21
(1.08–9.57)

2.69
(0.84–8.66)

1.46
(0.32–6.64)

Dominant TT 35 (28.2) 15 (22.4) 1.00 0.38 1.00 0.88 1.00 0.99

TC-CC 89 (71.8) 52 (77.6) 1.36
(0.68–2.73)

1.06
(0.50–2.23)

1.00
(0.42–2.38)

Recessive TT-TC 116 (93.5) 56 (83.6) 1.00 0.032 1.00 0.049 1.00 0.58

CC 8 (6.5) 11 (16.4) 2.85
(1.09–7.48)

2.90
(1.02–8.24)

1.50
(0.37–6.01)

Overdominant TT-CC 43 (34.7) 26 (38.8) 1.00 0.57 1.00 0.27 1.00 0.77

TC 81 (65.3) 41 (61.2) 0.84
(0.45–1.55)

0.68
(0.35–1.35)

0.88
(0.40–1.98)

a Values are the number of examined healthy women (controls) and those with OC (cases). (%); b Adjusted
analysis was carried out for HPV16 DNA copy number in whole-blood samples; c Adjusted analysis was carried
out for HPV18 DNA copy number in whole-blood samples; OR: odds ratio; 95% CI: 95% confidence interval; p,
logistic regression model; NA: not available; PB, The significance level after Bonferroni’s correction for multiple
testing was 0.017 (raw p-value/3).

3.2. TLR4 Asp299Gly Polymorphism Is Associated with the Increased Risk of Ovarian Cancer

Single-SNP analysis revealed that a heterozygous AG genotype of the TLR4 SNP
rs4986790 was significantly associated with a 14-fold increased risk of OC (OR 14.86, 95%
CI 3.24–68.03; p < 0.0001 in the codominant model; see Table 1). Moreover, a mutation of a
single allele was associated with a 16-fold increased risk of OC (OR 16.00, 95% CI 3.52–72.76;
p < 0.0001 in the dominant model). This polymorphism was associated with the increased
risk of OC even after adjustment for multiple comparisons using Bonferroni’s correction
(PB < 0.0001). Moreover, the women with the heterozygous genotype of rs4986790 also had
an approximately 14-fold increased risk of OC disease in an adjusted model that included
the HPV16 DNA copy number in the peripheral blood (OR 14.40, 95% CI 2.99–69.41,
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p = 0.0005; Table 1). Similarly, an at least eightfold increased risk of OC was observed in
these patients in an adjusted model that included the HPV18 DNAemia level (OR 11.03,
95% CI 2.04–59.72, p = 0.003 in the dominant model; Table 1). These associations reached
statistical significance after Bonferroni’s correction (PB < 0.017). No significant association
between the TLR4 rs4986791 or TLR9 rs187084 genotypes and the risk of OC was found.

The mutation present in at least one allele of the rs4986790 SNP was associated with a
twentyfold increased risk of HGSOC occurrence in almost all genetic models (p < 0.0001
in the codominant, dominant, and overdominant models; Table 3). The presence of the
TLR4 Asp299Gly polymorphism was also significantly associated with HGSOC in an
adjusted model that included the HPV16 DNA copy number (OR 23.27, 95% CI 4.63–116.92;
p < 0.0001; Table 3). This association reached statistical significance after Bonferroni’s
correction for multiple testing.
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Figure 2. Genotype frequencies of the TLR4 rs4986790 SNP in patients with ovarian cancer (cases)
and healthy women (controls). p-values were calculated using Fisher’s exact test.

Table 2. The distribution of the allele frequencies of TLR SNPs in healthy women and women with
ovarian cancer.

