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SUMMARY

Fungal microorganisms (mycobiota) comprise a small but immunoreactive component of the 

human microbiome, yet little is known about their role in human cancers. Pan-cancer analysis of 

multiple body sites revealed tumor-specific mycobiomes at up to 1 fungal per 104 tumor cells. 

In lung cancer, Blastomyces was associated with tumor tissues. In stomach cancers, high rates 

of Candida were linked to the expression of proinflammatory immune pathways, while in colon 

cancers Candida was predictive of metastatic disease and attenuated cellular adhesions. Across 

multiple GI sites, live Candida species were enriched in tumor samples and tumor-associated 

Candida DNA was predictive of decreased survival. The presence of Candida in human GI tumors 

was confirmed by external ITS sequencing of tumor samples and by culture-dependent analysis in 

an independent cohort. These data implicate the mycobiota in the pathogenesis of GI cancers and 

suggest that tumor-associated fungal DNA may serve as diagnostic or prognostic biomarkers.
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INTRODUCTION

Cancer is among the leading causes of death worldwide. Host-bacterial immune interactions 

profoundly influence tumorigenesis, cancer progression, and response to therapy (Davar et 

al., 2021; Dzutsev et al., 2017; Finlay et al., 2020; Garrett, 2019; Grivennikov et al., 2010; 

Iida et al., 2013; Routy et al., 2018; Sharma et al., 2017; Shiao et al., 2021; Spencer et al., 

2021; Tanoue et al., 2019). Nevertheless, the role of fungi (mycobiota) in these processes 

remains largely unexplored, missing a potential avenue for developing novel diagnostic 

and preventative strategies. Fungi and bacteria co-colonize the mammalian GI tract, skin 

epithelium, respiratory tract, and reproductive organs, forming a complex ecosystem of 

microbe-microbe and host-microbe interactions with significant implications for human 

health ( Findley et al., 2013; Hoarau et al., 2016; Leonardi et al., 2020; Doron et al., 2021; 

Lewis et al., 2015; Liguori et al., 2016; Sokol et al., 2017; Tipton et al., 2018; Zhai et 

al., 2020; Zuo et al., 2018). Despite comprising around just 0.1% of the microbial DNA 

present in the gut (Qin et al., 2010), fungal infections are responsible for more than 1.5 

million global deaths per year (Brown et al., 2012) and species from this kingdom have 
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a disproportionate influence on the overall microbiome and host immunity (Huffnagle and 

Noverr, 2013).

A growing body of evidence links the human microbiome to cancer and cancer outcomes, 

including viruses, bacteria, and fungi (Helmink et al., 2019; Vogtmann and Goedert, 

2016). Recent years have seen several bacterial species linked to cancer development 

and progression, including overall survival (Dohlman et al., 2020; Sepich-Poore et al., 

2021). Helicobacter pylori is responsible for approximately 75% of attributable risk for 

gastric cancer (Polk and Peek, 2010), while in the lower GI tract, genotoxic Escherichia 
coli, Bacteroides fragilis, Streptococcus bovis/gallolyticus and Fusobacterium nucleatum 
have been implicated in the pathogenesis of colorectal cancer (Sepich-Poore et al., 2021). 

Common among these cancer-associated bacteria is their ability to modulate host immunity 

and provoke chronic inflammation, features which are proposed to contribute to their 

tumorigenic capacity. Recent reports have also suggested that bacterial DNA circulates in 

the blood of cancer patients and may serve as a predictive biomarker (Poore et al., 2020; 

Dohlman et al., 2020), while intracellular bacteria have been identified in numerous tumor 

types (Nejman et al., 2020). Nevertheless, conclusive links between the fungal microbiome 

and cancer remain elusive.

The mycobiome plays a key role in activation of innate, Type 17 and B-cell mediated 

immunity in the gut during health and disease. Fungal toxins and bioactivated amines 

have been linked to carcinogenesis (Chang et al., 1992; Yang, 1980), while trans-kingdom 

features have been recently linked with colorectal cancers across cohorts (Coker et al., 2018; 

Liu et al., 2022). Recent experimental studies support fungal involvement in cancers under 

specific contexts (Alam et al., 2022; Malik et al., 2018; Shiao et al., 2021; Wang et al., 

2018). Previously, we demonstrated that next-generation sequencing (NGS) data of tumors 

from The Cancer Genome Atlas (TCGA) contained high rates of microbial sequencing 

reads (Dohlman et al., 2020) which can be leveraged to characterize the intratumoral 

metagenome and understand host-microbe interactions. However, the fungal composition 

of TCGA sequencing data has remained unexamined.

Analyzing multiple cancer types from TCGA, we extracted profiles of tumor-associated 

mycobiomes with species-level resolution. We then analyzed the distribution of reads 

aligning to these fungal genomes to thoroughly screen for contamination and false-positive 

signals. After removing such taxa, we found that fungal compositions varied by cancer type, 

with GI sites and non-GI sites each harboring disease-specific fungi. Overall, we found up to 

1 fungal cell per 104 human tumor cells, a rate consistent with (1) fungi representing 0.1–1% 

of the microbiome (Sender et al., 2016), and (2) estimates that bacteria comprise just below 

1% of the cells found in tumors (Nejman et al., 2020; Sepich-Poore et al., 2021).

Across GI samples, we find that several Candida species, Saccharomyces cerevisiae, and 

Cyberlindnera jadinii are highly abundant in GI tumor mycobiome communities, while 

Blastomyces and Malassezia species are abundant in lung and breast tumors respectively. 

We demonstrate that Candida is living and transcriptionally active at the tumor site and 

predictive of host tumor gene expression, disease state, and survival. Taken together, these 
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results not only implicate Candida spp. in the pathogenesis of GI cancers, but also indicate 

its potential as a therapeutic target and prognostic tool.

Finally, we provide the normalized, decontaminated mycobiota profiles we uncovered from 

TCGA sequencing data to the research community. This curated dataset consists of fungal 

community profiles from 883 sequencing runs on 767 primary tumor samples from a total 

of 671 individuals and is accompanied by detailed histological and clinical annotations, 

including tumor stage and patient survival.

RESULTS

Fungal DNA is abundant in GI tumor samples from TCGA

To explore tumor-associated mycobiomes across different cancers we employed a 

metagenomic analysis of whole-genome sequencing (WGS) data from multiple tumor 

samples across different cancers available in TCGA. We selected cancer types based on 

previously reported presence of mycobiota, including GI tissues (head-neck/HNSC, n = 338; 

esophagus/ESCA, n = 142; stomach/STAD, n = 321; colon/COAD, n = 300; rectum/READ, 

n = 127), non-GI external sites (breast/BRCA, n = 229), as well as non-GI internal sites 

(lung/LUSC, n = 100; brain/LGG, n = 183), and used PathSeq (Walker et al., 2018) to 

determine their fungal composition. The mycobiomes detected in these tissues were then 

screened for contamination and false-positive signals (See “Identification and removal of 

contaminant fungi and false-positive signals”).

This approach led to the detection of fungal sequences across multiple cancer patient’s tissue 

types, with higher rates of fungal DNA in tissues of the lung and specific sites of the GI tract 

(Figure 1A). As the brain is canonically described as a sterile organ (fungal brain infections 

are usually lethal) and few fungal sequences were detected in brain tissue (LGG, Figure 1A), 

we reasoned that such microbial reads likely represented biological contamination and/or 

false-positive signals, suggesting it can be used as a presumptive “negative control” for 

identifying spurious signals in other sample types. Across the GI tract, fungal DNA was 

particularly abundant in tissues from head-neck (HNSC), colorectal (COAD and READ) and 

stomach (STAD) tissues, and less abundant in the esophagus (ESCA) (Figure 1A, Figure 

S1A). Samples from lower GI tissues harbored a greater density of fungi than upper GI 

tissues did, in a pattern consistent with bacteria (Figure 1B). As expected, fungal sequences 

represented a much smaller proportion of microbial sequences in tissues when compared 

to bacterial DNA (Figure 1B), consistent with previous reports of intestinal human samples 

(Coker et al., 2018; Hoarau et al., 2016; Leonardi et al., 2022; Liguori et al., 2016; Liu et al., 

2022; Nash et al., 2017; Proctor et al., 2021; Sokol et al., 2017).

