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Abstract—(Aim) To detect COVID-19 patients more
accurately and more precisely, we proposed a novel artificial
intelligence model. (Methods) We used previously proposed
chest CT dataset containing four categories: COVID-19,
community-acquired pneumonia, secondary pulmonary
tuberculosis, and healthy subjects. First, we proposed a
novel VGG-style base network (VSBN) as backbone network.
Second, convolutional block attention module (CBAM) was
introduced as attention module into our VSBN. Third, an
improved multiple-way data augmentation method was used
to resist overfitting of our Al model. In all, our model was
dubbed as a 12-layer attention-based VGG-style network for
COVID-19 (AVNC) (Results) This proposed AVNC achieved
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the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%,
which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing

COVID-19 diseases.

Index Terms— Attention, covid-19, VGG, convolutional neural network, diagnosis, convolutional block attention module.

|. INTRODUCTION
OVID-19 is an infectious disease. Till 6/Feb/2021, this

COVID-19 pandemic caused more than 105.84 million
confirmed cases and more than 2.31 million death tolls (US
465.8k deaths, Brazil 231.0k deaths, Mexico 165.7k deaths,
India 154.9k deaths, UK 112.0k deaths, Italy 91.0k deaths,
France 78.7k, Russia 76.6k, Germany 61.9k, Spain 61.3k, Iran
58.4k, Columbia 55.6k, etc.)
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Symptoms of COVID-19 vary; nevertheless, they entail
fever and coughs. Some patients exhibit shortness of breath,
loss of smell/taste, headache, dizziness, skin rashes, muscle
pain, fatigue, etc. The symptoms may change over time [1].

Two types of diagnosis methods are available at present.
One type is viral testing [2]. Currently, there are numerous
walk-through testing site [3] at UK. There are also free NHS
COVID-19 test kits available. The other type is imaging
methods, which entails chest ultrasound, chest X-ray, and chest
computerized tomography (CCT). Compared to viral testing,
the imaging methods are much quicker. After the images are
reconstructed by fixed computer programs, the radiologists
need to check through the suspicious regions, and give a
decision whether the scanned patient is positive or negative.

Among all the three imaging methods, CCT provides the
highest sensitivity. The chest ultrasound is operator-dependent,
which needs high level operation skills. Besides, it is hard
to keep the ultrasound probe at the same position during
scanning. For chest X-ray (radiograph), its limitations include
poor soft tissue contrast and 2D image generation. In all,
CCT can generate 3D image around the lung area, and
give higher sensitivity diagnosis for COVID-19. The main
biomarkers in CCT distinguishing COVID-19 are ground-glass
opacities (GGOs) without pleural effusions [4].

Nevertheless, manual delineation by radiologists is tedious,
labor-intensive, and easy to be influenced by inter and
intra-expert factors. Artificial intelligence (AI) and deep
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learning (DL) approaches have gained promising results in
analyzing CCT images.

For example, Lu [5] presented a new extreme learning
machine combined with bat algorithm (ELM-BA) approach.
Li and Liu [6] presented the real-coded biogeography-based
optimization (RCBBO) approach, which can be used in our
COVID-19 recognition task. Szegedy, et al. [7] presented
the GoogleNet (GN), which can be used in this study. Guo
and Du [8] used ResNetl8 (RN18) for ultrasound standard
plane classification. Both GN and RN18 could be used in our
COVID-19 task.

Satapathy [9] presented a five-layer deep network model
using stochastic pooling (5LSP) to replace traditional max
pooling. Satapathy and Zhu [10] expanded it to 7-layer sto-
chastic pooling (7LSP). Ko, ef al. [11] presented a fast-track
COVID-19 classification network (FCONet). Ni, er al. [12]
presented a deep learning approach (DLA) to characterize
COVID-19 in CCT images. Cohen, et al. [13] presented a
COVID Severity Score (CSS) network model. Wang, et al. [14]
proposed a 3D deep DNN to detect COVID-19 (DeCovNet).
Togacar, et al. [15] used SqueezeNet, MobileNetV2, and chose
social mimic optimization (SMO) approach to select features
for further fusion. The overall classification rate obtained with
their proposed approach was 99.27%. Wang [16] combined
graph convolutional network with traditional convolutional
neural network to detect COVID-19. Wang [17] proposed
(L, 2) transfer feature learning method, and developed a novel
discriminant correlation analysis fusion approach.