Gene SNP Allele
Allele Frequencies; n (%) a

p
Controls Cases

TLR4 rs4986790 A 258 (99.2) 125 (89.3) <0.0001
G 2 (0.8) 15 (10.7)

rs4986791 C 249 (95.8) 132 (94.3) 0.623
T 11 (4.2) 8 (5.7)

TLR9 rs187084 T 151 (60.9) 71 (53.0) 0.158
C 97 (39.1) 63 (47.0)

rs5743836 T 224 (88.9) 125 (90.6) 0.730
C 28 (11.1) 13 (9.4)

a Values are the number of alleles (%); p-values were calculated using Fisher’s exact test.

3.3. Associations between TLR SNPs and HPV Infection

HPV16 DNA was detected in the peripheral blood samples collected from 21 of the
70 women with OC (30.0%), whereas HPV18 DNA was found and quantified in 36/70
(51.4%) cancer patients. The viremia levels of HPV16 ranged from 0 to 2.60× 103 copies/mL
(mean 1.32 ± 3.47 × 102 copies/mL), while HPV18 ranged from 0 to 3.40 × 103 copies/mL
(mean 2.00 ± 4.57 × 102 copies/mL). Among OC patients, the HPV16 DNA levels in the
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blood samples were lower in carriers of a wildtype genotype for the TLR4 rs4986791 com-
pared with those who were heterozygous or homozygous recessive for this polymorphism
(p = 0.0548; Mann–Whitney U test). No association was observed between the HPV16 and
HPV18 DNAemia and any other TLR polymorphisms (p > 0.05).

Table 3. The distribution of genotype frequencies of TLR SNPs in healthy women and those with
HGSOC subtype.

Gene
SNP Model Genotype

Genotype Frequencies,
n (%) a Unadjusted Adjusted b Adjusted c

Controls Cases OR (95% CI) p OR (95% CI) p OR (95% CI) p

TLR4 Codominant AA 128 (98.5) 29 (72.5) 1.00 <0.0001 1.00 0.0001 1.00 0.002

rs4986790 AG 2 (1.5) 10 (25.0) 22.07
(4.59–106.16)

23.27
(4.63–116.92)

13.47
(2.31–78.67)

GG 0 (0) 1 (2.5) NA
(0.00–NA)

3.34
(0.00–NA)

NA
(0.00–NA)

Dominant AA 128 (98.5) 29 (72.5) 1.00 <0.0001 1.00 <0.0001 1.00 0.0006

AG-GG 2 (1.5) 11 (27.5) 24.28
(5.10–115.48)

23.27
(4.63–116.92)

16.84
(3.05–93.04)

Recessive AA-AG 130 (100) 39 (97.5) 1.00 0.088 1.00 1 1.00 0.053

GG 0 (0) 1 (2.5) NA
(0.00–NA)

2.42
(0.00–NA)

NA
(0.00–NA)

Overdominant AA-GG 128 (98.5) 30 (75.0) 1.00 <0.0001 1.00 <0.0001 1.00 0.0037

AG 2 (1.5) 10 (25.0) 21.33
(4.44–102.48)

23.27
(4.63–116.92)

12.80
(2.20–74.52)

TLR4 Codominant CC 119 (91.54) 37 (92.5) 1.00 0.18 1.00 0.58 1.00 0.74

rs4986791 CT 11 (8.5) 2 (5.0) 0.58
(0.12–2.76)

0.37
(0.05–3.01)

0.47
(0.06–3.82)

TT 0 (0) 1 (2.5) NA
(0.00–NA)

0.00
(0.00–NA)

0.00
(0.00–NA)

Dominant CC 119 (91.5) 37 (92.5) 1.00 0.85 1.00 0.29 1.00 0.44

CT-TT 11 (8.5) 3 (7.5) 0.88
(0.23–3.31)

0.37
(0.05–3.01)

0.47
(0.06–3.82)

Recessive CC-CT 130 (100) 39 (97.5) 1.00 0.088 1.00 1 1.00 1

TT 0 (0) 1 (2.5) NA
(0.00–NA)

0.00
(0.00–NA)

0.00
(0.00–NA)