Identification and removal of contaminant fungi and false-positive signals

Contamination is a plausible source of fungal DNA in metagenomic profiling experiments 

(Davis et al., 2018), particularly in studies of low biomass tissue sites (Glassing et al., 

2016). Additionally, incorrect assignment of microbial or non-microbial sequencing reads 

can lead to reporting of spurious signals (Ye et al., 2019). To ensure accurate capture 

of the mycobiome of these samples, we first applied a prevalence-based decontamination 
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model to identify and remove (1) fungal species and genera whose presence was associated 

with specific sequencing batches and could not be explained by biological variation, and 

(2) samples from multi-well sequencing plates with strong evidence of contamination (See 

Methods). This analysis identified 23 species and 12 genera meeting these criteria (Table 

S1). Additionally, we removed 18 samples from a single sequencing plate which displayed 

evidence of significant fungal contamination (Figure S1B).

While tracking the presence of taxa across sequencing batches can effectively identify 

contaminants, such a strategy is unable to identify contamination events that span 

sequencing batches, nor is it capable of identifying signals which may be the result of 

false-positive alignments. To address these possibilities, we performed a genome-wide 

analysis of sequence alignments for the fungal species detected in each tumor type (See 

Methods, Table S1). For each cancer type, we compared the genome coverage depth 

(“Vertical QC model”) as well as the distribution of sequencing reads across the length of 

each genome (“Horizontal QC model”). The use of orthogonal models in this case allows for 

the identification of different categories of false-positive signals. Species truly present at the 

time of sequencing but not in the original biopsies are referred to as biological contaminants 

and are likely to have similar levels of coverage depth across tissue types and a random 

distribution of read alignments across the span of their genome. Conversely, false-positive 

alignments are likely to occur at conserved or highly mobile genes from other fungal or 

non-fungal genomes, generating similar patterns of sequence alignments across tissue types.

For example, these analyses found that reads aligning to specific Malassezia genomes 

displayed similar coverage depth across sequencing projects but a horizontal read 

distribution that was generally random (Figure 1F, Figure S1C). Malassezia spp. are 

frequently found on the skin surface (Findley et al., 2013; Saheb Kashaf et al., 2022) 

and were likely transferred to samples during handling. Meanwhile, reads aligning to the 

genome of Agaricus bisporus (common mushroom or portabello) displayed a consistent 

horizontal distribution pattern across sequencing projects (Figure S1D). Thus, Malassezia 
restricta and Agaricus bisporus were respectively removed by our vertical and horizontal QC 

models (Table S1).

Overall, our decontamination and QC analyses resulted in the removal of 97.27% of 

species detected in GI tumors, 99.26% of species detected in lung tumors, and 95.53% 

of species detected in breast tumors. Remaining were a set of commensal and pathogenic 

fungi, including Candida albicans (Figure 1C), C. tropicalis, C. dubliniensis, C. glabrata, 
C. lusitaniae, C. guilliermondii and food-associated Saccharomyces cerevisiae (Figure 1D), 
Cyberlindnera jadinii, and Pichia membranifaciens which were abundant in GI tumors 

and Blastomyces dermitidis/gilchristii (Figure 1E) which are abundant in lung tumors and 

causative agents of blastomycosis, a disease that primarily affects the lungs (Brown et al., 

2013). Many of the species classified as contaminants and/or false-positive signals were 

not known to colonize humans, including plant pathogens Alternaria alternata and Bipolaris 
oryzae (Table S1), while Malassezia spp. were classified as probable contaminants in all 

tumor types except for breast tissue (Figure 1F, Table S1), suggesting that reads from 

Malassezia spp. may have originated from both endogenous and contaminant sources as 

we have previously shown for E. coli in CRC samples (Dohlman et al., 2020). Finally, we 
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validated the abundance of several of these species with a secondary metagenomic analysis 

using TaxaTarget (Commichaux et al., 2021), a tool specifically designed for the detection of 

eukaryotic marker genes (Figure S1E).

TCGA tissue samples are composed of disease-specific fungi

Our approach generated species-level resolution data allowing the identification of specific 

fungi across various tumor types. Principal coordinate analysis (PCoA) and hierarchical 

clustering of species abundances across TCGA cancer types revealed that head-neck, colon, 

and rectal tumors had highly similar fungal compositions, as did stomach and esophageal 

tumors, while the fungal composition of non-GI tumors were largely distinct (Figure 2A-B). 

Differences in the fungal communities we observed across GI sites could be affected by 

variations in pH, oxygen availability, or bacterial biogeography across the GI tract, among 

a few key factors driving microbial variation. In addition to environmental factors, the 

detection of fungal species in these samples is affected by the availability of reference 

genomes, meaning there may be additional unknown fungal species not detected by our 

analysis.

We found that tumor-associated fungal communities were characterized by high abundance 

and prevalence of Saccharomycetales, consistent with previous gut mycobiome studies 

relying on metagenomics, culture-dependent analyses, and ITS-amplicon sequencing 

(Hoarau et al., 2016; Leonardi et al., 2020; Li et al., 2022; Liguori et al., 2016; Nash et 

al., 2017; Proctor et al., 2021; Sokol et al., 2017). In addition to these more common fungi, 

deeper analysis revealed the presence of sequences from multiple fungal species and genera 

as well as their distribution across different cancer types (Figure 2C, Figure S2A, Table S2).

The growing consensus on the importance of intestinal mycobiota has prompted the 

investigation of (1) which fungi are capable of surviving, residing, and replicating in the 

GI tract (fungal symbionts or commensals) to influence the host over a prolonged period, 

and (2) which are transient passengers, contaminants, or represent environmental fungi 

(non-commensal fungi) that can impact immunosuppressed individuals (Fiers et al., 2019). 

Candida spp. were more abundant across the GI tract as compared to other body sites, 

consistent with their known commensal status in this part of the body and ability to expand 

during disease (Figure 2C, Figure S2A) (Aggor et al., 2020; Break et al., 2021; Fan et al., 

2015; Hoarau et al., 2016; Kumamoto et al., 2020; Leonardi et al., 2020; Li et al., 2022; 

Liguori et al., 2016; Sokol et al., 2017; Zhai et al., 2020). Species-level analysis determined 

that C. albicans was the most abundant representative of the Candida genus; C. albicans 
was highly abundant in multiple cancers and particularly abundant in cancers of the GI tract 

(Figure 2B-C), consistent with previous studies. Species C. tropicalis, C. dubliniensis, C. 
glabrata, C. lusitaniae, C. guilliermondii, C. parapsilosis, and P. membranifaciens were also 

present, but at lower abundance and prevalence across samples (Figure 2B-C, Figure S2A). 

Saccharomyces spp. were primarily represented by S. cerevisiae. Among fungi broadly 

assigned as non-commensal, we also detected C. jadinii in multiple GI tissues, a species 

that rarely infects people and is found in processed food products, presumably arriving 

via diet. Lung tissues carried B. dermitidis/gilchristii. Interestingly, we detected evidence 

of Blastomyces DNA in 6 out of 50 patients with squamous cell lung carcinomas. In the 
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general population, the incidence of blastomycosis is 1–2 cases per 100,000 (Benedict 

et al., 2012). Together, these findings indicated the presence of biologically meaningful 

associations linking the presence of fungal DNA to tissues from specific body sites.

Emergence of Candida and Saccharomyces co-abundance groups is associated with GI 
cancers

Microbiota participate in a complex web of interspecies ecological interactions and the 

dynamics of these interaction networks can profoundly influence human health (Dohlman 

and Shen, 2019; Faust and Raes, 2012). To explore the potential presence of fungal 

interaction networks and co-abundant taxa, we applied a bootstrapping procedure SparCC 

(Friedman and Alm, 2012) and found that C. albicans and S. cerevisiae were each at the 

center of two anticorrelated co-abundance clusters across GI cancer types (Figure 3A). 

The co-abundance group associated with C. albicans included C. dubliniensis, C. tropicalis, 
and C. guilliermondii, while the group associated with S. cerevisiae was comprised of 

taxa including S. eubayanus, C. jadinii, P. membranifaciens, as well as C. parapsilosis and 

C. glabrata. Additionally, we found that these two co-abundance clusters were predictive 

of host gene expression across head-neck, stomach, and colon cancers (Figure 3B-D). 

These findings suggested that cancers of the GI tract may segregate into Candida- and 

Saccharomyces-associated tumors. Notably, many of the species in each of these clusters are 

taxonomically related, thus the degree to which they are driven by biological or phylogenetic 

factors (or both) warrants further exploration.