Nevertheless, previous studies tried to improve the perfor-
mance of deep neural networks from three importance factors:
depth, width, and cardinality. In this study, we try to use
attention mechanism to adjust the structure of deep Al models.
Our proposed Al model is named attention-based VGG-style
network for COVID-19 (AVNC). The contributions of our
work are five-folds:

(i) A VGG-style base network (VSBN) is proposed as
backbone network

(ii) Convolutional block attention module (CBAM) is

embedded to help include attention to our Al model.

(iii) An improved multiple-way data augmentation is pro-

posed to resist overfitting

(iv) Gram-CAM is introduced to show the most important

areas that Al are observing.

(v) The results of our proposed model (AVNC) is

experimentally proven to outperform state-of-the-art
approaches.

II. DATASET

This retrospective study was exempt by Institutional
Review Board of local hospitals. Four categories were
used in this study: (i) COVID-19 positive patients;
(i) community-acquired pneumonia (CAP); (iii) second pul-
monary tuberculosis (SPT); and (iv) healthy control (HC).

For each subject, m = {1, 2, 3,4} slices were chosen via
slice level selection (SLS) approach. For the three diseased
groups, the slices displaying the largest number of lesions and
size were chosen. For HC subjects, any slice within the 3D
image was randomly chosen. The average selected slices m is

TABLE |

SUBJECTS AND IMAGES OF FOUR CATEGORIES
Class Index  Class Title N, N, m = N;/Np

c=1 COVID-19 125 284 2.27

c=2 CAP 123 281 2.28

c=3 SPT 134 293 2.18

c=4 HC 139 306 2.20
Total 521 1164 2.23

defined as m (¢) = Ny (¢)/Np(c),c = 1,---,4, where N;
stands for the number of images via SLS method, and Np the
number of patients, ¢ stands for the category index.

In total, we enrolled Zﬁ:l Np (c) = 521 subjects, and
produced Z?:l N; (c) = 1164 slice images using the SLS
method. Table I lists the demographics of the four-category
subject cohort with the values of triplets [m, Np, N;], where
m of the total set equals to m = Z?:l Ni (¢)/ Z?:l
Np (c) =2.23.

Three experienced radiologists (Two juniors: Fji and Fjy,
and one senior: Fg) were convened to curate all the images
{x (k)}, where x (k) means k-th CCT images, L stands for the
labelling of each individual radiologist. The final labelling LF
of the CCT scan x (k) is obtained by

Lp [x (k)]
_ | LIFn,x ()], L[F1,x (k)] == L[Fj2,x (k)]
MAV {F, [x (k)]}, otherwise
(1)

where MAV denotes majority voting, F, the labelling of all
three radiologists, viz.,

Lo [x (k)] = [L (Fy1,x (k)), L (Fy2,x (k)), L (Fs, x (k))]
2
The above equation denotes that at the situation of dis-
agreement between the analyses of two junior radiologists
(F“, sz), it is necessary to consult a senior radiologist (Fy)

to reach a MAV-type consensus. The CCT and labelling data
are available on request due to privacy/ethical restrictions.

Ill. METHODOLOGY
A. Preprocessing

Suppose the original dataset containing four categories is
named Oorig = {0orig (1), -+ , Oorig (i), - -+ }, where 0oig (i)
is the i-th original image.

Figure 1| presents the flowchart of our preprocessing proce-
dure: (i) RGB to grayscale; (ii) histogram stretch; (iii) margin
crop; and (iv) resizing. Suppose the dataset generated by each
step is O;, Oj;, Ojii, and Oprep, We can yield

Oi = Fgray (00rigIRGB — Grayscale)
={oi(1),...,0i @), ..} 3)
Oii = Fus(0i)) ={oii (1),---,0ii ((),...} (4
Oiii = Fcrop (Oiia [C', Cb,Cl,Cr])
= {oiii (1), -+, 0iii (i), -} (%)
Oprep = Fps (0iii, [256256])
= {oprep (1);-~-,0prep (l),} (6)
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Fig. 1. Preprocessing on raw dataset (HS: histogram stretch).