Overdominant CC-TT 119 (91.5) 38 (95.0) 1.00 0.45 1.00 0.29 1.00 0.44

CT 11 (8.5) 2 (5.0) 0.57
(0.12–2.68)

0.37
(0.05–3.01)

0.47
(0.06–3.82)

TLR9 Codominant TT 35 (28.2) 12 (30.8) 1.00 0.094 1.00 0.13 1.00 0.72

rs187084 TC 81 (65.3) 20 (51.3) 0.72
(0.32–1.63)

0.60
(0.25–1.49)

0.70
(0.27–1.84)

CC 8 (6.5) 7 (17.9) 2.55
(0.76–8.54)

2.19
(0.58–8.19)

1.09
(0.19–6.17)

Dominant TT 35 (28.2) 12 (30.8) 1.00 0.76 1.00 0.51 1.00 0.53

TC-CC 89 (71.8) 27 (69.2) 0.88
(0.40–1.94)

0.75
(0.32–1.77)

0.74
(0.29–1.89)

Recessive TT-TC 116 (93.5) 32 (82.0) 1.00 0.043 1.00 0.084 1.00 0.70

CC 8 (6.5) 7 (17.9) 3.17
(1.07–9.41)

3.02
(0.91–10.04)

1.38
(0.27–6.96)

Overdominant TT-CC 43 (34.7) 19 (48.7) 1.00 0.12 1.00 0.092 1.00 0.42

TC 81 (65.3) 20 (51.3) 0.56
(0.27–1.16)

0.50
(0.22–1.12)

0.69
(0.28–1.70)

a Values are the number of examined healthy women (controls) and those with HGSOC (cases). (%); b Adjusted
analysis was carried out for HPV16 DNA copy number in whole-blood samples; c Adjusted analysis was carried
out for HPV18 DNA copy number in whole-blood samples; OR: odds ratio; 95% CI: 95% confidence interval; p,
logistic regression model; NA: not available; PB. The significance level after Bonferroni’s correction for multiple
testing was 0.017 (raw p-value/3).

3.4. Haplotype Analysis

Multiple-SNP analysis showed that the most common haplotype for the TLR4 rs4986790
and rs4986791 SNPs, as well as the TLR9 rs187084, was ACT, which was detected in 59.0%
of controls and 44.2% of the OC cases. The GCT haplotype was associated with an increased
risk of OC in an unadjusted model (p < 0.0001). This haplotype showed an enhanced risk
of OC occurrence even after Bonferroni correction for multiple testing (PB < 0.017).
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The measurements of LD (D′) between the analyzed TLR4 rs4986790, rs4986791 and
TLR9 rs187084, rs5743836 gene variants and 200 cases analyzed in the study are graphically
displayed in Figure 3A. The white color indicates LOD < 2, D’ < 1, according to the Standard
(D’/LOD) LD color scheme. The numbers in the squares are D′ values multiplied by 100
(|D′| × 100). In the TLR4 gene, one haplotype block was defined using the Haploview
program with default settings, which indicated high LD among the analyzed SNPs (the D’
values between rs4986790 and rs4986791 SNPs are equal to 0.8474) (Figure 3A). Linkage
disequilibrium analysis demonstrated that the studied TLR9 SNPs were not in LD with
each other (correlation coefficient r2 < 0.2). The analysis of the frequency of haplotypes
of the studied TLR4 gene polymorphisms for all 200 cases (Figure 3B) shows that the
AC haplotype for the TLR4 gene polymorphisms was the common haplotype among the
analyzed samples (0.910).
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3.5. TLR4 Asp299Gly Polymorphism Influences the TLR4 mRNA Expression Level

Then, we investigated the effect of the rs4986790 polymorphism on the expression
of the TLR4 gene. Analysis of TLR4 gene expression in a subset of the examined patients
revealed that the carriers of the heterozygous genotype and minor allele of the TLR4 SNP
rs4986790 did not exhibit significantly different mRNA levels than wildtype SNP genotypes
carriers.