Trans-kingdom analysis reveals co-abundance groups associated with Candida and 
Saccharomyces in GI cancers

To further explore the microbial communities associated with the Candida and 

Saccharomyces tumor co-abundance clusters and their relevance to disease, we examined 

bacterial populations associated with Candida and Saccharomyces and applied the same 

correlation approach to identify associations among GI tumor-associated fungi and matched, 

decontaminated, tumor-associated bacterial communities from The Cancer Microbiome 

Atlas (TCMA) (Dohlman et al., 2020). This analysis identified several interesting bacterial 

subpopulations that were correlated with Candida and Saccharomyces in each cancer type.

In head-neck tumors, Candida and Saccharomyces were associated with similar bacteria 

(Figure 3E, Figure S3A). Lactobacillus spp. and especially Lactobacillus gasseri were 

frequently found in the presence of Candida and, to a lesser extent, Saccharomyces 
(Figure S3D-F). This observation is consistent with reports that Lactobacillus spp. interact 

extensively with Candida to influence its pathogenicity (Ballou et al., 2016; MacAlpine et 

al., 2021; Zeise et al., 2021). Bifidobacterium, which is known to support intestinal barrier 

function (Ewaschuk et al., 2008) was also positively associated with Candida in head-neck 

cancers. In stomach tumors, we also observed that Candida was strongly associated with 

Lactobacillus (Figure 3F, Figure S3B,E). However unlike in head-neck cancer, Candida 
and Saccharomyces in stomach tumors were largely associated with dissimilar clusters of 

bacteria. Most notably, we observed that Candida-associated tumors were less likely to 

harbor Helicobacter pylori, while Saccharomyces was more likely to be found alongside H. 
pylori. A similar pattern was identified for the genera Streptococcus and Clostridium, which 
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were positively associated with Candida and negatively associated with Saccharomyces. In 

lower GI tumors, Candida and Saccharomyces were also co-abundant with distinct bacterial 

populations (Figure 3G, Figure S3C). Unlike upper GI cancers, we did not observe any 

association between L. gasseri and Candida in colon tumors (Figure S3F). However, we 

found that among colon cancers, Candida was positively associated with Dialister, and 

was negatively associated with Ruminococcus, Akkermansia municiphila, and Barnesiella 
intestinihominis (Figure 3G, Figure S3C) , some of which known to promote beneficial 

host-microbe interactions. Interestingly, the presence of Candida and Saccharomyces were 

also associated with differing species of Fusobacterium spp. in colon cancer (Figure S3C). 

In addition to providing insight into tumor-associated microbiomes, such trans-kingdom 

ecological interactions may be relevant for disease detection and potentially inform 

strategies for modulating tumor microbiomes for therapeutic benefit.

Candida and Saccharomyces are predictive of gene expression patterns in GI cancers

To better understand the effect of Candida and Saccharomyces co-abundance groups on GI 

cancers, we next sought to compare the rates of Candida and Saccharomyces across GI 

tumors. Across cancer types, we discovered that Candida-to-Saccharomyces ratios displayed 

striking bimodality, corroborating our previous observations of Candida and Saccharomyces 
co-abundance clusters and suggesting that GI tumors could be reliably organized into 

subgroups of Candida- and Saccharomyces-associated cancers (Figure 4A, Figure S4A). 

To understand the relevance of these two subgroups, we divided GI tumors into Candida-

dominant (Ca-type) and Saccharomyces-dominant (Sa-type) clusters and compared them.

To see if Ca-type and Sa-type tumors harbored functional differences, we used RNA-seq 

data from TCGA to analyze gene expression between tumor samples that were highly 

abundant in Candida or Saccharomyces with tumors in which these taxa were not detected 

(Figure 4B, Figure S4B). This analysis identified several interesting changes in gene 

expression that were associated with Candida status. In head-neck cancer, we found that 

tumor-suppressors TP53 and CDKN2A were expressed at lower rates in Ca-type tumors, 

along with fibronectin (FN1), a marker of epithelial-to-mesenchymal transition (EMT) in 

head-neck cancers. Interestingly, we also saw that IL22, IL24, CARD10, and CD44 were up-

regulated in Ca-type tumors, but not Sa-type tumors. Gene-set enrichment analysis (GSEA) 

of this expression signature demonstrated that the presence of Candida was associated with 

decreased expression of genes relating to cell adhesion molecules (q < 0.001) in head-neck 

cancers. In stomach cancers, we found that genes related to cytokine interactions, host 

immunity, and inflammation were positively enriched in Ca-type tumors, including IL1A, 

IL1B, IL6, IL8, CXCL1, CXCL2, and IL17C. This pro-inflammatory immune signature is 

consistent with previous reports that C. albicans invokes IL-1β, neutrophils and Th17 cell 

infiltration in the gut (Li et al., 2022). By contrast, these genes were differentially expressed 

to a lesser degree or were not differentially expressed at all in Sa-type tumors. Genes 

down-regulated in Ca-type tumors included ALAD, FTL, IL17D, CST5, ELN, and TREM2. 

This gene expression pattern was associated with significant up-regulation of genes involved 

in cytosolic DNA sensing (q = 0.008), Toll-like receptor (q = 0.033) signaling, Nod-like 

receptor (q = 0.033) signaling, and cytokine-cytokine receptor interactions (q = 0.035). In 

colon cancers, we found that tumor suppressor genes and genes regulating cellular adhesion 
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pathways were downregulated in Ca-type tumors, including PTK2B, CDKN2C, and NET1, 

while genes such as BMP15, PFN3, CCL27, PIP, and SAGE1 were up-regulated in Ca-type 

tumors. Moreover, GSEA identified significant down-regulation of genes involved in ECM-

receptor interactions (q = 0.036) and focal adhesion (q = 0.101) pathways in Ca-type 

colon tumors. Thus, the presence of Candida in head-neck and colon tumors appears to be 

associated with pro-tumorigenic and cellular adhesion-related gene pathways, while Candida 
appears to be associated with a robust immune response in stomach tumors. However, 

additional analyses are needed to determine whether Candida plays a causative role in these 

gene expression changes or is merely responding to them.

A Candida-to-Saccharomyces ratio is associated with late-stage, metastatic colon cancer

The observation that Candida is associated with down-regulation of genes involved in 

cellular adhesion pathways and epithelial barrier function in head-neck and colon tumors led 

us to explore if ratios between these two genera were predictive of cancer outcomes. We 

found that Candida-to-Saccharomyces (C/S) ratios were generally low among early-stage 

colon cancers but were dramatically increased in stage IV disease (Figure 4C, Table 

S3). These ratios did not vary significantly by stage in head-neck, stomach, or other 

cancers (Figure 4C, Figure S4C). The association with late-stage colon cancer led us 

to examine rates of metastases among Ca-type and Sa-type tumors. Comparing Candida-
to-Saccharomyces ratios in metastatic and non-metastatic groups, we found that Ca-type 

colon tumors were significantly more likely to be metastatic than tumors with higher rates 

of Saccharomyces (Figure 4D; p = 8.49E-3). Similar analyses did not find significant 

differences in other cancer types (Figure S4D). Thus, Candida-to-Saccharomyces ratios may 

capture a clinically relevant shift in tumor mycobiomes with potential prognostic value for 

colon cancer.

Our observation that tumor mycobiomes were predictive of metastatic colon cancer and 

deregulation of genes involved in epithelial barrier function led us to question if fungi 

or fungal DNA might transfer into the bloodstream from the barrier surfaces in which 

these fungi normally reside. To explore this possibility, we examined the composition of 

patient-matched tumor and blood samples from cancer types of the lower and upper GI 

tracts. We found statistically significant similarities in the composition of patient-matched 

tumor and blood samples from patients with upper GI cancers (p = 3.27E-2) and lower 

GI cancers (p = 3.72E-5) compared to unmatched samples (Figure 4E). The same was not 

true for other tumors, suggesting that the GI tract might be a possible entrance point for 

fungi or fungal DNA into the bloodstream. Together these data indicate that Candida may 

be linked to loss of gut epithelial barrier function, metastasis, and the translocation of fungal 

cell components from the GI tract into the bloodstream. However, whether Candida cells or 

other fungal DNA can consistently be detected in the blood of GI cancer patients requires 

additional examination.

Live, transcriptionally active Candida species are associated with GI tumors

To further examine the role of Candida, we next analyzed the distribution of fungi across the 

lower GI tract. Consistent with previous studies focused on fecal mycobiota (Chehoud et al., 

2015; Hoarau et al., 2016; Leonardi et al., 2020; Sokol et al., 2017), the Ascomycota phylum 
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was more prevalent in the ascending colon (Figure 5A, Figure S5). A targeted, species-level 

analysis determined that C. albicans is likely driving the abundance of Ascomycota in the 

ascending colon (Figure 5B).