TABLE Il
IMAGE SIZE AND STORAGE PER IMAGE AT
EACH PREPROCESSING STEP

Preprocess  Variable  Size (per image)
Original Oorig 10242 x 3 = 3,145,728
Step 1 0; 10242 x 1 = 1,048,576
Step 2 0;; 10242 x 1 = 1,048,576
Step 3 0jii 6242 x 1 = 389,376
Output Oprep 2562 x 1 = 65,536

where Fg,,y means the grayscale operation. Fys stands for
the histogram stretch operation, which maps the intensity value
range to the standard range [0, 255]. Fcyop stands for the
margin crop function. ¢’ means the pixels to be cropped of
top side, which equals 150 in this study. Other three factors
cb, ¢!, ¢ stand for the cropped pixels to the bottom side, left
side, and right side, respectively. They are all chosen as 200.
Fps stands for the downsampling (DS) function. [256256]
means the size of downsampled image.

Table II compares the size per image after every preprocess-
ing step. We can see here after preprocessing procedure,
the size ratio of oprep OVeEr o,rig is only (256/2014)% /3 =
2.08%. Thus, the preprocessing has four major advantages:
First, it can remove the unrelated regions (like the checkup
bed on the bottom side, and texts on right side side). Second,
the color redundant information will be removed. Third, Con-
trast will be enhanced so the lesions become clearer. Fourth,
the sizes of the image are compressed to save storage.

B. VGG-Style Base Network

VGG is a typical CNN architecture, and is considered to
be one of excellent model architecture till date [18]. After
investigating through the recent VGG networks, we propose
a similar VGG-style base network (VSBN) model for our
task. Note that VGG-style are popularly used in many recent
networks, such as References [19], [20].

VGG-16 has an input size of 224 x 224 x 3 (See Sl in
Figure 2a), After the 1% convolution block (CB), which
consists of two repetitions of 2 convolutional layers with
64 kernels with sizes of 3 x 3, abbreviate as 2 x (64 3 x3), and
one max pooling layers, the outputis 112x 112 x 64 (See S2 in
Figure 2a). The 2nd CB 2 x (128 3 x 3), 3rd CB 3 x (256
3 x3),4th CB 3 x (512 3 x 3), and 5th CB 3 x (512 3 x 3)
generate the activation maps with sizes of 56 x 56 x 128,

128x128x32 04%64x32 32x32x64 16x16x64 8x8x128

8192
(b) VSBN

Fig. 2. AM comparison.

TABLE Il
SIMILARITIES BETWEEN VSBN AND VGG-16

Index  Similarity Aspect

1 Using small convolution kernels (3 X 3)

2 Using small-kernel max pooling with size of (2 X 2)

3 Several repetitions of conv layers followed by max pooling

4 Fully-connected layers at the end

5 Size of feature maps shrinks as it goes from input to output

6 Channel number increase as it goes from input layer to the last

conv layer, and then decreases as to output layer.

28 x 28 x 256, 14 x 14 x 512, and 7 x 7 x 512, respectively
(See S3-S6 in Figure 2a).

Afterwards, the AM is flattened into a vector of 25,088
neurons, and passed into three fully-connected layers with
neurons of 4096, 4096, and 1000, respectively (See S7-S10 in
Figure 2a).

Our proposed VSBN model is similar to VGG-16 network.
Its activation maps (AMs) of each convolutional block and
fully-connected layers (FCLs) are shown in Figure 2(b). The
similarities are in terms of six following aspects as shown in
Table III.

C. Attention-Based VGG-Style Network for COVID-19

To improve the performance of the deep neural network,
many researches are done with respects to either depth,
or width, or cardinality. Recently, Woo, et al. [21] proposed
a novel convolutional block attention module (CBAM), which
mainly features in the attention mechanism. Attention not only
tells the neural network model where to focus, it also improves
the representation of interests.