4. Discussion

To our knowledge, this preliminary study provides the first evidence that Asp299Gly
polymorphism in the host TLR4 gene seems to influence the development of ovarian cancer.
The results showed that the heterozygous genotype of the TLR4 rs4986790 SNP was more
common in patients with OC than in healthy women indicating an association of the
recessive G allele with an increased risk of OC to its carriers. The patients with the TLR4
896A > G polymorphism had an exceptionally higher risk of HGSOC when compared with
subjects with the wildtype genotype. So far, no studies have confirmed the association
between the TLR SNPs and predisposition to ovarian tumorigenesis.

The TLR4 gene is located in chromosome 9 (9q33.1) and encodes a TLR4 protein of
839 amino acid residues of an approximately 95.7 kDa molecular weight [59,60]. It is known
that two non-synonymous polymorphisms located within the third exon of TLR4, 896A > G,
rs4986790, and 1196C > T, rs4986791, cause the substitution of amino acids Asp299Gly
and Thr399Ile, respectively. Both polymorphisms modify the extracellular domain of
the TLR4 receptor. It is possible that the replacement of the conserved Asp with Gly at
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position 299 can disrupt the alpha helix structure of the protein, leading to an extended,
less functional beta strain. The results showed that the structural changes influence the
binding of ligands in the region of Asp299Gly but not Thr399Ile [61]. A single amino acid
substitution of Asp299Gly disturbs the antigenic structure of the extracellular region of
the receptor, which may lead to decreased ligand recognition and binding [62]. This can
also affect the TLR4 expression and induce an inflammatory response leading to severe
tissue destruction [63]. However, TLR4 expression in the normal and neoplastic ovarian
epithelium, as well as in FT, has been found [25,64]. Moreover, Asp299Gly polymorphism
may affect folding efficiency and protein stability, while the Thr399Ile polymorphism has
little effect [61]. TLR4 polymorphism is also associated with the activation of the cellular sig-
naling pathways that induce the inflammatory response. TLR4 signaling pathways involve
the myeloid differentiation primary response gene 88 (MyD88) and the Toll/interleukin 1
receptor (TIR)-domain-containing adapter-inducing interferon-β (TRIF). The MyD88 signal-
ing adaptor gives rise to early activation of NF-κB and pro-inflammatory cytokine release,
whereas the TRIF leads to late activation of NF-κB, activation of IRF3, and production of
type I interferons and other cytokines [65,66]. TLR4 Asp299Gly polymorphism impairs
TLR4 signaling, as assessed by cytokine production and NF-κB stimulation in response to
LPS [67–70]. In OC patients, the co-expression of TLR4 with MyD88 was associated with
a poor prognosis [28,29,71]. In HGSOCs, strong MyD88 expression was associated with
the advanced stage of disease and shortened overall survival, while TLR4 expression was
not associated with survival [30]. MyD88 is also one of the markers of cancer cell stemness
and is among the factors responsible for OC chemoresistance. MyD88-positive OC cells are
equated to OC stem cells due to their resistance to pro-apoptotic signals and their ability to
create a pro-inflammatory tumor microenvironment [72]. Moreover, MyD88 expression
was found to be an unfavorable prognostic factor for OC patients [73,74].