We next sought to experimentally validate the presence of Candida in lower GI 

cancer tissues. To do so, we obtained three primary colorectal tumor samples from an 

original TCGA tissue provider. Two of these samples were classified as Candida-positive 

(TCGA-AG-A002) and two as Candida-negative (TCGA-AG-4015, TCGA-AG-3885). We 

performed independent, ITS sequencing of these three samples and confirmed the presence 

of high rates of Candida in TCGA-AG-A002 (98.89% of reads), while Candida appeared 

to be much less abundant in TCGA-AG-4015 and TCGA-AG-3885 (<2% of reads) (Figure 

5C).

Notably, a culture-dependent analysis (Li et al., 2022) of colorectal adenocarcinomas from 

a separate cohort found that live C. albicans, C. lusitaniae and C. tropicalis are present in 

the mucosa of adenocarcinomas from ascending colon (Figure 5D, Table S3). No live S. 
cerevisiae, M. sympodialis or M. globosa were isolated from these samples. In a third cohort 

from the Human Cancer Model Initiative (HCMI), we screened for the presence of Candida 
RNA in solid tumor samples, finding that the distribution of Candida RNA along the length 

of the lower GI tract (Figure 5E) matched the anatomical distribution of Candida DNA in 

TCGA cohort (Figure 5B).

The detection of live Candida and Candida RNA in GI tumors prompted us to examine if 

RNA from Candida or other species could be detected in GI tumors profiled by TCGA. 

Comparing the abundance of fungal sequences from matched tumors analyzed using both 

WGS and RNA-seq, we found that rates of genomic Candida DNA were highly correlated 

with the presence of Candida RNA transcripts (Figure 5F), indicating that these Candida 
species were transcriptionally active across GI tumors. In comparison, no such correlations 

were observed for other species such as S. cerevisiae and C. jadinii, suggesting that DNA 

and RNA obtained from these species do not represent living fungi in these tumor tissues. 

Together, these data demonstrate that live, transcriptionally active Candida species are 

present in tissues associated with GI tumors and that fungal DNA detected in the blood 

of patients with lower GI tumors may originate from the gut.

Targeted analysis of Candida and Saccharomyces spp.

To further evaluate the prevalence of specific fungi across different cancer types, we 

performed targeted analyses of C. albicans, C. tropicalis, and S. cerevisiae. This analysis 

revealed that C. albicans, C. tropicalis, and S. cerevisiae were more prevalent in GI tract 

tumors than breast tumors or brain tumor controls (Figure 6A-B).

Given our finding that Candida-to-Saccharomyces ratios may be prognostic of GI cancer 

outcomes (Figure 4C-D), we next used our targeted approach to examine associations 

between specific fungi and tumor stage. Consistent with our observation of Candida-to-

Saccharomyces ratios, we found that C. albicans, C. tropicalis, and S. cerevisiae were 

significantly associated with stage IV colon cancer (Figure 6C-D, Table S3). Notably, both 

C. albicans and C. tropicalis were more abundant in stage I stomach cancer specifically 
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(Figure 6C-D). None of the fungal species we examined were associated with a specific 

tumor stage in head-neck samples. Collectively, these data indicate that increased abundance 

of Candida in late-stage, metastatic colon tumors may be directly or indirectly involved 

in the deregulation of genes mediating cellular adhesion (Figure 4B), thereby leading 

to a deteriorated epithelial barrier, metastasis, and potential translocation of fungal cell 

components associated with the primary tumor site into the bloodstream (Figure 4E). 

Alternatively, increased abundance in late-stage colon tumors might instead be the result 

of deregulations in the tumor’s immune system, which would allow the unhindered growth 

of Candida and other pathogens.

Cancer-associated mycobiota and clinical outcomes highlight predictive value of Candida

Having observed that higher rates of Candida were associated with increased expression of 

immune/inflammatory genes in GI cancers (Figure 4B-D), we sought to further explore 

associations between specific fungi and GI cancer types by comparing abundance of 

Candida between tumor samples and normal tissue. We found that Candida was significantly 

and uniquely enriched in stomach tumor samples compared to patient-matched normal tissue 

(p = 4.23E-3, Figure 7A-B), while Cyberlindnera was significantly enriched in normal tissue 

(p = 2.15E-5). Notably, a similar analysis determined that Blastomyces (p = 8.80E-3) was 

similarly enriched in lung tumors compared to matched adjacent normal tissue (Figure S7A).

Our analyses of GI tumor samples suggested that Candida DNA may have potential as a 

prognostic biomarker. To examine this possibility, we employed a non-parametric machine 

learning ensemble method known as a random forests (RF) classifier. This approach found 

that Candida was by far the most important feature for distinguishing GI tumors from 

other cancer types, followed by Cyberlindnera and Saccharomyces (Figure 7C). Additional 

targeted analyses of C. albicans and C. tropicalis revealed that the abundance of both 

Candida species increased steadily from the proximal to distal stomach, with the lowest 

abundance in the cardia and the greatest abundance in the antrum (Figure 7D). Interestingly, 

these results mirror the colonization pattern of H. pylori, which preferentially infects the 

antrum (Suerbaum and Michetti, 2002).

Enrichment of Candida in tumor samples and its predictive power for GI cancer led us 

to question if Candida might be predictive of disease outcomes. Using survival data from 

TCGA, we found that high rates of tumor-associated C. tropicalis DNA were significantly 

associated with decreased survival among stomach cancer patients (p = 1.72E-2) and head-

neck cancers (p =1.37E-2), indicating that the presence of Candida DNA at the tumor site 

might represent a prognostic biomarker for GI cancers (Figure 7E).

We next sought to determine if these associations extended beyond specific cancer types. 

To explore this possibility, we performed a pan-cancer analysis, incorporating fungal 

abundance and survival information from all GI cancer types. This analysis found that 

GI cancer patients with high rates of Candida at the tumor site had significantly decreased 

survival rates compared to patients who were Candida-negative (p = 1.31E-2, Figure 7F). 

Saccharomyces was not associated with survival (Figure S6B). The associations between 

Candida, GI cancer, and reduced survival were particularly pronounced in stomach cancer 

and consistent with the results of our pathway analysis, which found that the presence of 
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Candida was associated with the expression of genes involved in cytosolic DNA sensing, 

Toll-like receptor signaling, and Nod-like receptor signaling in stomach cancers (Figure 

7G). Together, these data not only contribute to a growing body of evidence suggesting that 

Candida contributes to GI cancer severity, but also suggest that Candida may serve as a 

promising biomarker for predicting disease outcomes.

DISCUSSION

In this pan-cancer analysis of tumor mycobiomes, we screened NGS data from TCGA to 

extract and characterize the fungal DNA presence and composition of hundreds of tissue 

and blood samples from GI and non-GI cancer types. To precisely determine the fungal 

composition of these samples, we applied orthogonal QC models to identify and remove 

potential contaminant fungi and false-positive signals, showing that thorough examinations 

of genome coverage patterns can identify both biological contamination and false-positive 

assignments. This approach, in conjunction with previous metagenomic studies of publicly 

available NGS data (Dohlman et al., 2020; Poore et al., 2020), indicates that careful analysis 

of existing sequencing data yields cost-effective and biologically meaningful metagenomic 

profiles which can be leveraged to study multi-kingdom microbe-microbe and host-microbe 

interactions at the cellular interface between microorganisms and the body sites they inhabit. 

The capacity to simultaneously profile microbial and tumoral DNA should be taken into 

consideration when designing such experiments.

Our analysis of tumor mycobiomes revealed both pan-cancer and cancer-specific 

associations between tumor-associated fungi and human cancers. Moreover, community 

analysis showed that Candida and Saccharomyces spp. could act as “keystone taxa” in the 

tumor microbiome, driving ecological interactions and overall variation in multi-kingdom 

microbial composition. Such changes in tumor-associated microbial communities are likely 

to have effects on the tumor immune environment and therefore influence the course of 

tumorigenesis and tumor progression. Accordingly, we found that Candida was associated 

with increased expression of pro-inflammatory immune pathways, particularly in stomach 

cancer. In the lower GI tract, we found that Candida was associated with metastasis and 

deregulation of genes involved in maintaining cellular focal adhesions. In lower GI cancers, 

we found that tumor and blood samples from the same patient harbored highly similar 

fungal compositions, raising the possibility that fungal DNA translocates from the GI tumor 

site to the bloodstream. The same was not true for non-GI tumors.