Attention plays an essential role of human visual systems
(HVSs) [22]. Figure 3 shows an example of HVS, where
image formation is captured by lens of cornea of the eyeballs.
Then, iris utilizes the photoreceptor sensitivity to control the
exposure. The information flow is then sent to rod cells and
cone cells in the retina. Finally, the neural firing is passed to
brain for further processing.

Humans do not try to process the whole scenarios at one
time; nevertheless, humans take full use of partial glimpses
and focus on salient features selectively so as to seize a better
visual structure [23]. The core idea of attention mechanism
is to refine the three-dimensional feature maps by learning



17434 IEEE SENSORS JOURNAL, VOL. 22, NO. 18, 15 SEPTEMBER 2022
MaxPool
Brain Dy Wo Wi
Channel
Lens : I/]:l;\;t e e Attention
e — P Retina A Neam(A)
AvgPool MLP
Iris Dap
‘ Formation [ Control L Detection
Fig. 3. Diagram of an HVS system. Channel
Refined
AM
B
<E: Spatial Attention AM
— CAM P — Nsam(B)
/ Neaw (b) SAM
NSAM
Input AM % Refined AM Fig. 5. Flowchart of two blocks in SAM.
A B C
AACB

Fig. 4. Relation of CBAM and CAM and SAM.

channel attention and spatial attention, respectively. Thus,
the Al model using attention mechanism (i) will focus on
those really important and salient features, (ii) performs more
effective, and (iii) becomes more robust to noisy inputs.
CBAM, a typical attention mechanism-based module,
entails two sequential submodules: channel attention mod-
ule (CAM) and spatial attention module (SAM). Figure 4
shows the overall relation of CBAM and CAM and SAM.
Suppose we have a temporary activation map. Its input is
A € REXHXW The CBAM will apply 1D CAM Ncam €
RE*1X1 and a 2D SAM Ngam € RP>H*W in sequence to the
input A, as shown in Figure 4. Thus, we have the channel-
refined activation map and the final activation map as:

B =Ncam (A) ® A o
C=Nsam(B)®B
where ® stands for the element-wise multiplication. If the two
operands are not with the same dimension, then the values are
broadcasted (copied) in such ways the spatial attentional values
are broadcasted along the channel dimension, and the channel
attention values are broadcasted along the spatial dimension.
First, we define the CAM. Both max pooling f,, and
average pooling f,,, are utilized, generating two features
Da,p and Dyp.
Dap = fap (A) (8)
Dmp = fimp (A)

Both are then forwarded to a shared multi-layer percep-
tron (MLP) to generate the output features, which are then
merged using element-wise summation @. The merged sum is
finally sent to the sigmoid function ¢. Mathematically

Ncam (A) = 0 {MLP [Dap| ® MLP [Dpp]} ©

To reduce the parameter resources, the hidden size of MLP
is set to RE/7*1x1 \where r is defined as the reduction ratio.
Suppose Wy € RE€/7*C and Wy € RE*C/" stand for the MLP
weights, respectively, we can rephrase equation (9) as

NcaMm (A) = o {W1[Wo (Dap) ] & W1 [Wo (Dmp)]} (10)

Following
> block

1
CAM %
170]
1/ Neam
X Nsam
Previous X
CB P A 5

Fig. 6. lllustration of AACB: Integration of CBAM with VGG-style base
network.

Note Wy and W;p are shared by both Dap and Dpp.
Figure 5(a) shows the flowchart of CAM. Note that squeeze-
and-excitation (SE) [24] method is similar to CAM.

Second, we describe the detailed procedures of SAM. The
spatial attention module Ngam is a complementary step to the
previous channel attention module Ncam. The average pooling
fap and max pooling f,,, are applied to the channel-refined
activation map B, and we get

Eap = fap (B)
Emp = fmp (B)

Both Eap and Eyyp are two dimensional activation maps: Eap €
RUHXW A Epp € RPXH*W They are concatenated together
along the channel dimension as E = concat (Eap, Emp).The
concatenated activation map is then passed into a standard
7 x 7 convolution f,,, and followed by a sigmoid function o.
In all, we have: Ngam (B) = o { fconv [E]}. The flowchart of
SAM is drawn in Figure 5(b). The output Ngam (B) is then
element-wisely multiplied with B, as shown in Equation (7).