In patients with OC, we identified two non-synonymous TLR4 SNPs, Asp299Gly and
Thr399Ile, at frequencies up to 10.7% and 5.7%, respectively. Moreover, the TLR4 Asp299Gly
polymorphism was detected in 15.0% (6/40) of women with HGSOC. The distribution of
Asp299Gly and Thr399Ile was earlier analyzed in 105 Chinese women with OC, but these
polymorphisms were not detected in the studied populations [75]. Several studies have
confirmed the absence of rs4986790 in the Chinese population and a low prevalence of this
SNP in Asian populations [39]. Among Russian patients with OC, Asp299Gly and Thr399Ile
polymorphisms were not significantly associated with susceptibility and progression [76].
However, due to the low frequency of the minor allele, it was difficult to detect the effects.
Meta-analysis using 22 case-control studies indicated that these TLR4 polymorphisms were
associated with increased cancer risk [39]. Intestinal epithelial Caco-2 cells expressing TLR4-
Asp299Gly underwent EMT and morphologic changes associated with tumor progression,
whereas cells that expressed wildtype TLR4 did not [77]. Recently, the minor 299Gly
(G) and 399Ile (T) alleles were also associated with a significant risk of severe COVID-19
(p < 0.001) and higher serum levels of interleukin 6 (IL-6) [78]. Increased levels of IL-6 in
OC ascites were found to be an independent predictor of poor survival [79]. It was also
found that IL-6 enhances the chemoresistance of OC cells in vitro. IL-6 upregulates the
expression of hypoxia-inducible factor (HIF) 1α via the signal transducer and activator of
transcription 3 (STAT3) signaling under hypoxia [80].

The TLR9 protein is encoded by the TLR9 gene located on chromosome 3 (3p21.2). This
protein contains 1032 amino acid residues of 115.8 kDa molecular weight [81]. This receptor
senses double-stranded DNA molecules containing unmethylated CpG motifs that are
common in bacterial or viral genomes. It has been demonstrated that TLR9 was expressed in
cancerous ovarian tissues, and this expression was associated with poor differentiation [31].
The correlation of TLR9 expression with the pathological grades may suggest an important
role of this receptor in the development and progression of OC [82]. Moreover, TLR9
was expressed both on the membrane and in the cytoplasm of epithelial cells from the
ovarian cancer cell line SKOV3 [83]. TLR9 recognizes HPV16 CpG-rich DNA, although its
transcription is hindered by the viral E6 and E7 oncoproteins [84,85]. The expression of
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high-risk HPV oncoproteins deregulates the activity of the NF-κB pathways and decreases
TLR9 expression on the mRNA level [84]. HPV16 E6 and E7 decrease the transcriptional
activity of TLR9 and may lead to decreased immune response and escape for HPV16. It
was found previously that TLR9 rs187084, as well as TLR4 rs4986790 and rs1927911 SNPs,
showed an association with HPV16/18 infection in cervical cancer cases [86]. The presence
of HPV16 infection with TLR9 rs352140 SNP increased the risk of cervical cancer [45]. TLR9
rs5743836 SNP on the promoter region of the TLR9 gene creates a putative NF-κB-binding
site [87]. HPV16 E6 and E7 oncoproteins inhibit NF-κB activity, whereas inhibition of NF-κB
promotes cell growth and immortalization [88]. Hence, we tried to explore the correlation
between TLR polymorphisms and HPV infection. However, we did not find an association
between TLR SNPs genotypes and the risk of HPV viraemia.

The study had several strengths and limitations. This was the first study to focus on
the distribution of the TLR4 and TLR9 polymorphisms in women with OC. The strength
of the present study was also the clinical evaluation of cancer patients and its important
implications. Although the number of OC cases was small for genetic studies, we believe
that the Asp299Gly polymorphism was associated with disease progression. Significant
differences in genotype distribution in the case-control association study indicated that this
polymorphism remained an important risk factor for OC development. Further studies
with larger sample sizes are needed to confirm this association. Subsequent studies are
required to elucidate the influence of the TLR4 Asp299Gly polymorphism on cytokine
production in OC patients.

5. Conclusions

Taken together, our results indicate that the Asp299Gly polymorphism in the TLR4
gene is associated with the development of ovarian cancer in women, especially in those
with the HGSOC subtype. It is possible that this polymorphism conferred reduced secretion
of cytokines with antiviral activity and might be a genetic risk factor for the development
of OC. The present study demonstrated no association between this polymorphism and
HPV16/18 viraemia. An understanding of how the host TLRs mediate cellular signaling
and stimulate immune responses is crucial for improving prophylaxis and therapeutic
approaches.
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