Increased tight junction permeability and loss of epithelial barrier function are common 

features of lower GI cancers in particular (Soler et al., 1999), and are significant risk factor 

for metastasis (Martin and Jiang, 2009). Transformation of intestinal epithelial cells to a 

mesenchymal-like state is encouraged by chronic inflammation (Ricciardi et al., 2015), a 

process enhanced by dysbiotic, pro-inflammatory microbiota (Hofman and Vouret-Craviari, 

2012; Vergara et al., 2019). As C. albicans potentiates intestinal inflammation via IL-1-

dependent mechanisms (Li et al., 2022), it is reasonable to hypothesize that Candida 
spp. contribute to inflammatory tumorigenesis in cooperation with other microorganisms 

in the GI tract (Ramirez-Garcia et al., 2016). Inflammation has been shown to strongly 

promote Candida colonization; Candida maintains this pro-inflammatory environment by 
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itself augmenting inflammation (Jawhara et al., 2008). Thus, effective management of 

Candida infections and associated inflammation might be a reasonable co-therapeutic option 

during cancer treatment.

Given our findings that Candida is correlated with worse survival outcomes, pro-

inflammatory gene expression, and metastasis, it is apparent that future work is needed 

to better understand the intricacies of Candida species interaction with the host during 

tumor development and progression. Additional studies may help to clarify whether tumor-

associated Candida is driving these signatures (Tjalsma et al., 2012). Regardless, Candida’s 
associations with patient survival and enrichment in tumor samples compared to uninvolved 

tissues indicate that the identification of fungal DNA at the tumor site may provide a 

predictive biomarker for GI cancers.

Limitations of the Study

Here, we propose that fungi are involved in multiple human tumor types targeting the barrier 

surfaces, and that specific fungi are predictive of survival. While this data is based on tumor 

samples from an ethnically and geographically diverse TCGA cohort and samples from a 

validation cohort, the associations with survival, metastasis, and gene expression presented 

here should nevertheless be examined in additional settings. Further, while we found many 

interesting associations between GI tumors and Candida spp., the scope of this study is not 

capable of addressing whether Candida is contributing to these phenotypes, or instead is 

enriched because of them. Although the scope of this study is unable to determine if the 

tumor-associated fungi we found are intratumoral or come from the mucosa associated with 

these tissues, our data so far suggest the latter possibility. Future work should be done to 

better understand the role that the mycobiome, or specific fungal species and strains play in 

cancer development and progression.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Iliyan Iliev (iliev@med.cornell.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data from TCGA and HCMI. 

Information for accessing these datasets can be found in the key resources table.

• Original code for generating fungal compositions from TCGA and HCMI 

datasets has been deposited at https://github.com/abdohlman/tcma_code and is 

publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Information on the age/developmental stage, sex, and gender identity of all subjects 

from the TCGA and HCMI cohorts are publicly available from the GDC website. Links 

for accessing this information is available in the key resources table. Colon tumor 

samples (adenocarcinomas of ascending colon) used for Candida cultures originated from 

deidentified individuals according to the institutional review board approved protocol from 

the Weill Cornell Medicine in accordance with the Helsinki Declaration. TCGA and HCMI 

sequencing data were used in accordance with the TCGA and HCMI Data Use Certification 

Agreement, dbGaP authorization to access controlled data and under authorization of Duke 

University and Weill Cornell Medicine institutional review boards.

METHOD DETAILS

Detection and quantification of mycobiomes in TCGA and HCMI sequencing 
data—The TCGA project collected biospecimens including primary tumors, normal tissue, 

and blood samples from cancer patients both prospectively and retrospectively until 

2013. Requirements for sample collection included (1) a minimum size of 200mg, (2) 

a minimum of 80% tumor nuclei, (3) a maximum of 50% necrosis, and (4) availability 

of matched germline DNA (Cancer Genome Atlas Research, 2008). Analyte-, sample-, 

and patient-level metadata (including information on tumor stage, location, metastasis, 

etc.) associated with each sequencing run were obtained from the NCI Genomic Data 

Commons (GDC). Raw TCGA WGS data were obtained from the GDC’s legacy archive 

(https://portal.gdc.cancer.gov/legacy-archive/), while raw HCMI RNA-seq data was obtained 

directly from GDC (https://portal.gdc.cancer.gov/). Overall, we analyzed data from 1,759 

sequencing runs for HNSC (n = 338), ESCA (n = 143), STAD (n = 321), COAD (n = 300), 

READ (n = 127), BRCA (n = 230), LUSC (n = 100), and LGG (n = 200) projects from 

TCGA with WGS data available. From HCMI, we analyzed data from 34 sequencing runs 

on solid tissue samples from brain (n = 13) and lower Gi sites (n = 21).

All WGS and RNA-seq data from TCGA and HCMI were screened for fungal content 

using PathSeq (Walker et al., 2018), which is made available as part of the Broad 

Institute’s Genome Analysis Toolkit (GATK version 4.0.3) and relies on the Burrows-

Wheeler Aligner (BWA-MEM) (Li and Durbin, 2009). Prior to screening for microbial 

alignments, PathSeq performs multiple, iterative subtractive alignments of reads previously 

unaligned to a host genome reference. The core host reference genome used was 

GRCh38 (hg38); this host reference is supplemented by (1) highly variable sequences 

from the immunohistocompatibility complex (MHC) from the Immuno-Polymorphisms 

Database (IDP), (2) Cloning vector sequences from NCBI UniVec, (3) mammalian 

consensus repetitive sequences from RepBase, (3) a curated database of human transcripts 

(human v25) from Gencode, and (4) human breakpoint sequences from GenBank 

(KY503218, KY5808060). Reference genomes for this analysis were obtained from the 

PathSeq resource bundle. These files were accessed via ftp from the Broad Institute 

(ftp.broadinstitute.org/bundle/beta/PathSeq/). PathSeq was used with default settings, except 

for the “minClippedReadLength” parameter, which was set to 50 for WGS and 45 for 

RNA-seq (a read length of 50bp is used for most TCGA RNA-seq data). All sequencing 
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data were analyzed on a local high-performance computing (HPC) cluster with 60 compute 

nodes, 1,512 CPU cores, and approximately 15TB of RAM.

To isolate the endogenous fungal composition of these samples, sequencing reads from taxa 

at the genus and species level were normalized (1) by genome size (i.e. per kilobase of 

mapped fungal genome), (2) by the expected accuracy of the taxonomic assignment (i.e. 

weights are divided by the number of ambiguous alignments), and then (3) by the total 

library size (i.e. per million primary sequencing reads, regardless of alignment). These 

normalizations produced an “expected reads per kilobase of genome, per million primary 

reads” statistic (eRPKM). Kingdom- and phylum-level read counts were normalized to the 

library size (reads per million, RPM), as these alignments are much less prone to ambiguous 

assignment or significant fluctuations in genome size. Relative abundance (%) values were 

calculated by scaling eRPKM values, such that the sum of taxa abundances from a given 

taxonomic rank and sample sum to 100.

QC by removal of fungi associated with TCGA sequencing batches—To 

mitigate the possibility of fungal contamination in the mycobiomes we analyzed, we 

performed a screen to identify species and genera that showed signs of technical 

variation, but not biological variation. We therefore devised a two-step prevalence-based 

decontamination model (See Methods) to identify and remove (1) fungal taxa whose 

presence was associated with specific sequencing batches and could not be explained by 

biological variation, and (2) samples from multi-well sequencing plates with strong evidence 

of contamination.

We calculated prevalence of species and genera across each sequencing batch (plate id), 

then for each tumor type (TCGA sequencing project) and compared these to their expected 

frequencies assuming a random distribution. Specifically, expected frequency distributions 

for each species were calculated by multiplying the total number of samples in each 

project or sequencing plate by the species prevalence across the entire dataset; these 

values were compared to the observed prevalence across projects or plates. We used these 

observed and expected frequencies to compute p-values for a Chi-square statistic, which 

was then adjusted for multiple comparisons using the Benjamini-Hochberg false-discovery 

rate correction (FDR, q-values). Species and genera that were associated with sequencing 

batch (q < 0.1) but not tumor type (q > 0.1) were classified as potential contaminants and 

removed from downstream analysis. Lastly, we screened samples to determine if there were 

sequencing plates with significant evidence of contamination that needed to be excluded 

from the analysis entirely. This analysis identified a single sequencing plate (A19H) with 

significant contamination. Samples from this plate harbored fungal reads at rates around five 

magnitudes greater than samples from different plates, independent of sample type.