The attention mechanism CBAM is embedded into our
VGG-style base network. The integration is shown in Figure 6.
For the activation map A of each convolution block, the two
consecutive attention modules (channel and spatial) are added,
and the refined features C are sent to the next CBs. Here
AACB means the attention attached convolution block, which
is composed of one CB and following attention modules.

Table IV itemizes the structure of proposed attention-based
VGG-style network for COVID-19 (AVNC) model, where the
structure is almost the same as previous VSBN model, except
that each CB are replaced by corresponding AACB.

The size of input is 256 x 256 x 1. The first AACB contains
2 repetitions of 32 kernels with size of 3 x 3, followed by max
pooling with size of 2 x 2, and attention modules (both channel

Y
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TABLE IV
STRUCTURE OF PROPOSED 12-LAYER AVNC MODEL
Index Name Kernel Parameter  Size of Output
1 Input 256x256x1
2 AACB-1  [3x3,32]x2 128x128x32
3 AACB-2  [3x3,32]x2 64x64x32
4 AACB-3  [3x3, 64]x2 32x32x64
5 AACB-4 [3x3, 64]x2 16x16x64
6 AACB-5  [3x3, 128]x2 8x8x128
7 Flatten 1x1x8192
8 FCL-1 150x8192, 150x1 1x1x150
9 FCL-2 4x150, 4x1 1x1x4
10 Softmax 1x1x4
Flatten

AACB1 AACB2 AACB3

NN

AACB4 AACB5 FCL1

FCL2
—84——55——s6—s7—88

256x256x1 150

128x128x32 64x64x32 32x32x64 16x16x64 8x8x128
8192

Fig. 7. AMs of AVNC.

and spatial). The output after 1st AACB is 128 x 128 x 32.
Consequently, the output of second to fifth AACB is 64 x 64 x
32,32 x32x 64, 16 x 16 x 64, and 8 x 8 x 128, respectively
(See S1-S6 in Figure 7).

At the flatten stage, the feature map is vectorized as 1 x 1 x
8192, where from the previous AM we get 8 x8x 128 = 8§192.
This 8192-element vector is then submitted to 2-layer FCLs
with 150 neurons and 4 neurons, respectively (See S7-S9 in
Figure 7). The softmax function is defined as ¢ : R > RX,
Suppose the input z = (z1, ..., zx) € RX, we have ¢ (z); =
exp (z,-)/Zf:1 exp(z;),Vi=1,..., K.

As default, batch normalization and dropout are embed-
ded in our proposed AVNC model. Gradient-weighted class
activation mapping (Grad-CAM) [25] is employed to give
explanations that how our AVNC model makes the decision.
Grad-CAM demystifies the Al model by utilizing the gradient
of the categorization score regarding the convolutional fea-
tures. S6 in Figure 7 will be used to generate the heatmap
where red colors stand for the most interesting area our AVNC
model pay attentions to.

D. Improved Multiple-Way Data Augmentation

This small four-category dataset (1164 images) causes our
AVNC model easily overfitted. To help prevent the overfit-
ting take place, an improved multiple-way data augmenta-
tion (IMDA) inspired from Ref. [16] was proposed. Ref. [16]
proposed a 14-way MDA, which includes 7 data augmentation
techniques to the original image o(i) and its horizontal-
mirrored (HM) image og s (i).

Our IMDA method includes a new DA method: salt-and-
pepper noise (SPN) to both o (i) and ogps (). The SPN has
already been successfully proven effective in medical image
recognition.