QC by vertical and horizontal analyses of fungal genome coverage—To 

further address the possibility of contamination or false-positive alignments, we sought 

to characterize the genomic coverage of the most frequently detected species in our 

PathSeq analysis of WGS data from TCGA. We selected any species detected in more 

than 5 sequencing runs (eRPKM > 0) in any of TCGA sequencing projects we analyzed 

(HNSC, ESCA, STAD, COAD, READ, LUSC, BRCA) that remained our precursory 
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decontamination analysis of sequencing batches, as well as several closely related species 

with NCBI reference genomes available. For sequenced tumor samples from each cancer 

type, the human subtracted PathSeq BAM file outputs were converted back to their raw, 

unmapped, reads using SAMtools v1.14 (Li et al., 2009) . Raw reads were aligned using 

the Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009) to each species’ reference 

genome to create a new BAM file containing only reads mapped to that reference. Genome 

coverage statistics were stored in bedgraph files using BEDTools (Quinlan and Hall, 2010) 

genomeCoverageBed with the -bg flag. Each tumor type’s bedgraphs were then pooled 

together and their genome coverage was assessed using deepTools2 (Ramirez et al., 2016) 

bamCoverage command.

We used the resulting bedgraphs to analyze the coverage depth and horizontal read 

distribution for each genome. Coverage depth (Vertical QC model) was assessed by 

calculating the average log10-coverage per-base per-sample. We then calculated the ratio 

of average log10-coverage per-base per-sample between each sequencing project and brain 

tumor samples to estimate the fraction of reads that could be the result of contamination. 

To assess horizontal distribution (Horizontal QC model) for each species and cancer type, 

we generated a genome-length Boolean vector indicating whether reads had aligned to each 

base. The hamming distance between the vector generated for brain tissues and the vector 

for each cancer type was then calculated to determine the base-wise horizontal similarity 

of alignments across each genome. For the vertical QC model, species were classified 

as possible contaminants if the average log10-coverage per-base per-sample coverage for 

each tumor type was greater than 30% that of brain tumors. For the horizontal QC model, 

species were classified as possible false-positive signals if the hamming distance to brain 

was less than 0.02. Species which were classified as possible contaminants or false-positive 

signals by either model were removed from downstream analysis. Genome alignments were 

visualized using pyGenomeTracks (Ramirez et al., 2018).

Validation with TaxaTarget—We used TaxaTarget (Commichaux et al., 2021) to analyze 

eukaryotic marker genes and validate the presence of key species from our PathSeq analysis. 

Human-filtered PathSeq output BAM files from TCGA were converted to raw, unaligned 

forward and reverse fastq formats using samtools. The taxaTarget results were then screened 

for marker genes aligning to Homo sapiens to determine the degree of contamination by 

human DNA, as well Candida, Saccharomyces, and Malassezia species to validate fungal 

presence in TCGA tumor samples.

Targeted analysis and quantification of Candida and Saccharomyces species 
of interest—We identified several species of interest that were abundant across TCGA 

tissue samples. To better quantify these species, we performed a targeted analysis by 

mapping fungal genomes to libraries of putative microbial reads generated for each TCGA 

sequencing run after stringent filtering of human sequences with PathSeq. Representative 

genomes for C. albicans (GCA_003454735.1), C. tropicalis (GCA_000633855.1), and S. 
cerevisiae (GCA_000146045.2) were downloaded from GenBank and mapped to these 

libraries using STAR (Dobin et al., 2013) without allowing for spliced alignments (--

alignIntronMax=1). Raw read counts for each species were then normalized by genome 
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size and total library size as previously described to calculate an empirical reads per kilobase 

of genome, per million primary reads (RPKM).

Estimation of intra- and inter-kingdom co-abundance groups and associated 
gene expression signatures—Compositional effects complicate robust calculation of 

correlations between microbiota (Gloor et al., 2017). To address these effects, we used 

SparCC (Friedman and Alm, 2012) to estimate taxa that are frequently found together across 

each cancer type. This method relies on a bootstrapping procedure to reduce for spurious 

results. Prior to calculating correlations, we filtered out low-abundance samples and selected 

the 20 most abundant fungal species from each cancer type. We then ran SparCC for 1000 

iterations with default parameters to identify fungal co-abundance groups within head-neck 

(HNSC), stomach (STAD), and colon (COAD) tumor samples.

Our trans-kingdom analysis was used to identify associations between fungi and bacteria 

and was performed by comparing the decontaminated fungal compositions generated in the 

current work with decontaminated bacterial compositions from matched samples in TCMA 

(Dohlman et al., 2020). To accurately quantify associations across kingdoms and control 

for the significant difference in their respective abundances, we applied a scaling factor to 

the fungal compositions to obtain similar distributions for each kingdom and allow robust 

estimation of bacterial-fungal co-abundance associations. The most abundant fungal and 

bacterial taxa were selected from each cancer type prior to running SparCC.

Acquisition and analysis of original TCGA tumor samples—For validation of 

Candida presence in lower GI tumors, we obtained original, matched tissue and plasma 

samples from three CRC patients from Indivumed, an original TCGA tissue provider. Tumor 

tissues were minced, homogenized and treated with 200 U/mL lyticase (Sigma) followed by 

bead beating, and processing using the Quick-DNA Fungal/Bacterial Kit (Zymo Research) 

as in (Li et al., 2022). Fungal DNA presence was validated by RT-PCR for fungal 18S and 

fungal ITS1–2 regions were amplified by PCR using primers with sample barcodes and 

sequencing adaptors.

Fungal primers: ITS1F-CTTGGTCATTTAGAGGAAGTAA, ITS2R-

GCTGCGTTCTTCATCGATGC

Forward overhang: 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG‐[locus-

specific sequence]

Reverse overhang: 5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG‐[locus-

specific sequence]

ITS amplicons were generated with 35 cycles using Invitrogen AccuPrime PCR reagents 

(Carlsbad). Amplicons were then used in the second PCR reaction, using Illumina Nextera 

XT v2 (Illumina) barcoded primers to uniquely index each sample. DNA was amplified 

using the following PCR protocol: Initial denaturation at 94°C for 10 min, followed by 

40 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and elongation at 

72°C for 2 min, followed by an elongation step at 72°C for 30 min. All libraries were 

subjected to QC using DNA 1000 Bioanalyzer (Agilent), and Qubit (Life Technologies) to 
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validate and quantify library construction prior to preparing a Paired-End flow cell. Samples 

were randomly divided among flow cells to minimize sequencing bias. Clonal bridge 

amplification (Illumina) was performed using a cBot (Illumina). 2 × 250 bp sequencing-by-

synthesis was performed on Illumina MiSeq platform (Illumina).

Quantification, isolation and characterization of live fungi in primary 
colorectal tumor samples—Adenocarcinoma-associated tissues were collected from 

ascending colon surgical resections that were then weighed, minced, homogenized, diluted 

in sterile PBS and plated onto Sabouraud dextrose agar (SDA) and modified Dixon media 

(mDixon with glycerol monostearate), and inhibitory mold agar (Hardy Diagnostics), all 

supplemented with both penicillin/streptomycin (Sigma), inhibitory mold agar (Hardy 

Diagnostics) and modified Dixon broth with glycerol monostearate. SDA plates were 

incubated at 37°C for 48 hours. Inhibitory mold agar plates and modified Dixon media were 

incubated at 30°C for up to a week. Isolated fungal colonies from each individual subject 

were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) 

mass spectrometer.

Identification of Candida- and Saccharomyces-type TCGA tumor samples and 
associated signatures—To identify Candida- and Saccharomyces-associated tumors, we 

calculated a log-normalized Candida-to- Saccharomyces abundance ratio (log2(C/S)) across 

all tumor samples for which either genus was detected. Tumors were classified as Ca-type 

or Sa-type if they had a log2(C/S) value above 1 or below −1, respectively, i.e. samples for 

which neither genus was detected at more than twice the rate of the other were excluded. To 

test associations between gene expression and the presence of Candida and Saccharomyces, 

we performed differential gene expression analysis using batch-normalized gene expression 

data from the PanCanAtlas publication page (https://gdc.cancer.gov/about-data/publications/

pancanatlas). For each cancer type, we calculated log2-fold changes (log2FC) in gene 

expression between tumors that were negative for Candida or Saccharomyces (eRPKM 

< 1E-6) and tumors which were high in Candida or Saccharomyces (eRPKM > 1E-6). 