First, eight DA transforms are utilized. They can be
divided into three types: (i) geometric; (ii) photometric; and
(iii) noise-injection. We use dn?A,m = 1,...,8 to denote
each DA operation. Note each we assume DA operation

TABLE V
DATASET SPLITTING
Category Non-test Test Total
(10-fold CV) (S runs)
COVID-19 |0o}'| =227 |0f| =57 0| =284
CAP |0} =225 |05 =56 |0,| =281
SPT |0} =234 |0i| =59 |0s] =293
HC |0} = 245 ot =61 |0,] =306

d"? A yields P (m) new generated images. The first tem-
porary enhanced dataset Dq (i) is obtained by Dq (i) =
fE{dP4 1o ()l im=1,---,8}, where fC stands for con-
catenation function. The number of images in |Djp (i)|] =
Zi,zl P (m).

Second, the horizontal image is generated by HM function
S as opy (i) = M o (i)].

Third, eight DA transforms are carried upon the mirrored
image ogy (i), and we obtain the second temporary enhanced
dataset Dy (i) = fC {d,;)A loay )] m=1,---, 8}, where
D (i)| = [D1 ().

Fourth, the raw image, the mirrored image, the first and
second temporary enhanced dataset are all combined. The final
dataset is

0(i) onwm (i)} (12)

N _ oC
0B=1r1 [Dl(w D (i)

In this study, we set P(1) = --- = P(8) = P = 30.
We tested greater value of W, but it does not bring significant
improvement. Hence, one image will generate |O (i)] =
lo (@) +logm @)+ D1 () +D2(@)=14+1+8P 48P =
16 P 4 2 images (including raw image o (i)).

Table V itemizes the non-test, and test set for each category.
The whole dataset O contains four non-overlapping categories
O ={O0|,k=1,---,4}. For each category, the correspond-
ing dataset O will be split into non-test set and test set
Or — {O,’:, O,i} ,k=1,2,3, 4, where the superscript n and ¢
stand for non-test and test, respectively.

Our algorithm is composed of two phases. At Phase I,
10-fold cross validation was used for validation on the non-
test set (See O} in Table V) to select the best hyperparameters
and best network structure. Due to the page limit, results on
Phase I were not reported in Section I'V. Afterwards at Phase I,
we train our model using non-test set (See O,i in Table V)
S times with different initial seeds, and obtain the test results
over the test set O,k = 1,---,4. After combining the §
runs, we obtain a summation of test confusion matrix (TCM)
E!. The ideal TCM only have entries on the diagonal line as

ol o0 0 0
0 |0 o o0
0 0 |0} 0
0 0 o0 |Of

E'=S x (13)

where we can observe that E (i, j) = 0,Vi # j, indicating
there is no prediction mistakes for the TCM of an ideal
Al model. For this proposed AVNC model, the performance
per class (PPC) will be calculated. For each class k =
1,---,4, that class k is set to positive, and other three classes
[1,2,3,4] — k are negative.
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Fig. 8. Diagram of proposed IMDA method.
TABLE VI
EFFECT OF PROPOSED IMDA
Model C Sen Prc Fl Model C Sen Prc Fl
IMDA 1 97.19 96.18 96.68 No-DA 1 9491 95.58 95.25
(Ours) 2 97.68 96.64 97.16 2 92.68 91.86 92.27
3 9525 97.57 96.40 3 939 9342 93.66
4  97.38 97.06 97.22 4 9459 9521 949
Fl“ 96.87 Fl“ 94.03

The PPCs of sensitivity (S), precision (P), and F1 score
(F1) are calculated as: S (k) = TP(k)/[TP (k) + FN (k)],
P (k) TP (k)/[TP (k)4 FP (k)], F1(k)=2xP (k) x
S (k) /1P (k) + S (k)].

There are two types of overall F1 scores that can mea-
sure over all categories: micro-averaged and macro-averaged.
This study chooses the micro-averaged F1 ( )'u ) because our
dataset is slightly unbalanced FI” = %, where S# =

Si TPK) _ S TP®
St TP(k)+FN(k) T S TPMO+FP()
IV. RESULTS AND DISCUSSIONS
A. Effectiveness of IMDA

Figure 9 shows the Djp result of proposed IMDA. Due
to the page limit, the oyy and Dy are not displayed here.
The original preprocessed image is shown in Figure 12(a).
Afterwards, we show the test results of using IMDA and not
using IMDA in Table VI, where “No-DA” means not using
any DA technique.

We can observe from Table VI that the performance will
decrease if we remove the IMDA from our algorithm. The
micro-average F1 score over four classes using IMDA is F]” =
96.87%, which will crease to only 94.03% if no DA method
is used. This comparison shows the effectiveness of IMDA.

B. Configuration of Attention

We compare different configuration of attention here.
We test five configurations: (i) No attention (NA),
i.e., proposed VSBN (ii) squeeze-and-excitation (SE) [24]
module; (iii) CAM and SAM in parallel (CSP); (iv) First
SAM Second CAM (FSSC); and (iv) First CAM Second
SAM, viz., CBAM used in this proposed AVNC. The results
are presented in Table VIIL

() Scaling
Fig. 9. Dy result of IMDA.

TABLE VI
COMPARISON OF DIFFERENT CONFIGURATIONS OF ATTENTION
Model C Sen Prc F1 Model C Sen Prc Fl
T 91.40 93.04 9221 T 9526 95.60 95.43
2 9232 9417 9324 2 9607 9472 9539
NA 3 9407 9391 93.99|SE[24] 3 95.08 94.44 94.76
4 9590 92.86 9435 4 9361 9517 9438
E 93.48 E 94.98
T 9544 9697 9620 T 9509 96.79 95.93
2 9589 9572 9581 2 9625 96.77 96.51
CSP 3 97.80 9553 96.65|FSSC 3 97.29 96.15 96.71
4 9492 9586 9539 4 9689 9594 9641
E 96.01 E 96.39
T 97.19 96.18 96.68
2 97.68 96.64 97.16
C(?AM 39525 97.57 96.40
Ours) 4 9738 97.06 97.22
F 96.87

From Table VII, we can observe that NA method achieves
the worst result of only F1ﬂ = 93.48, indicating that the
VSBN model without any attention mechanism come across
somewhat misclassification over the test set. Then we can see
SE [24] obtains the second worst result of F = 94.98. The
reason is SE uses global average-pooled features which are
suboptimal to infer fine channel attention. The CSP method
get the mediocre result of F]” = 96.01, which is better than
SE [24]. The reason is (i) SE [24] misses the spatial attention;
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TABLE VIII
COMPARISON TO STATE-OF-THE-ART ALGORITHMS

Model C Sen Prc F1 Model C Sen Prc F1
ELMBA | 62.63 67.61 6503|RCBBO 1 7193 84.19 77.58
[5] 2 6429 65.10 64.69][6] 2 7286 7273 72.79
3 71.86 6677 69.22 3 7356 7641 74.96
4 6393 63.52 63.73 4 80.66 6891 7432
E 65.71 E* 74.85
T 81.75 83.07 82.40 T 8281 82.66 82.73
2 86.07 82.39 84.19 2 81.07 7443 77.61
GN 3 8051 84.07 8225 |RNI®8 3 7494 7608 75.58
(7] 4 8131 80.13 80.72 |8 4 8213 8638 84.20
E 82.36 E* 80.04
1 93.16 91.39 9227 T 89.47 93.58 9148
qep 2 9321 9110 9214 o 2 9393 9244 93.18
) 300153 9153 9153| [OF 3 9373 9s.18 9a.ds
(2] 4 8656 90.10 88.29]1Y 4 9508 9134 93.17
E 91.03 E* 93.09
T 9228 9564 9393 T 8789 91.59 89.70
2 9679 9443 95.59 80.89 85.47 83.12
FCONet 3 9475 9588 9531|PLA 3 8322 82.11 82.66
U 4 9492 9294 9392|121 4 9230 8595 89.01
E 94.68 E 86.18
T 94.04 9225 93.14 T 91.05 90.58 9081
93.75 95.11 94.42|DeCov 2 93.75 90.99 92.35
CSS 3 9136 93.58 92.45|Net 39051 8697 88.70
U314 0443 9275 9358)[14] 4 88.69 9558 92.01
E 93.39 E* 90.94
T 97.02 9263 94.77 T 97.19 96.18 96.68
89.11 95.23 92.07 2 97.68 96.64 97.16
SMO 9492 9492 94.92|AVNC 3 9575 9757 96.40
5] 4 9426 9289 93.57]©OWS) 4 9738 97.06 97.22
E 93.86 E* 96.87