All taxonomic abundance profiles were collapsed to the sample level by calculating the 

geometric mean of taxon abundances across the available tumor sequencing data for 

each tumor sample. We then estimated the significance of gene expression changes using 

Student’s independent two-sample t-test. Differential gene expression values generated by 

this analysis were then used perform GSEA (Subramanian et al., 2005) and analyze gene 

expression pathways enriched in Candida- and Saccharomyces-associated cancers based 

on gene lists obtained from MSigDB v7.1. Using pre-ranked differential gene expression 

values, we ran GSEA for 1000 iterations to identify enriched KEGG biological pathways 

(Kanehisa and Goto, 2000).

To compare rates of metastasis in Ca- and Sa-type tumors, we used TNM-stage 

classifications of each TCGA tumor sample to determine metastatic (M1) and non-

metastatic (M0) status. Samples for which no metastatic information was available (MX) 

were excluded. A contingency table for each cancer type was generated, comparing 

metastatic status (M0/M1) and tumor mycobiome classification (Ca-type v.s. Sa-type). 
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Fisher’s exact test was then used to determine if Ca-type or Sa-type tumors were more 

likely to be metastatic.

Differential abundance analysis between tumor and adjacent normal tissue—
Associations between fungal genera and sample type (tumor v.s. matched adjacent normal 

tissue) were calculated in R, using a custom paired analysis function written for metacoder 

(Foster et al., 2017). For each cancer type we analyzed the 20 most abundant taxa were 

selected, provided they were present in at least 30 samples overall. Such filters were applied 

to remove low-abundance and low-prevalence fungi. Pseudocounts were added and data 

were transformed to relative abundance for each sequencing run. Across all patients with 

matched tumor and normal tissue, we then calculated the log2 median ratio of relative 

abundance values in tumor samples compared to matched adjacent normal tissue for each 

taxon. Significance values were calculated for log2 median ratios using Wilcoxon’s rank-

sums test. Taxa with significant p-values (p < 0.05) were selected for downstream analysis.

Survival analysis—The survival analyses was performed using the log-rank test, as 

implemented by the lifelines survival analysis python package (Davidson-Pilon et al., 2020). 

Information on TCGA patient survival outcomes were collected from the PanCanAtlas 

clinical follow-up data (Liu et al., 2018). Survival analysis was performed at both the species 

and genus level. For the species-level analysis, we used normalized fungal abundances 

from our targeted analysis (RPKM for C. albicans, C. tropicalis, and S. cerevisiae). For 

each species of interest and cancer type, we compared survival between patients whose 

tumors did not harbor the species (“negative”; 0th percentile) with patients whose tumors 

were abundant in the species (“high”; top 50th percentile). The genus-level analysis was 

performed using fungal abundances determined by our PathSeq analysis (eRPKM for 

Candida and Saccharomyces) and used the same set of criteria for assigning patients as 

“negative” or “high” as the differential gene expression analysis. Taxonomic abundances 

were collapsed to the patient level using the geometric mean of taxon abundances across the 

tumor sequencing data available for each patient.

Random forest classification of cancer types using fungal compositions of 
tumor and blood samples—To identify fungal genera predictive of cancer location, 

we used a decision-tree based ensemble machine learning method known as random forest 

classifiers (Breiman, 2001), as implemented by the python package sklearn (Abraham et 

al., 2014). A separate classifier model was trained on the mycobacterial compositions of 

tumor samples from seven TCGA cancer types (HNSC, ESCA, STAD, COAD, READ, 

LUSC, and BRCA). For each cancer type, we implemented a one-versus-all classification 

strategy which sought to identify genera capable of distinguishing a specific cancer type 

(e.g. stomach tumors) from all others (e.g. non-stomach tumors). Prior to classification, taxa 

that were detected in fewer than 1% of samples were removed. Species abundances were 

log-normalized after the addition of a pseudocount to achieve a gaussian distribution. For 

each classifier a forest of 400 estimators was used with a maximum depth of 30 features 

per tree and a minimum of 5 samples per split. Default values were used for all other 

hyperparameters. To bootstrap the estimation of feature importances, we used a repeated, 

stratified cross-fold cross validation strategy with 10 folds and 10 repeats.
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QUANTIFICATION AND STATISTICAL ANALYSIS

For removal of fungi associated with TCGA sequencing batches we used observed and 

expected frequencies to compute p-values for a Chi-square statistic, which was then adjusted 

for multiple comparisons using the Benjamini-Hochberg false-discovery rate correction 

(FDR, q-values). All statistical comparisons between sample groups were done using 

Wilcoxon’s rank-sums test, unless otherwise specified. To accurately quantify associations 

across kingdoms and control for significant differences in their respective abundances, 

we applied a scaling factor to the fungal compositions to obtain similar distributions for 

each kingdom and allow robust estimation of bacterial-fungal co-abundance associations. 

To identify Candida- and Saccharomyces-type TCGA tumor samples and associated gene 

expression changes, we estimated significance using Student’s independent two-sample 

t-test. Differential gene expression values generated by this analysis were then used perform 

GSEA and analyze gene expression pathways enriched in Candida- and Saccharomyces-

associated cancers. Significance values for GSEA were computed by permuting gene labels. 

Across all patients with matched tumor and normal tissue, we calculated the log2 median 

ratio of relative abundance values in tumor samples compared to matched adjacent normal 

tissue for each taxon. Taxa with significant p-values (p < 0.05) were selected for downstream 

analysis. Feature importances were estimated by averaging Gini impurity measures for each 

of the 100 resulting sub-models. The survival analyses was performed using the log-rank 

test. Additional details on the statistical analysis are provided in the “Methods Details”.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A pan-cancer analysis reveals human samples harbor tumor-associated 

mycobiota

• Fungal genome coverage analysis removes contamination and false-positive 

alignments

• Alive, transcriptionally active Candida is associated with gastrointestinal 

cancers

• Candida is enriched in tumors and predictive of reduced survival in GI 

cancers

Pan-cancer analyses of multiple body sites identify tumor-specific fungi including an 

enrichment of Candida with gastrointestinal cancers. Tumor-associated fungal DNA may 

also serve as potential prognostic markers in this context.
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Figure 1. Fungal DNA is present in multiple cancer types not explained by contamination, See 
also Figure S1
(A) Geometric mean of reads per million (RPM) of fungal DNA detected in tumor and 

tumor-associated tissue samples from head-neck (HNSC), lung (LUSC), rectum (READ), 

colon (COAD), stomach (STAD), breast (BRCA), esophageal (ESCA) and brain (LGG) 

cancers.

(B) Both bacterial and fungal reads were more abundant in the lower GI tract (COAD, 

READ) than the upper GI tract (HNSC, ESCA, STAD), and were more abundant in both GI 

groups compared to the brain (LGG) that was used here as a negative control.

(C – D)Genome alignments to C. albicans (C) and S. cerevisiae (D) are largely absent in 

brain but present at high rates across other tumor types, especially upper GI.

(E) Genome alignments to B. dermatidis are found at high rates in lung tumors, but not 

elsewhere.
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(F) The distribution of sequencing reads aligning to M. globosa displays similar depth 

across sequencing projects including brain. Reads are distributed randomly, a signature of 

biological contamination.
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Figure 2. Primary tumor samples harbor disease-specific mycobiomes, See also Figure S2
(A) Principal coordinate analysis (PCoA) of normalized species abundances from head-

neck (HNSC), esophageal (ESCA), stomach (STAD), colon (COAD), rectal (READ), lung 

(LUSC), breast (BRCA), and brain (LGG) reveal clustering by tumor type, after filtering 

contaminants and false-positive signals.

(B) Clustered heatmap showing difference in relative fungal species abundances (RPM) 

between tissues from each TCGA cancer type, after filtering. Species are included if 

classified as tissue-associated in any of GI, lung, or breast samples, even if they were 

classified as contaminants in others. Heatmap values are z-scored by species abundance to 

highlight tissue-specific differences.

(C) Boxplots showing distribution of relative abundances (RA) from the 10 or fewer 

most abundant species detected in each cancer type, after removing low-prevalence and 

contaminant species.
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Figure 3. Trans-kingdom analysis reveals Candida- and Saccharomyces-associated GI cancer 
coabundance groups, See also Figure S3
(A) Clustered heatmap showing SparCC co-abundance among fungal species reveals species 

associated with C. albicans and S. cerevisiae (purple boxes).

(B – D) Clustered heatmaps showing gene expression patterns in head-neck (HNSC; B), 

stomach (STAD; C), and colon (COAD; D) cancers. Heatmaps are clustered by row, while 

column clustering is determined by (A). Gray columns indicate species not detected in 

certain cancer types

(E - G) SparCC co-abundance between Candida and Saccharomyces and bacterial genera 

found in matched tumor samples from TCMA, across head-neck (HNSC; E), stomach 

(STAD; F), and colon (COAD; G) cancers.
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Figure 4. Candida is associated with late-stage and metastatic GI cancers, See also Figure S4
(A) Kernel density estimation (KDE) of Candida-to-Saccharomyces ratios in head-neck 

(HNSC), stomach (STAD), and colon (COAD) cancers.