CI 2.8%

CINETN 2.3%

95.3% WENEH

BWON =

97.4%

2.6%

True Class

96.2%
3.8%

96.6% 97.6% 97.1%
3.4% 2.4% 2.9%
1 2 3 4
Predicted Class

Fig. 10. Confusion matrix of proposed AVNC approach.

(i) CSP uses SAM and CAM parallelly, and the CAM uses
both max pooling and average pooling.

Finally, our CBAM and the FSSC methods achieves the best
two results, because both use CAM and SAM in sequence.
Hence, compared to CSP, we can conclude the sequential link
can get better results than parallel link (CSP). The difference
of CBAM and FSSC lies in that CBAM is “First CAM
Second SAM”, and FSSC is “First SAM Second CAM”. This
experiment shows the CBAM method yields better result than
FSSC method, which is in line with Ref. [21].

C. Comparison to State-of-the-Art Diagnosis Methods
We finally compare this proposed AVNC approach with
state-of-the-art approaches. First, the confusion matrix of
proposed AVNC is displayed in Figure 10. Remember in
Table V and Equation (13), the ideal confusion matrix is
a diagonal matrix in which the elements along diagonal
line is 10 x [57,56,59,61]. Figure 10 shows that in total
554 COVID-19 cases are classified correctly; nevertheless, 7,
5, and 4 cases are wrongly misclassified to CAP, SPT, and HC,

90

®
3

=
=)

Performance(%)

AVNC( Ours‘{
FCONet[11

5LSP(0]
DeCowNel[14]
DLA[12
GN
RNW;]B
ReBROle
ELMBA[5]

15 1

Fig. 11. Comparison (kS: sensitivity of class k, kP: precision of class k,
kF: F1 score of class k, mF: micro-averaged F1 score).

d€)ee €3

I
(c) (d HC

(b) CAP
e
Pt o

iii HM ofici (h) HM of (d)

MDof(b) (k) MD of(c)

Fig. 12. Heatmap generated by Grad-CAM and our AVNC model (HM:
heatmap).
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respectively. Similarly, we can get the case-by-case prediction
results for 2nd, 3rd, and 4th categories.

This proposed AVNC method was compared with 11 state-
of-the-art approaches: ELMBA [5], RCBBO [6], GN [7],
RN18 [8], SLSP [9], 7LSP [10], FCONet [11], DLA [12],
CSS [13], DeCovNet [14], SMO [15]. The detailed comparison
results are shown in Table VIII.

Figure 11 shows the comparison results of all the 12 algo-
rithms in terms of the overall performance Fl/‘ . It shows this
proposed AVNC achieves the highest value of Fl/‘ = 96.87,
which again indicates the superiority of our algorithm.

D. Explainability of Proposed Model

Figure 12(a-d) displays the four samples of COVID-19,
CAP, SPT, and HC, respectively. Their corresponding
heatmaps (HMs) generated by Grad-CAM are displayed in
Figure 12(e-h). Meanwhile, we showed the manual delin-
eation (MD) results in Figure 12(i-k).

V. CONCLUSION
In this paper, a novel AVNC model was proposed, which
utilizes the proposed VSBN as backbone and integrates the
attention mechanism and an improved multiple-way data
augmentation.
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Experimental results in Section IV showed that this
proposed AVNC achieved the sensitivity/precision/F1 per class
all above 95%. Particularly, AVNC yielded a micro-averaged
F1 score of 96.87%, which is higher than 11 state-of-the-art
approaches.

We shall attempt to (i) expand our dataset to include more
samples and to include more categories; (ii) integrate our
AVNC with IoT [26], [27], cloud computing, edge comput-
ing [28], and online web services.
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