(B) Volcano plot showing genes differentially expressed in Candida-negative (blue) and 

Candida-high (red) tumor samples head-neck, stomach, and colon cancers.

(C) Boxplots depicting Candida-to-Saccharomyces ratios in early-stage (I-III) and late-stage 

(IV) for head-neck (HNSC), stomach (STAD), and colon (COAD) cancers.

(D) KDE analysis of Candida-to-Saccharomyces ratios in metastatic (orange) and non-

metastatic (blue) tumor samples finds that Ca-type colon tumors are significantly more 

likely to be metastatic.

(E) Violin-plots showing Bray-Curtis distances between fungal species compositions of 

patient-matched tumor and blood samples (blue) and unmatched tumor and blood samples 

(orange).
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Figure 5. Live, transcriptionally active Candida species are associated with GI tumors, See also 
Figure S5
(A) Spatial distribution of Ascomycota abundance along the colorectal tract. Significance 

was calculated between adjacent tumor sites.

(B) Targeted analysis showing spatial distribution of C. albicans abundance (RPKM).

(C) Comparison of Candida abundance detected in TCGA WGS data (eRPKM; left) and 

matched original tissues by independent ITS sequencing (relative abundance; right).

(D) Live C. albicans, C. lusitaniae, and C. tropicalis were isolated from the mucosa of 

adenocarcinomas from ascending colon of three individuals, Viable colony forming units 

(CFU) per mL of sample were determined by MALDI-TOF.

(E) Abundance of RNA transcripts aligning to Candida in brain (gray) and sites across the 

lower GI tract (blue) from solid tissues in the HCMI cohort; no solid tumor samples were 

available from the ascending or transverse colon.
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(F) Correlation between fungal species abundances (log10-eRPKM) determined analysis of 

TCGA WGS and RNA-seq data in GI samples (blue) and brain samples (gray).

Dohlman et al. Page 33

Cell. Author manuscript; available in PMC 2023 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Candida species are present in GI cancers and high abundance is associated with 
early-stage stomach cancer
(A – B) Targeted analysis measuring abundance (RPKM) of C. albicans and C. tropicalis (A) 

and S. cerevisiae (B) across TCGA cancer types.*

(C – D)Abundance of C. albicans, C. tropicalis (C), and S. cerevisiae (D) are elevated in 

stage 1 stomach cancer tumors and stage 4 colon cancer tumors. Significance was calculated 

between stage 1 tumors and each subsequent stage.*

* The direction of the inequality symbol indicates which sample group is greater, while the 

number of symbols indicates the degree of statistical significance, determined by a two-sided 

Wilcoxon rank-sum statistic (1: p < 0.05, 2: p < 0.01, 3: p < 0.001).
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Figure 7. Cancer-associated fungal mycobiota and clinical outcomes highlight predictive value of 
Candida, See also Figure S6
(A) Heat-tree depicting differential abundance of genera between tumor (blue) and matched 

adjacent normal tissue (yellow) in head-neck (HNSC), stomach (STAD), and colon (COAD) 

cancers.

(B) Volcano plot showing differential abundance of genera between tumor (blue) and 

matched adjacent normal tissue (yellow) in stomach cancer.

(C) Genera identified as important for distinguishing head-neck, stomach, and colon tumors 

from other tumor types, based on the Gini coefficient from RF classifiers. Site specific 

contaminants (#) were set to 0 prior to running the analysis and therefore may be predictive 

due to their absence.

(D) Targeted analysis of Candida spp. shows that C. albicans and C. tropicalis increases 

in abundance from the proximal to distal stomach, while S. cerevisiae abundance remains 

relatively stable.
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(E) Survival analysis comparing outcomes for cancer patients with high rates of tumor-

associated C. albicans, C. tropicalis, and S. cerevisiae, compared to patients whose head-

neck, stomach, or colon tumors were negative for these species.

(F) Across GI cancer types, patients with high levels of tumor-associated Candida 
experience decreased survival compared to Candida-negative patients.

(G) GSEA reveals that genes related to cytosolic DNA sensing, Toll-like receptor, and Nod-

like receptor signaling are up-regulated in stomach cancers with higher rates of Candida spp.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Original TCGA tissue Indivumed N/A

Colon cancer mucosal samples 
(adenocarcinoma)

Weill Cornell Medicine N/A

Critical Commercial Assays

Sabouraud dextrose broth VWR Cat# 89406–400

Sabouraud 4% dextrose agar VWR Cat# EM1.05438.0500

Glycerol monostearate (Alfa Aesar) Thermo Fisher Scientific Cat# AA4388330

modified Dixon (mDixon) ATCC protocol N/A

Deposited Data

TCGA WGS bam files GDC API (Legacy) https://portal.gdc.cancer.gov/legacy-archive

TCGA RNA-seq bam files GDC API https://api.gdc.cancer.gov/

HCMI RNA-seq bam files GDC API https://api.gdc.cancer.gov/

TCGA sequencing metadata GDC API https://api.gdc.cancer.gov/

TCGA sample metadata (biotab) GDC web portal https://portal.gdc.cancer.gov/

TCGA patient metadata PanCanAtlas https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA clinical data resource outcomes PanCanAtlas https://gdc.cancer.gov/about-data/publications/pancanatlas

Human and microbe reference genomes PathSeq bundle ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/
pathseq/

Human and microbe reference genomes PathSeq bundle ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/
pathseq/

TCGA mRNA-seq data PanCanAtlas https://gdc.cancer.gov/about-data/publications/pancanatlas

Gene sets for GSEA (KEGG) MSigDB v7.1 https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp

TCMA bacterial profiles (COAD, READ, 
HNSC, ESCA, STAD)

TCMA database https://doi.org/10.7924/r4rn36833

Software and Algorithms

GATK 4.2.0 (PathSeq) (Walker et al., 2018) https://github.com/broadinstitute/gatk/

TaxaTarget (Commichaux et al., 2021) https://github.com/SethCommchaux/taxaTarget

SAMtools v1.9, v1.14 (Li et al., 2009) http://samtools.sourceforge.net/

Burrows-Wheeler Aligner (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

BEDTools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/

deepTools2 (Ramirez et al., 2016) https://deeptools.readthedocs.io/

pyGenomeTracks (Lopez-Delisle et al., 2021) https://github.com/deeptools/pyGenomeTracks

phyloseq 1.30.0 (McMurdie and Holmes, 2013) https://github.com/joey711/phyloseq

metacoder 0.3.3 (Foster et al., 2017) https://grunwaldlab.github.io/metacoder_documentation/

STAR 2.7.3a (Dobin et al., 2013) https://github.com/alexdobin/STAR/

SparCC (Friedman and Alm, 2012) https://bitbucket.org/yonatanf/sparcc/src/default/

lifelines 0.23.8 (Davidson-Pilon et al., 2020) https://github.com/CamDavidsonPilon/lifelines/tree/0.24.6

GSEA 4.0.3 (Subramanian et al., 2007) https://www.gsea-msigdb.org/gsea/

Cell. Author manuscript; available in PMC 2023 September 29.

https://portal.gdc.cancer.gov/legacy-archive
https://api.gdc.cancer.gov/
https://api.gdc.cancer.gov/
https://api.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/pathseq/
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/pathseq/
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/pathseq/
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/pathseq/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp
https://doi.org/10.7924/r4rn36833
https://github.com/broadinstitute/gatk/
https://github.com/SethCommchaux/taxaTarget
http://samtools.sourceforge.net/
http://bio-bwa.sourceforge.net/
https://bedtools.readthedocs.io/
https://deeptools.readthedocs.io/
https://github.com/deeptools/pyGenomeTracks
https://github.com/joey711/phyloseq
https://grunwaldlab.github.io/metacoder_documentation/
https://github.com/alexdobin/STAR/
https://bitbucket.org/yonatanf/sparcc/src/default/
https://github.com/CamDavidsonPilon/lifelines/tree/0.24.6
https://www.gsea-msigdb.org/gsea/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dohlman et al. Page 38

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Decontamination analysis This paper Table S1, Related to Figure 1

Fungal composition of TCGA samples This paper Table S2, Related to Figures 1–7

False-discovery rate adjustments This paper Table S3, Related to Figures 1–7
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